

Lightning Guide

to Databases with

Microsoft Access and SQL
© Prof. Dr. Arturo Azcorra

August 2021 – First edition v1.3

PARTS IN THIS LIGHTNING GUIDE

PART A. CREATING MY FIRST DATABASE WITH MS-ACCESS 1

PART B. BRIEFING ON MS-ACCESS USER INTERFACE 24

PART C. CONCEPTS AND INTERNALS OF DATABASES 92

PART D. DESIGNING MY DATABASES WITH MS-ACCESS 133

PART E. ENTERING, MODIFYING AND DELETING MY DATABASE DATA . 202

PART F. WRITING SQL QUERIES TO USE MY DATABASE 231

PART G. WRITING EXPRESSIONS ... 398

PART H. CUSTOMIZING THE APPEARANCE OF A QUERY/TABLE/FORM IN

“DATASHEET VIEW” .. 439

PART I. EVOLVING MY DATABASE DESIGN.. 469

PART J. DEBUGGING MY SQL QUERIES .. 495

PART K. USEFUL DESIGN ADVICE ... 555

PART L. FIXING DATABASE ERRORS .. 669

PART M. LIST OF BUILT-IN FUNCTIONS ... 720

PART N. CONTENTS AND ACKNOWLEDGEMENTS ... I

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 1 of 725

PART A. CREATING MY FIRST DATABASE WITH MS-

ACCESS

You may click:

• “A.1 How do I use this Lightning Guide?”

• “A.2 What version of MS-Access is this Guide for?”

• “A.3 How do I create my first database?”

• “A.4 How do I write and run my first SQL Query?”

• “A.5 How do I add a Table to my first database?”

• “A.6 How do I write and run my first Select Query with record aggregation?”

• “A.7 How do I configure my Tables in my first database?”

• “A.8 How do I write and run my first Union Query?”

• “A.9 How do I create a Relationship in my first database?”

• “A.10 How do I write and run my first Join Query?”

• “A.11 How do I write and run my first Transform Query?”

A.1 How do I use this Lightning Guide?

If you are new to MS-Access, to databases and to SQL, I suggest you start reading from

this “Part A. Creating my first database with MS-Access”.

If you are familiar with SQL and databases, but not with MS-Access, you probably want

to start reading from “Part B. Briefing on MS-Access user interface” and them move

to “Part D. Designing my databases with MS-Access”.

If you are already quite experienced with MS-Access, but not so much with database

concepts, nor with SQL, you may probably want to start reading from “Part C. Concepts

and internals of databases” and then move to “Part F. Writing SQL Queries to use my

database”.

If you are already quite experienced with MS-Access and database concepts, and your

interest is mainly on SQL and advanced features, you may probably want to start reading

from “Part F. Writing SQL Queries to use my database”.

The objective of this Part A is that you get familiar with MS-Access’ user interface,

with a few of its commands, with a simple database that you will create, and with SQL

Queries that you will write. Very few technical concepts or detailed commands are

presented here. However, with this Part A you will learn by doing the most

fundamental ideas of databases.

You can read Part A in “normal mode”, by actually typing the commands and data to

create your first database, or, in “lightning mode”, by downloading the database and

just looking into it while following my indications. The same applies to Part F, where

I will propose a number of examples of Queries that you can replicate yourself, or just

run in my database of examples. For “lightning mode” you can download the MS-

Access database with all the examples of Tables, Forms and Queries in this Lightning

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 2 of 725

Guide from the link:

 https://lightningguide.net/Company_Database.zip

Finally, I want to remark that this is not an academic book. The objective of this

Lightning Guide is that you learn databases, SQL and MS-Access as fast as possible.

Achieving this main objective requires a little flexibility in respect to academic rigor.

A.2 What version of MS-Access is this Guide for?

For the English version of MS-Access 365 of the year 2021.

This version is very similar to earlier MS-Access 365 versions, to MS-Access 2019

and to MS-Access 2016, so almost everything of this Lightning Guide also applies to

those versions.

If you have changed options and settings of your MS-Access 365, or you are using a

different MS-Access version, then your views and command layout will have minor

differences from what I am explaining here. In that case, I hope you will be experienced

enough to notice the format and view differences and follow the explanation even if

your screen layout/format is not exactly the same as I am indicating.

A.3 How do I create my first database?

You may click:

• “A.3.1 What is the MS-Access user interface?”

• “A.3.2 How do I create my first database file?”

• “A.3.3 How do I create my first Table?”

• “A.3.4 How do I input my first data into my Table?”

A.3.1 What is the MS-Access user interface?

It is very convenient that you keep the MS-Access window maximized (i.e., covering

all screen), because if you make it smaller many commands will not show properly, and

views may differ from what I am detailing.

If you want a briefing on the MS-Access user interface before attempting to create your

first database and Queries, you may click “Part B. Briefing on MS-Access user

interface” and then come back to this Part A.

A.3.2 How do I create my first database file?

Open MS-Access, and check if you see either the “ ” or the “ ”

button at the window’s top left.

If you see the “ ” button, you click on “ ” and you will now see the

“ ” button.

Once you see the “ ” button, you click on it and you get a file selector

sub-window. Choose the folder you want for your new database file by clicking on the

corresponding directories of the file selector.

The default database file name is “Database1.accb” or something similar. Click on the

https://lightningguide.net/Company_Database.zip

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 3 of 725

default file name to select it and edit the file name to become “Test Database.accdb” (I

show the text to type-in between quotes, but you should not type-in the quotes). It is

essential that you do not change the file extension (i.e., the suffix of the file name after

the period), that must remain to be “.accdb”. Click on “OK”, and you have created

your first database file: congratulations!

Take note of the folder path and file name that you used because you will want to work

later over this file, following the indications of other examples in this Lightning Guide.

Now click on the “Home” Ribbon name, placed on the top left corner of the MS-Access

window. This will make the Home Ribbon (a “Ribbon” is a toolbar placed towards the

top of the MS-Access window) appear. Click on the pin “ ” icon placed at the bottom

right corner of the Ribbon. The pin “ ” icon will change to the menu “ ” icon and

the Ribbon area will be shown permanently instead of being automatically hidden. A

permanent Ribbon area will be much more convenient for you until you are more

familiar with MS-Access.

A.3.3 How do I create my first Table?

If you just read A.3.2, you should have an opened database file in MS-Access and a

permanent Ribbon area. Otherwise, click A.3.2 and follow my indications until you

reach here.

When you have an opened database file, you should see inside the MS-Access window

the following elements: the top window frame, in dark red color; the “Ribbon-bar” (a

list of Ribbon names: “File”, “Home”, “Create”, etc.) right below the top window

frame; a Ribbon (a wide toolbar with command icons) below the “Ribbon-bar”; the

“Navigation Pane” below the Ribbon on the left side; and the “Object Area” below the

Ribbon on the right side. The following screenshot highlights each of these elements:

I will now explain in a little more detail each of these user interface elements:

• The “Ribbon-bar”, at the top, contains a list of “Ribbon names”. If you click on a

“Ribbon name” (except “File”), the corresponding “Ribbon” (i.e., toolbar) will be

shown.

• A “Ribbon” (toolbar) below the “Ribbon-bar” contains many icons of commands

and tools to do different actions on your database and database objects. You can

decide what “Ribbon” is shown in the Ribbon area by clicking on a “Ribbon name”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 4 of 725

(except “File”) from the “Ribbon-bar”.

• The “Navigation Pane”, on the left, lists the Table names, Query names and names

of other database objects.

• The “Object Area” is the area where the opened database Objects (Tables, Queries,

Forms, etc.) are shown. Each opened object type will have its specific type of pane,

showing information and properties of the Object.

You will now create your first database Table.

Right-click on the Table name “Table1 (either at the left on the “Navigation Pane” or

at the top on the “Object Tab”) and in the pop-up menu click on “Design View”. This

will open a box requesting you to input the Table name. Type-in “T_Capital_Cities” (do

not type any name different from this, not even translating into your language) and click

on “OK”. I show the text to type-in between quotes, but you should not type-in the

quotes.

In case that “Table1”·was not shown, then click on “Create” from the “Ribbon-bar”,

and then on the Table Design “ ” icon inside the “Create” Ribbon. This will open a

Table in “Design View”, with the temporal name “Table1”.

You should now see this new Table name in the “Navigation Pane” to the left, and its

“Table pane” should show the Table in “Design View”.

Click on the cell placed right below “Field name” and type-in “Capital” into it (in case

that cell has an existing text “ID” delete it and type-in “Capital”). Now click on the cell

to the right of “Capital”. You will see the drop-down menu “ ” icon at the rightmost

side of the cell. Click on the drop-down menu “ ” icon and then click on Short Text
from the drop-down menu.

Now click on the cell below “Capital” and type-in “State_Province”. Now click on the

cell to the right of “State_Province”. You will see again the drop-down menu “ ” icon

at the rightmost side of the cell. Click on the drop-down menu “ ” icon and then click

on Short Text from the drop-down menu.

Now click on the cell below “State_Province” and type-in “Country”. Now click on the

cell to the right of “Country”. You will see again the drop-down menu “ ” icon at the

rightmost side of the cell. Click on the drop-down menu “ ” icon and then click on

Short Text from the drop-down menu.

Right-click on the Table name “Table1” (either in the left “Navigation Pane” or in the

Object tab) and in the pop-up menu click on “Datasheet View”. This will open a box

asking if the Table should be saved, where you should click on “Yes”. Then MS-Access

will ask for the Table name: type-in “T_Capital_Cities”. You have created your first

database Table: congratulations!

You will now see your Table, with its name “T_Capital_Cities” in its “Table pane”, and

three columns named “Capital”, “State_Province” and “Country”. You will also see a

fourth column named “Click to Add” that you should ignore (do not click on it!). You

will also see one empty row (with an asterisk “*” to its left), which is the row to enter

new records into a Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 5 of 725

A.3.4 How do I input my first data into my Table?

If you just read A.3.3, you should have an opened database file with a Table. Otherwise,

click A.3.3 and follow my indications until you reach here.

Click on the first cell to the right of the box with an asterisk “*” and type-in “Beijing”

(I show the text to type-in between quotes, but you should not type-in the quotes). Click

on the cell, in this same row, below “Country” and type-in “China”.

Now click on the first cell to the right of the box with an asterisk “*” and type-in

“Brasilia”. Click on the cell, in this same row, below “Country” and type-in “Brazil”.

Repeat the same process for all the rows shown in the Table below. This is, typing-in

for each row of the Table, the text contained in all the cells in each row. Avoid typing-

in information by columns (e.g., typing-in all the “Capital” city names, and then all the

“State_province” names, and then all “Country” names), because MS-Access manages

each Table row as single entity (a record). The values you should type-in for the cells

in each Table row are shown in the following Table:

T_Capital_Cities

Capital State_Province Country

Beijing

China

Brasilia

Brazil

Buenos Aires

Argentina

Madrid Madrid Spain

Washington District of Columbia United States

You should now see in your Table the same information as listed in the Table above. If

any cell does not show exactly the same information as the Table above, click on that

cell(s) and edit the information until it is exactly the same as shown above.

Now right-click on the tab heading (showing the Table name “T_Capital_Cities”) and

in the pop-up menu click on “Save”. Next, right-click again on the tab heading

(showing the Table name “T_Capital_Cities”) and in the pop-up menu click on “Close”.

You have input your first data into your first Table: congratulations!

You probably were tempted to input in your database Table other countries or other

information, different from the one in the table above. For example, you may want to

include the capital city in your country, or some of the state/province that are blank. I

strongly recommend you do not do it, and just type-in exactly the information above.

The reason is that I will use this Table for other examples along the Lightning Guide,

and if you do not have exactly the same information in your database, your results will

differ from mine, and the examples will be very difficult to follow. If you have already

typed-in different data, I suggest you go back cell by cell and modify it until your Table

is exactly the same as the Table above.

A.4 How do I write and run my first SQL Query?

You may click:

• “A.4.1 How do I write my first SQL Query?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 6 of 725

• “A.4.2 How do I run my first SQL Query?”

• “A.4.3 What does it mean “case insensitive”?”

A.4.1 How do I write my first SQL Query?

If you just read A.3, you should have an opened database file with a Table having data.

Otherwise, click A.3 and follow my indications until you reach here.

Click on “Create” from the “Ribbon-bar” (placed right below the top window frame).

This will cause the “Create” Ribbon (toolbar) to be shown. Now click on the Query

Design “ ” icon inside the “Create” Ribbon. This will open a “Query pane” called

“Query1” or something similar. The “Query pane” is placed inside the “Object Area”

(click B.2), where the “Table pane” was shown in the previous sections. The “Query

pane” has a tab at its top with the Query name “Query1”.

In addition to having created a “Query pane”, MS-Access has opened a box with a Table

list and buttons “Add” and “Close”. Click on its “Close” button. Now, right-click on the

tab of the “Query pane” (showing the Query name “Query1”) and in the pop-up menu

click on “SQL View”. The “Query pane” is changed now to “SQL View”, which is all

blank, with the text “SELECT;” in its top left corner. You should click inside the “Query

pane” (the sub-window) and type-in (or copy/paste) the following SQL code1:

 SELECT "Capital of: " & Enter_Country AS Srch_Country, Capital AS Cap_City

 FROM T_Capital_Cities

 WHERE Country = Enter_Country;

Make sure what you see in the “Query pane” is exactly the code above, and if not, edit

until it is exactly the same.

Right-click on the tab of the “Query pane” (showing the Query name “Query1”) and in

the pop-up menu click on “Close”. MS-Access will ask you if you want to save the

changes in the Query, and you should click “Yes”. Then MS-Access will ask for the

Query name: type-in “A_Capital_City” (I show the text to type-in between quotes, but

you should not type-in the quotes). You have created your first SQL Query:

congratulations!

When you run this Query, it will display a record-list having in the first column (named

“Srch_Country”) the value that you type-in for the parameter “Enter_Country”

prefixed by the text string “"Capital_of: "”. It will also select the record (row) from

the Table “T_Capital_Cities” whose value of “Country” is equal to the value of

“Enter_Country” and will display the value of the field “Capital” from that

specific record in the second column (named “Cap_City”). The value of the variable

“Enter_Country” is undefined and therefore MS-Access considers it a parameter

(click F.12). MS-Access requests that you type-in the value of “Enter_Country” each

time that you run this Query.

Notice that in the SQL code above the ampersand “&” operator performs text string

concatenation.

If you want a full description of a Select Query, you may click “F.7 What is a Select

operation and how do I write it?”.

1 This is the Query “A_Capital_City” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 7 of 725

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

A.4.2 How do I run my first SQL Query?

If you just read A.4.1, you should have an opened database with a Table and a Query.

Otherwise, click A.4.1 and follow my indications until you reach here.

Double-click on the Query name “A_Capital_City” placed in the “Navigation Pane”

(click B.4). A pop-up box will appear, requesting you to type-in the value of the

parameter “Enter_Country”. Type-in one of the countries in your Table (e.g., “United
States”, always without the quotes) and press the “Enter” key (or click on the “OK”

button). The Query will return the value of “Enter_Country”, and its correct Capital

city. You have run your first SQL Query: congratulations!

If you want to run the Query again, click on “Home” on the “Ribbon-bar”, and then on

the Refresh All “ ” icon, and the pop-up box to type-in “Enter_Country” will be

shown again. Each time you click on the Refresh All “ ” icon the Query will be run.

Notice that if you do not type-in one of the countries in your Table

“T_Capital_Cities”, or the country is mistyped, the Query will return a blank cell

under “Capital”. If you type-in “Spain” you should get the following result:

A_Capital_City

Srch_Country Cap_City

Capital of: Spain Madrid

Check this output record-list against my explanation above and the SQL code, to see the

effect of each SQL clause and operator. Notice that in MS-Access results you will not

see the colored fonts: I have added the colors above to help you relate the Query code

with the Query output.

Notice also that the “AS” clauses determine the name of each output column (i.e.,

output field).

Once you are done, close this “Query pane” by right-clicking on its tab and in the pop-

up menu click on “Close”.

A.4.3 What does it mean “case insensitive”?

A “case insensitive” program is the one that treats the same an upper-case letter and

its corresponding lower-case letter. MS-Access is case insensitive, which means that

when comparing text strings and when ordering text strings, it will treat the same

upper-case letters and lower-case letters.

If you run the Query from the previous section several times, and you type-in “SPAIN”,

“spain” or “SpAiN” (or other case combinations), you will always get the capital of

Spain, because MS-Access will consider all the strings as being equal.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 8 of 725

A.5 How do I add a Table to my first database?

You may click:

• “A.5.1 How do I add the Table “T_Capital_Rainfall_Q” to my first database?”

• “A.5.2 How do I input data into the Table “T_Capital_Rainfall_Q”?”

A.5.1 How do I add the Table “T_Capital_Rainfall_Q” to my first

database?

If you just read A.3, you should have an opened database with a Table. Otherwise,

click A.3, follow my indications, and then return here (you return by simultaneously

pressing the “Alt” and “” keys).

Click on “Create” from the “Ribbon-bar”, and then on the Table Design “ ” icon inside

the Ribbon. This will open a Table in “Design View”, with the temporal name “Table1”.

Click on the cell placed right below “Field name” and type-in “Capital” into it (in case

that cell has an existing text “Id” delete it and type-in “Capital”). I show the text to type-

in between quotes, but you should not type-in the quotes. Now click on the cell to the

right of “Capital”. Click on the drop-down menu “ ” icon at the rightmost side of the

cell and click on Short Text from the drop-down menu.

Now click on the cell below “Capital” and type-in “Cal_Year”. Then click on the cell to

the right of “Cal_Year”. Click on the drop-down menu “ ” icon at the rightmost side of

the cell and click on “Number” from the drop-down menu. Next, find a row called “Field
Size”. It is one of the field properties, placed in the bottom part of the MS-Access

window, in a tab called “General”. Click on the drop-down menu “ ” icon at the

rightmost part of the row called “Field Size” and click on “Long Integer” from the drop-

down menu.

Now click on the cell below “Cal_Year” and type-in “Quart”. Then click on the cell to

the right of “Quart”. Click on the drop-down menu “ ” icon at the rightmost side of the

cell and click on “Number” from the drop-down menu. Next, find a row called “Field
Size”. It is one of the field properties, placed at the bottom part of the MS-Access

window, in a tab called “General”. Click on the drop-down menu “ ” icon at the

rightmost part of the row called “Field Size” and click on “Double” from the drop-down

menu.

Right-click on the Table name “Table1”, either in the left “Navigation Pane” or in the

“Table pane” tab, and in the pop-up menu click on “Datasheet View”. This will open a

box requesting you to save the Table, where you should click “Yes”. Then MS-Access

will ask for the Table name: type-in “T_Capital_Rainfall_Q” (always without the

quotes). You are done creating the second Table in your database.

A.5.2 How do I input data into the Table “T_Capital_Rainfall_Q”?

If you just read A.5.1, you should have an opened database with two Tables. Otherwise,

click A.5.1 and follow my indications until you reach here.

Click on the first cell to the right of the box with an asterisk “*” and type-in “Beijing”

(I show the text to type-in between quotes, but you should not type-in the quotes). Click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 9 of 725

on the cell, in this same line, below “Cal_Year” and type-in “2018”. Click on the cell,

in this same line, below “Quart” and type-in “Q1” and do the same for the last cell in

this same line, typing-in “0” into it.

Now click on the first cell to the right of the box with an asterisk “*” and type-in

“Beijing”. Repeat the same process for all the cells in this line.

Repeat the same process for all the rows shown in the Table below. This is, typing-in

for each row of the Table, the text contained in all the cells in each table row. Avoid

typing-in information by columns (i.e., do not type-in first all the Capital names, and

then all the State or Province names, and then all Country names), because MS-Access

manages each Table row as single entity (a record), so it is better if you input data by

rows at this stage. The values you should type-in for the cells in each Table row are

shown in this Table:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

You should now see in your Table the same information as listed in the Table above. If

any cell does not show exactly the same information as the table above, click on that

cell(s) and edit the information until it is exactly the same as shown above.

Finally, right-click on the Table name “T_Capital_Rainfall_Q” in the tab heading and

in the pop-up menu click on “Save”. You have created and populated the second Table

in your database.

A.6 How do I write and run my first Select Query with record

aggregation?

You may click:

• “A.6.1 How do I write my first Select Query with record aggregation?”

• “A.6.2 How do I run my first Select Query with record aggregation?”

A.6.1 How do I write my first Select Query with record aggregation?

If you just read A.3 and A.5, you should have an opened database with two Tables.

Otherwise, click A.3 and A.5, follow my indications there, and then return here (you

return by simultaneously pressing the “Alt” and “” keys).

Click on “Create” (placed right below the top window frame). This will cause the

“Create” Ribbon (toolbar) to be shown. Now click on the Query Design “ ” icon inside

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 10 of 725

the “Create” Ribbon. This will open a “Query pane” called “Query2” or something

similar. The “Query pane” is like a sub-window and has a tab at its top with the Query

name “Query2”.

In addition to having created a “Query pane”, MS-Access has opened a box with a Table

list and buttons “Add” and “Close”. Click on its “Close” button. Now, right-click on the

Query tab and in the pop-up menu click on “SQL View”. The “Query pane” is changed

now to “SQL View”, which is all blank, with the text “SELECT;” in its top left corner.

You should click inside the “Query pane” (the sub-window) and type-in (or copy/paste)

the following SQL code2:

 SELECT Capital AS Cap_City, Cal_Year+0 AS C_Year

 , Sum(Quart_Rainfall) AS Yearly_Rainfall

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year+0

 ORDER BY Capital, Cal_Year+0 ;

Make sure what you see in the “Query pane” is exactly the code above, and if not, edit

until it is exactly the same.

Right-click on the Query tab and in the pop-up menu click on “Close”. MS-Access will

ask you if you want to save the changes in the Query, and you should click on “Yes”.

Then MS-Access will ask for the Query name: type-in “A_Yearly_Rainfall” (always

without the quotes).

This Query will select all the records (rows) from the Table

“T_Capital_Rainfall_Q”. It will classify the records in disjoint groups that have

the same value of the “GROUP BY” expressions “Capital” and “Cal_Year+0”. For

each such group of records, it will produce one output record, with the value of the

“GROUP BY” expressions “Capital”, “Cal_Year+0”, and also, the sum of the

values of the input field “Quart_Rainfall” from all the records in each group. This

last field will be named “Yearly_Rainfall”. Finally, the output record-list will be

ordered by the values of the “GROUP BY” expression “Capital”, and the records

where the values of “Capital” are the same, will be ordered by the values of the

“GROUP BY” expression “Cal_Year+0”.

Once you are done, close this “Query pane” by right-clicking on its tab and in the pop-

up menu click on “Close”.

Notice also that I have used “Cal_Year+0” as a “GROUP BY” expression, instead of

just “Cal_Year”: I do this to highlight that you can use any expression involving

input field names, and not just the input field names as such.

If you want a full description of a Select Query (including the “GROUP BY”

aggregation), you may click “F.7 What is a Select operation and how do I write it?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

A.6.2 How do I run my first Select Query with record aggregation?

If you just read A.6.1, you should have an opened database with two Tables and a Select

Query with record aggregation. Otherwise, click A.6.1 and follow my indications until

2 This is the Query “A_Yearly_Rainfall” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 11 of 725

you reach here.

Double-click on “A_Yearly_Rainfall” placed in the “Navigation Pane” (click B.4). MS-

Access will now open a “Query pane” in “Datasheet View”, with a tab at its top named

“A_Yearly_Rainfall”. In this “Query pane” you should see the following output record-

list:

A_Yearly_Rainfall

Cap_City C_Year Yearly_Rainfall

Beijing 2018 28.8

Washington 2018 32.76

Notice that you will not see the colored fonts: I have added the colors above to help you

relate the Query code with the Query output.

You can see that the Query has assigned each row (record) to one disjoint group such

that the records in each group have the same values in the “GROUP BY” expressions

“Capital” and “Cal_Year+0”, and out of each group it produces one output record

having one field that is the sum of the values of the column (called “input field”)

“Quart_Rainfall” in all the rows (called records) in each group, and naming that

added result as “Yearly_Rainfall”. You can see that the grouping of rows (records)

comes from the “GROUP BY” expressions in the SQL code.

Notice that the “AS” clauses determine the name of the output columns.

Notice also that the output rows from the Query are ordered by the values of the

“GROUP BY” expression “Capital”, and the records where the values of “Capital”

are the same, are ordered by the values of the “GROUP BY” expression

“Cal_Year+0”. This comes from the “ORDER BY” clause in the SQL code.

A.7 How do I configure my Tables in my first database?

You may click:

• “A.7.1 How do I configure my Table “T_Capital_Cities”?”

• “A.7.2 How do I configure my Table “T_Capital_Rainfall_Q”?”

A.7.1 How do I configure my Table “T_Capital_Cities”?

You may click:

• “A.7.1.1 How do I configure the Primary Key field in Table “T_Capital_Cities”?”

• “A.7.1.2 How do I configure no zero-length in all my text fields?”

• “A.7.1.3 How do I check that the “Required” property really works?”

• “A.7.1.4 How do I check that the Key field really works?”

A.7.1.1 How do I configure the Primary Key field in Table

“T_Capital_Cities”?

If you just read A.3 and A.5, you should have an opened database with two Tables.

Otherwise, click A.3 and A.5, follow my indications there, and then return here (you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 12 of 725

return by simultaneously pressing the “Alt” and “” keys).

The Key field is the one that “identifies” each record in the Table. The Key field must

have a unique (no duplicate) value in the Table. If you want to know more about the

Key fields, you may click “C.10 What are the Table Key(s) and how should I handle

them?” and “D.6 How do I configure the Primary Key field(s) of a Table?”. If you think

about it, the field “Capital” seems the Primary Key field of this Table, so let us

configure it.

First, open the Table in “Design View”. To do it, right-click on “T_Capital_Cities” from

the “Navigation Pane” (click B.4) and in the pop-up menu click on “Design View”.

Now select the row (field) “Capital” by clicking on the small gray box to the left of

“Capital”. It should now be highlighted (shaded) to indicate it has been selected (if not,

try again). You now click on “Design” from the “Ribbon-bar” (below the “Table Tools”

contextual label), and then click on the Primary Key “ ” icon inside the Ribbon

(toolbar). You should now see a key “ ” icon right to the left of “Capital”: this shows

that you have successfully configured “Capital” as the Key field of this Table.

Notice that when you configure a field as a Key field, MS-Access automatically

configures it as “Required=Yes”, which means that this field cannot be empty (i.e.,

cannot be Null). Also, if you configure a field as the only Key field in the Table, MS-

Access automatically configures its “Indexed” property as “Yes (No duplicates)”, which

means that this field will be indexed, and also, that MS-Access will not allow you to

enter any duplicate (i.e., already existing) value in this field. If you want to know more

about indexing you may click “C.8 What is indexing?”.

A.7.1.2 How do I configure no zero-length in all my text fields?

If you just read A.7.1.1, you should have an opened database with two Tables.

Otherwise, click A.7.1.1 and follow my indications until you reach here.

Let us now configure no “zero-length” in all Short Text fields. This is a very good

practice, because this prevents all-blank strings in your text fields. All-blank strings

usually create errors, so they are undesirable.

To configure this, click on the field “Capital”. Find the row “Allow Zero Length” in the

field properties, placed at the bottom of the “Table pane”, in the tab “General”. Click

at the rightmost side of the row and click on “No” from the drop-down menu. Do the

same for the fields “State_Province” and “Country”.

A.7.1.3 How do I check that the “Required” property really works?

If you just read A.7.1.2, you should have an opened database with two configured

Tables. Otherwise, click A.7.1.2 and follow my indications until you reach here.

When you configured the field “Capital” as a Key field, MS-Access automatically

configured it as “Required=Yes”. This implies that MS-Access prevents you from

mistakenly introducing a record without a value in this field. Let us check that it works.

Right-click on the name “T_Capital_Cities”, either at the “Navigation Pane” (click B.4),

or in the tab below the Ribbon, and in the pop-up menu click on “Datasheet View”.

Click now in the last row of the column “Country”, type-in “Canada” and then click on

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 13 of 725

“Washington” above (this will introduce the record you are editing in the last row). MS-

Access will not introduce the “Canada” record in the Table because its required field

“Capital” is blank. MS-Access will therefore show the error message:

“You must enter a value in the 'T_Capital_Cities.Capital' field.”

This is the advantage of configuring a field as “Required=Yes”: MS-Access now

prevents the introduction of wrong records without a value in this field.

Click on “OK” to remove the error message, and then, press the “Esc” key, and the

erroneous record you were trying to introduce will be removed.

Now, go back to “Datasheet View”: right-click on the name “T_Capital_Cities”, either

at the “Navigation Pane” (click B.4), or in the tab below the Ribbon, and in the pop-up

menu click on “Datasheet View”.

A.7.1.4 How do I check that the Key field really works?

If you just read A.7.1.3, you should have an opened database with two Tables.

Otherwise, click A.7.1.3 and follow my indications until you reach here.

You should have the Table “T_Capital_Cities” in “Datasheet View” (if not, see the

paragraph above).

When you configured the field “Capital” as the only Key field, MS-Access

automatically configured it as indexed with no duplicates. This implies that MS-Access

prevents you from mistakenly introducing a duplicate value in this field. Let us check

that it works.

Now click on the last row of the column “Capital”, type-in “Beijing” and in the other

cell of this row type-in “Any_country” (always without the quotes). Then click on

“Washington” above (this should introduce the record you are editing in the last row).

MS-Access will not insert the record into the Table because it contains a duplicate value

in the Key field in respect to another record already in the Table and will show the error

message:

“The changes you requested to the table were not successful because they would
create duplicate values in the index, primary key, or relationship. Change the data
in the field or fields that contain duplicate data, remove the index, or redefine the
index to permit duplicate entries and try again.”

benefits of having configured the Key field: MS-Access now prevents the introduction

of wrong duplicate records in the Table.

Click on “OK” to remove the error message, and then, press the “Esc” key, and the

erroneous record you were trying to introduce will be removed.

A.7.2 How do I configure my Table “T_Capital_Rainfall_Q”?

You may click:

• “A.7.2.1 How do I configure the Primary Key fields in Table

“T_Capital_Rainfall_Q”?”

• “A.7.2.2 How do I configure “Allow Zero Length=No” in all my text fields?”

• “A.7.2.3 How do I configure a field validation rule in my “Quart” field?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 14 of 725

• “A.7.2.4 How do I check that the composite Key fields really work?”

• “A.7.2.5 How do I check that the field validation rule for the field “Quart” really

works?”

A.7.2.1 How do I configure the Primary Key fields in Table

“T_Capital_Rainfall_Q”?

If you just read A.3 and A.5, you should have an opened database with two Tables.

Otherwise, click A.3 and A.5, follow my indications there, and then return here (you

return by simultaneously pressing the “Alt” and “” keys).

The Primary Key are the field(s) that “identify” each record in each Table. The

Primary Key field(s) must have a unique (no duplicate) combined value in the Table.

If you want to know more about the Primary Key field(s), you may click “C.10 What

are the Table Key(s) and how should I handle them?” and “D.6 How do I configure the

Primary Key field(s) of a Table?”. I do not think the field “Capital” alone is the Primary

Key, because you can have several records with the same “Capital” value. The same

happens for all the other fields in the Table: none of them has unique values. However,

if you think about it, what should be unique is the combined value of “Capital”,

“Cal_Year” and “Quart”. This is what identifies each valid measurement record in the

Table. Each of these unique records will have the corresponding value in the field

“Quart_Rainfall”, which represents the amount of rain that city got in that year and

quarter.

Let us see now how to configure these three fields as the Primary Key of this Table.

First, open the Table in “Design View”. To do it, right-click on “T_Capital_Rainfall_Q”

on the “Navigation Pane” (click B.4) and in the pop-up menu click on “Design View”.

Now select the row (field) “Capital” by clicking on the small gray box to the left of

“Capital”. This row should now be highlighted (shaded) to indicate it has been selected

(if not, try again). You now “Ctrl+click” (i.e., do a click while holding down the “Ctrl”3

key in the keyboard) on the small gray box to the left of “Cal_Year”. This row should

now be highlighted (shaded) in addition to the “Capital” row. You now “Ctrl+click”

on the small gray box to the left of “Quart”. This row should now be highlighted

(shaded) in addition to the “Capital” and “Cal_Year” rows.

You now click on “Table Tools -Design” on the “Ribbon-bar”, and then click on the

Primary Key “ ” icon inside the Ribbon (toolbar). You should now see a key “ ”

icon right to the left of “Capital”, “Cal_Year” and “Quart”: this shows you have

successfully configured the fields “Capital”, “Cal_Year” and “Quart” as the Primary

Key this Table.

Notice that when you configure the Primary Key field(s), MS-Access automatically

configures all of them as “Required=Yes”, which means the field cannot be empty (i.e.,

cannot be Null). Therefore, these three fields are now configured as “Required=Yes”.

MS-Access also automatically configures a composite index without duplicates over

the Primary Key field(s).

3 The “Ctrl” key is called the “Control” key and is usually labeled “Ctrl” in keyboards.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 15 of 725

A.7.2.2 How do I configure “Allow Zero Length=No” in all my text fields?

If you just read A.7.2.1, you should have an opened database with two Tables.

Otherwise, click A.7.2.1 and follow my indications until you reach here.

Let us now configure “Allow Zero Length=No” in all Short Text fields. This is a very

good practice, because this prevents zero-length strings in your text fields. Zero-length

strings usually create errors, so they are undesirable.

To configure this, click on the field “Capital”. Find the row “Allow Zero Length” in the

field properties, placed at the bottom of the “Table pane”, in the tab “General”. Click at

the rightmost side of the row and click on “No” from the drop-down menu. Do the same

for the field “Quart”.

A.7.2.3 How do I configure a field validation rule in my “Quart” field?

If you just read A.7.2.2, you should have an opened database with two configured

Tables. Otherwise, click A.7.2.2 and follow my indications until you reach here.

Notice that the field “Quart” should only contain the values “Q1”, “Q2”, “Q3” or “Q4”4.

It would be very nice if MS-Access could check this, and actually there is a specific

property to do this check. Click on the field “Quart”. Find the row “Validation Rule” in

the field properties, placed at the bottom of the “Table pane”, in the tab “General”.

Click on the cell in that row, that is placed to the right of the cell that says “Validation
Rule”. Now, type-in (or copy/paste) in that cell exactly the following:

 [Quart] In ("Q1";"Q2";"Q3";"Q4")

As you may guess, this field validation rule implies that the value of “Quart” should be

contained in that list of values (or be Null)

You now go back to “Datasheet View”: right-click on the name

“T_Capital_Rainfall_Q”, either at the “Navigation Pane” (click B.4), or in the Table tab

below the Ribbon, and in the pop-up menu click on “Datasheet View”.

A.7.2.4 How do I check that the composite Key fields really work?

If you just read A.7.2.3, you should have an opened database with two configured

Tables. Otherwise, click A.7.2.3 and follow my indications until you reach here.

You should have the Table “T_Capital_Rainfall_Q” in “Datasheet View” (if not, see the

paragraph above).

Click now in the last row of the column “Capital”, type-in “Washington”. Then click on

the cell to its right and type-in “2018”. Then click on the cell to its right and type-in

“Q4”. Then click on the cell to its right and type-in whatever number you want. As you

may see, this is a record with a duplicate combined value in the fields “Capital”,

“Cal_Year” and “Quart”.

Now you click on “Beijing” above (this will introduce the record you are editing in the

last row). However, MS-Access will not insert this record in the Table because it has a

4 You could of course have thought of over values, like “Q_1”, or “Quarter_one” or “First_Quarter”, etc.

What is important is that you want only four values in this field, corresponding to the way you have

named the four quarters.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 16 of 725

duplicate value in the Key fields in respect to another record already in the Table. MS-

Access will show the error message:

“The changes you requested to the table were not successful because they would
create duplicate values in the index, primary key, or relationship. Change the data
in the field or fields that contain duplicate data, remove the index, or redefine the
index to permit duplicate entries and try again.”

This is one of the benefits of having configured the Primary Key fields: MS-Access

now prevents the introduction of duplicate (i.e., wrong) records in the Table.

Click on “OK” to remove the error message, and then, press the “Esc”5 key, and the

erroneous record you were trying to introduce will be removed.

A.7.2.5 How do I check that the field validation rule for the field “Quart”

really works?

If you just read A.7.2.4, you should have an opened database with two Tables.

Otherwise, click A.7.2.4 and follow my indications until you reach here.

You should have the Table “T_Capital_Rainfall_Q” in “Datasheet View” (if not see the

paragraph above).

Click now in the last row of the column “Quart” and type-in “Q5”. Then click on the

cell to its left. This tells MS-Access you finished inputting the value of the cell “Quart”,

and therefore, it will check the field validation rule. MS-Access will not introduce this

field value in the editing record because entering “Q5” does not satisfy the field

validation rule, and will show the error message:

“One or more values are prohibited by the validation rule '[Quart] In
("Q1","Q2","Q3","Q4")' set for 'T_Capital_Rainfall_Q.Quart'. Enter a value that the
expression for this field can accept.”

This is the advantage of configuring a field validation rule: MS-Access now prevents

the introduction of records with a wrong value in this field.

Click on “OK” to remove the error message, and then, press the “Esc”6 key, and the new

record you were trying to introduce will be removed.

A.8 How do I write and run my first Union Query?

You may click:

• “A.8.1 How do I write my first Union Query?”

• “A.8.2 How do I run my first Union Query?”

A.8.1 How do I write my first Union Query?

If you just read A.3 and A.5, you should have an opened database with two Tables.

Otherwise, click A.3 and A.5, follow my indications there, and then return here (you

return by simultaneously pressing the “Alt” and “” keys).

5 The “Esc” key is also called the “Escape” key.
6 The “Esc” key is also called the “Escape” key.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 17 of 725

Click on “Create” (placed right below the top window frame). This will cause the

“Create” Ribbon (toolbar) to be shown. Now click on the Query Design “ ” icon inside

the “Create” Ribbon. This will open a “Query pane” called “Query3” or something

similar. The “Query pane” is like a sub-window and has a Query tab at its top with the

Query name “Query3”.

In addition to having created a “Query pane”, MS-Access has opened a box with a Table

list and buttons “Add” and “Close”. Click on its “Close” button. Now, right-click on the

tab at the top of the “Query pane” and in the pop-up menu click on “SQL View”. The

“Query pane” is changed now to “SQL View”, which is all blank, with the text

“SELECT;” in its top left corner. You now click inside the “Query pane” and type-in

(or copy/paste) the following SQL code7:

 SELECT Enter_Country_A AS Srch_Country, Capital AS Cap_City

 FROM T_Capital_Cities

 WHERE Country = Enter_Country_A

 UNION

 SELECT Enter_Country_B AS Irrelevant_1, Capital AS Irrelevant_2

 FROM T_Capital_Cities

 WHERE Country = Enter_Country_B

Make sure what you see in the “Query pane” is exactly the code above, and if not, edit

until it is exactly the same.

Right-click on the tab of the “Query pane” and in the pop-up menu click on “Close”.

MS-Access will ask you if you want to save the changes in the Query, and you should

click “Yes”. Then MS-Access will ask for the Query name: type-in

“A_Capital_of_2_Countries” (always without the quotes).

Notice this Query is like two copies (only changing the parameter name

“Searched_Country”) of the Select Query you already wrote in “A.4.1 How do I write

my first SQL Query?”. These two Select operations are connected with the “UNION”

operator. This operator just concatenates its two input record-lists, into a longer record-

list.

This Query will therefore select the record (row) from the Table

“T_Capital_Cities” whose value of “Country” is equal to the value of

“Enter_Country_A”. It will do the same for the record whose “Country” is equal to

“Enter_Country_B”. It will then put both records in the same record-list and will

display the result. The values of “Enter_Country_A” and “Enter_Country_B” are

undefined, and therefore, MS-Access will request that you type-in both values when

you run this Query.

Notice that in the SQL code above the “AS” clauses from the left input-record-list of

the Union operation determine the name of the output columns.

If you want a full description of a Union Query, you may click “F.9 What is a Union

operation and how do I write it?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

7 This is the Query “A_Capital_of_2_Countries” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 18 of 725

A.8.2 How do I run my first Union Query?

If you just read A.8.1, you should have an opened database with two Tables and a Union

Query. Otherwise, click A.8.1 and follow my indications until you reach here.

Double-click on “A_Capital_of_2_Countries” placed in the “Navigation Pane”

(click B.4). MS-Access will now open a “Query pane” in “Datasheet View”, with a tab

at its top named “A_Capital_of_2_Countries”. MS-Access will request you to type-in

the value for “Enter_Country_A” and “Enter_Country_B”. If you first type-in

“China” and then “United States”, you should get the following record-list (possibly

with a different order):

A_Capital_of_2_Countries

Srch_Country Cap_City

China Beijing

United States Washington

Check this output record-list against my explanation above and the SQL code, to see the

effect of each SQL clause and operator. Notice that you will not see the colored fonts:

I have added the colors above to help you relate the Query code with the Query output.

Notice that the “AS” clauses in the left record-list of the Union operation determine the

name of the output columns. The “AS” clauses in the right record-list of the Union

operation have no effect.

Once you are done, close this “Query pane” by right-clicking on its tab and in the pop-

up menu click on “Close”.

A.9 How do I create a Relationship in my first database?

You may click:

• “A.9.1 How do I create a Relationship from “T_Capital_Cities” to

“T_Capital_Rainfall_Q”?”

• “A.9.2 How do I check that the Relationship really works?”

A.9.1 How do I create a Relationship from “T_Capital_Cities” to

“T_Capital_Rainfall_Q”?

If you just read A.3, A.5 and A.7, you should have an opened database with two Tables

properly configured. Otherwise, click A.3, A.5 and A.7, follow my indications there, and

then return here (you return by simultaneously pressing the “Alt” and “” keys).

In short, a Relationship (click C.11) implies that the records in the slave Table, take the

values from some field(s) (the slave field(s)) from the values existing in the

corresponding field(s) (the master field(s)) in an existing record of the master Table.

Almost always, the master Table and the slave Table are two different Tables.

Relationships are extremely useful to prevent errors, to guarantee data coherence, and

to improve efficiency in the database.

In our current example database of city information, I would say that the slave field

“Capital” from the slave Table “T_Capital_Rainfall_Q” should only take values from the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 19 of 725

master field “Capital” from the master Table “T_Capital_Cities”. I am assuming that

“T_Capital_Cities” lists all the capital cities that are relevant for the purposes of your

database (e.g., the ones where your company does business with). Consequently, you

are only interested in adding records to the Table “T_Capital_Rainfall_Q” such that their

capital city is already in the Table “T_Capital_Cities”: this matches exactly the concept

of a Relationship.

To establish such a Relationship, click on “Database Tools” from the “Ribbon-bar” at

the top of the window. Then click on the Relationships “ ” icon inside the Ribbon

(toolbar). Now drag-and-drop the Table “T_Capital_Cities” from the “Navigation Pane”

on the left, to the “Relationships” pane on the right. Drag-and-drop means placing the

mouse over “T_Capital_Cities”, pressing the left mouse button and without releasing

it, moving the mouse to place it over the “Relationships” pane, and finally release the

left mouse button. You now do the same with the Table “T_Capital_Rainfall_Q”. You

should now see in the “Relationships” pane one Table-box for each Table, each labeled

with the Table name, and with the Table’s field names listed inside each Table-box.

To create the Relationship, drag-and-drop the field “Capital” from the Table-box

“T_Capital_Cities” dropping it over the field “Capital” from the Table-box

“T_Capital_Rainfall_Q”. A Relationship box will pop-up with the information about this

Relationship. Check “Enforce Referential Integrity” and then check “Cascade Update
Related Fields”. Finally, click on the “Create” button at the top right corner of the

Relationship box. You have created your first Relationship, congratulations!

If everything went well, you should see a black line connecting the field “Capital” in

the Table-box “T_Capital_Cities” and the field “Capital” in the Table-box

“T_Capital_Rainfall_Q”. The connecting line has a “1” at the endpoint of

“T_Capital_Cities” and an infinity “” symbol at the endpoint of

“T_Capital_Rainfall_Q”. These symbols at each end indicate that this is a one-to-many

Relationship (click C.11.2).

A.9.2 How do I check that the Relationship really works?

If you just read A.9.1, you should have an opened database with two properly configured

Tables and a Relationship. Otherwise, click A.9.1 and follow my indications until you

reach here.

Let us now check if the Relationship really works. Right-click on

“T_Capital_Rainfall_Q” and in the pop-up menu click on “Datasheet View”. Now click

on the bottommost cell of the column “Capital” and type-in “Monaco” (always without

the quotes). Click on the cell to its right, and type-in “2018”. Click on the cell on its

right, and type-in “Q1”. Click on the cell to its right and type-in any number you want.

Finally, click on “Washington” above (this should introduce the record you are editing

in the last row). MS-Access will not insert the record into the Table because the capital

city value “Monaco” does not exist in any record of the master Table

“T_Capital_Cities”, and will rather show the error message:

“You cannot add or change a record because a related record is required in table
'T_Capital_Cities'.”.

This is one of the advantages of configuring a Relationship: MS-Access now prevents

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 20 of 725

the introduction of records with a value in a slave field that does not exist in any record

of the master Table.

Click on “OK” to remove the error message, and then, press the “Esc”8 key, and the new

(wrong) record that you were trying to introduce will be removed.

A.10 How do I write and run my first Join Query?

You may click:

• “A.10.1 How do I write my first Join Query?”

• “A.10.2 How do I run my first Join Query?”

A.10.1 How do I write my first Join Query?

If you just read A.3 and A.5, you should have an opened database with two configured

Tables. Otherwise, click A.3 and A.5, follow my indications there, and then return here

(you return by simultaneously pressing the “Alt” and “” keys).

Click on “Create” (placed right below the top window frame). This will cause the

“Create” Ribbon (toolbar) to be shown. Now click on the Query Design “ ” icon inside

the “Create” Ribbon. This will open a “Query pane” called “Query4” or something

similar. The “Query pane” has a tab at its top with the Query name “Query4”.

In addition to having created a “Query pane”, MS-Access has opened a box with a Table

list and buttons “Add” and “Close”. Click on its “Close” button. Now, right-click on the

tab at the top of the “Query pane” and in the pop-up menu click on “SQL View”. The

“Query pane” is changed now to “SQL View”, which is all blank, with the text

“SELECT;” in its top left corner. You should click inside the “Query pane” and type-

in (or copy/paste) the following SQL code9:

 SELECT Capitals.Cap_City, St_Pr, Cntry, C_Year, Year_Rainfall

 FROM

 (

 SELECT Capital AS Cap_City, State_Province AS St_Pr, Country AS Cntry

 FROM T_Capital_Cities

) AS Capitals

 INNER JOIN

 (

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 , Sum(Quart_Rainfall) AS Year_Rainfall

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

) AS Yearly_Rainfall

 ON Capitals.Cap_City = Yearly_Rainfall.Cap_City

 ORDER BY Capitals.Cap_City;

Make sure what you see in the “Query pane” is exactly the code above, and if not, edit

until it is exactly the same.

Right-click on the tab of the “Query pane” and in the pop-up menu click on “Close”.

MS-Access will ask you if you want to save the changes in the Query, and you should

click “Yes”. Then MS-Access will ask for the Query name: type-in “A_Capitals_data”

8 The “Esc” key is also called the “Escape” key.
9 This is the Query “A_Capitals_data” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 21 of 725

(always without quotes).

Notice this Query has two Select operations. The first one produces a record-list with

all the capital data from Table “T_Capital_Cities”. The second Select operation produces

a record-list with all the capital cities, a calendar year and the total yearly rainfall of that

year. Now, the “INNER JOIN” SQL operator joins the records from each record-list,

to produce new records with combined fields. The fields of the output record-list are

the fields after the first “SELECT” clause of the Query. What records are joined is stated

in the “ON” clause, which in this case states to join the records from both Tables where

the value of the field “Capital” is the same.

Notice that in the SQL code above the “AS” clauses determine the name of the output

columns. If you do not use an “AS” clause, and the “SELECT” expression consists of

just a field name, then that field name is the name of the output column.

If you want a full description of a Join Query, you may click “F.8 What is a Join

operation and how do I write it?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

A.10.2 How do I run my first Join Query?

If you just read A.10.1, you should have an opened database with two Tables and a Join

Query. Otherwise, click A.10.1 and follow my indications until you reach here.

Double-click on “A_Capitals_data” placed in the “Navigation Pane” (click B.4). MS-

Access will now open a “Query pane” in “Datasheet View”, with a tab at its top named

“A_Capitals_data” showing the following record-list:

A_Capitals_data

Cap_City St_Pr Cntry C_Year Year_Rainfall

Beijing

China 2018 28.8

Washington District of Columbia United States 2018 32.76

Check this output record-list against my explanation above and the SQL code, to see the

effect of each SQL clause and operator. Notice that you will not see the colored fonts:

I have added the colors above to help you relate the Query code with the Query output.

Once you are done, close this “Query pane” by right-clicking on its tab and in the pop-

up menu click on “Close”.

A.11 How do I write and run my first Transform Query?

You may click:

• “A.11.1 How do I write my first Transform Query?”

• “A.11.2 How do I run my first Transform Query?”

A.11.1 How do I write my first Transform Query?

If you just read A.3 and A.5, you should have an opened database with two configured

Tables. Otherwise, click A.3 and A.5, follow my indications there, and then return here

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 22 of 725

(you return by simultaneously pressing the “Alt” and “” keys).

Click on “Create” (placed right below the top window frame). This will cause the

“Create” Ribbon (toolbar) to be shown. Now click on the Query Design “ ” icon inside

the “Create” Ribbon. This will open a “Query pane” called “Query5” or something

similar. The “Query pane has a tab at its top with the Query name “Query5”.

In addition to having created a “Query pane”, MS-Access has opened a box with a Table

list and buttons “Add” and “Close”. Click on its “Close” button. Now, right-click on the

tab at the top of the “Query pane” and in the pop-up menu click on “SQL View”. The

“Query pane” is changed now to “SQL View”, which is all blank, with the text

“SELECT;” in its top left corner. You should click inside the “Query pane” and type-

in (or copy/paste) the following SQL code10:

 TRANSFORM Avg(Quart_Rainfall) AS GenVals

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 , Sum(Quart_Rainfall) AS Yearly_Rainfall

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

 ORDER BY Capital

 PIVOT Quart ;

Make sure what you see in the “Query pane” is exactly the code above, and if not, edit

until it is exactly the same.

Right-click on the tab at the top of the “Query pane” and in the pop-up menu click

“Close”. MS-Access will ask you if you want to save the changes in the Query, and you

should click “Yes”. Then MS-Access will ask for the Query name: type-in

“A_Rainfall_by_Quarters”.

This Query will have as output fields the three fields that you can see in its “SELECT”

clause, and in addition, it will generate additional “PIVOT” fields from the distinct

values of the “PIVOT” expression (in this case the field name “Quart”). The values

of the “PIVOT” fields are the results of the “TRANSFORM” expression, aggregated

over the “GROUP BY” expressions jointly with the “PIVOT” expression. It is much

simpler than it sounds, so the best is that you look at the output, listed in the next

subsection (a few lines below).

For your reference, this type of Query is called a Transform Query, or a crosstab

Query.

Notice that in the SQL code above I am using an irrelevant “AS” clause to assign a

name to the “TRANSFORM” expression. I do this to mark in blue color the

“TRANSFORM” expression, in order to relate it to the output of the Transform

operation in the next section.

If you want a full description of a Transform operation, you may click “F.10 What is a

Transform operation and how do I write it?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

10 This is the Query “A_Rainfall_by_Quarters” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 23 of 725

A.11.2 How do I run my first Transform Query?

If you just read A.11.1, you should have an opened database with two Tables and a Join

Query. Otherwise, click A.11.1 and follow my indications until you reach here.

Double-click on “A_Rainfall_by_Quarters” from the “Navigation Pane” (click B.4).

MS-Access will now open a “Query pane” in “Datasheet View”, with a tab at its top

named “A_Rainfall_by_Quarters”. You should get the following record-list:

A_Rainfall_by_Quarters

Capital Cal_Year Yearly_Rainfall Q1 Q2 Q3 Q4

Beijing 2018 28,8 0 4 7,8 17

Washington 2018 32,76 12.13 5.67 2.26 12.7

Check this output record-list against my explanation above and the SQL code, to see the

effect of each SQL clause and operator. Notice that you will not see the colored fonts:

I have added the colors above to help you relate the Query code with the Query output.

Once you are done, close this “Query pane” by right-clicking on its tab and in the pop-

up menu click on “Close”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 24 of 725

PART B. BRIEFING ON MS-ACCESS USER INTERFACE

This Part B contains a description of the MS-Access user interface. I will focus on

explaining the different elements, objects and views that you can see in MS-Access,

indicating many actions/commands that you can use.

You may click:

• “B.1 What options should I set in MS-Access?”

• “B.2 How is the MS-Access window structured?”

• “B.3 What are the Ribbons?”

• “B.4 What is the “Navigation Pane” and how it works?”

• “B.5 What is a Table/Query/Form in “Datasheet View”?”

• “B.6 What is a Table in “Design View”?”

• “B.7 What is a Query in “Design View”?”

• “B.8 What is a Form in “Design View”?”

• “B.9 What is a Query in “SQL View”?”

• “B.10 What is the “Relationships” pane?”

• “B.11 Can I use a drop-down/expression menu even if its icon is not shown?”

B.1 What options should I set in MS-Access?

It is convenient to begin by configuring the options from MS-Access in order to better

adapt it to what you want. MS-Access allows to configure a number of options for the

user interface, default values, preferred actions and so on.

Aside from the options you may set, I advise you make the Ribbon Area permanent.

Click on the “Home” Ribbon name, placed on the top left corner of the MS-Access

window. This will make the Home Ribbon (a “Ribbon” is a toolbar placed towards the

top of the MS-Access window) appear. Click on the pin “ ” icon placed at the bottom

right corner of the Ribbon. The pin “ ” icon will change to the menu “ ” icon and

the Ribbon area will be shown permanently instead of being automatically hidden. A

permanent Ribbon area will be much more convenient for you until you are more

familiar with MS-Access.

To configure MS-Access options first click on “File” at the rightmost side of the

“Ribbon-bar” (at the window top), and then click on “Options”. I recommend

configuring the following options, because on my experience, they adapt well to the

most frequent use of MS-Access. Options are very personal, so you may of course

disagree with recommendations and set different ones.

If you want my advice on what options to set, you may click:

• “B.1.1 What “Current Database” options should I set?”

• “B.1.2 What “Object Designers” options should I set?”

• “B.1.3 What “Client Settings” options should I set?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 25 of 725

• “B.1.4 What “Quick Access Toolbar” options should I set?”

B.1.1 What “Current Database” options should I set?

These options apply to each database file, so you will have to configure them for each

new database file that you create.

Click the sequence: FileOptionsCurrent Database.

Under the heading “Application Options”:

• Tick the checkbox for “Tabbed Documents”, under “Document Window Option”.

This will allow you to open several objects at the same time, having each of them in

a tabbed window. Otherwise, you will have overlapping windows which is far less

convenient. Make sure the checkbox “Display Document Tabs” is ticked.

• Untick the checkbox for “Enable design changes for tables in Datasheet view”.

This will prevent MS-Access from showing the column “Click to Add” in your

Tables. I consider this column very distracting, and also, I think it is somehow

dangerous, because the database user may unwillingly add a field to the Table by

mistake.

Under the heading “Navigation”:

• Click on the button “Navigation Options”. In the dialog box that pops-up, tick the

checkbox “Single-click”, that is placed under “Open objects with”. You can also

open the “Navigation Options” dialog box with a right-click anywhere in the

“Navigation Pane” heading and clicking on “Navigation Options” from the pop-up

menu.

By ticking the “Single-click” option you will be able to select objects (Tables, linked

Tables, Queries, Forms, Reports and Modules) in the “Navigation Pane” (click just

by placing the mouse-pointer on top of the object name. It will also allow you to

open the objects with just one mouse click instead of with a double-click. This is

very convenient, and I advise you set this option.

Be aware that setting “Single-click” causes a somehow annoying side effect when

renaming objects. When you want to rename an object, you right-click on the

object’s name, and then click on “Rename” from the pop-up menu. This highlights

the object name and you can edit it with the keyboard, pressing the “Enter” key

when you are done. However, if the “Single-click” option is set, and the mouse stays

within the “Navigation Pane” after you clicked on “Rename”, the renaming will not

work. The reason is that “Single-click” implies that objects are selected by just

placing the mouse-pointer over them: therefore, if the mouse-pointer stays (after

having clicked on “Rename”) within the “Navigation Pane”, the object name

below the mouse-pointer will be selected, and the object name that had just been

selected for renaming will be cleared. The solution is really simple (just remind

about it): when you want to rename an object, after having clicked on “Rename”,

you must immediately move the mouse-pointer out of the “Navigation Pane”. Once

the mouse-pointer is out of the navigation pane, you may edit the object name with

the keyboard as described above.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 26 of 725

B.1.2 What “Object Designers” options should I set?

These options apply to each database file, so you will have to configure them for each

new database file that you create.

Click the sequence FileOptionsObject Designers.

Under the heading “Table design view”:

• Set Default field type=Number
When you create a new field in a Table, the default type of the field will be

“Number”.

• Set Default text field size=255
The default field size for a Short Text field will be 255 characters, which is the

maximum one.

• Set Default number field size=Double
When you create a new field in a Table, the default “Size” property for the field type

“Number” will be “Double”. This means that the field is a double precision floating-

point data type.

B.1.3 What “Client Settings” options should I set?

These options apply to each MS-Access installed program (i.e., in each laptop or

Windows account that you use), so you will have to configure them for each different

MS-Access installed program that you use.

Click the sequence FileOptionsClient Settings.

Under the heading “Editing”:

• Set Default find/replace behavior=General Search

This will cause that the default behavior of the “Find/Replace” tool will be to search

in any field of the Query/Table you are searching in, and also, to match any

substring of the field value (i.e., do not require an exact match). On my experience,

this is by far the behavior you want on most occasions, so I strongly recommend

you set this option.

B.1.4 What “Quick Access Toolbar” options should I set?

These options apply to each MS-Access installed program (i.e., in each laptop or

Windows account that you use), so you will have to configure them for each different

MS-Access installed program that you use.

Click the sequence FileOptionsQuick Access Toolbar

• Add the Find tool to the “Quick Access Toolbar”

This will put the shortcut Find “ ” icon in the “Quick Access Toolbar” (click B.2.2).

On my experience, the “Find” tool (click B.5.5) is used very frequently, so it is very

useful to have it in the “Quick Access Toolbar”.

• Add the Undo and Redo tools to the “Quick Access Toolbar”

This will put the shortcut Undo “ ”and Redo “ ” icons in the “Quick Access
Toolbar” (click B.2.2). On my experience, these tools are used somehow frequently,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 27 of 725

so it is useful to have them in the “Quick Access Toolbar”.

• In case you have purchased the plug-in “Access SQL Editor” (click F.5), you should

definitively add its tool “ ” icon to the “Quick Access Toolbar” (click B.2.2),

because you will use it a lot.

• You should also add other commands that you want to use frequently to the “Quick
Access Toolbar”.

Notice that some of these options only take effect after closing MS-Access and

launching it again, so you should do this after you have changed your options. Notice

also that some options affect the behavior of MS-Access itself, while others are specific

of the database file where you have applied them.

B.2 How is the MS-Access window structured?

When you have a database file open, you will see the following relevant elements in

the MS-Access window, starting from the top and going downwards:

• Top window frame (wide dark red bar at the window top). It includes inside it the

“Quick Access Toolbar” (at the left, composed of tool icons), the file name and other

elements.

• “Ribbon-bar” (list of Ribbon names, placed right below the top window frame).

• The currently selected Ribbon (if not hidden, it is below the top window frame).

• “Navigation Pane” (below the Ribbon, on the left side).

• Object Area (below the Ribbon, on the right side).

• MS-Access “Status-bar” (at the very bottom of the window, below both the

“Navigation Pane” and the “Object Area”).

The following screenshot shows the elements listed above:

You may also click on the following sections:

• “B.2.1 What is the top window frame?”

• “B.2.2 What is the “Quick Access Toolbar”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 28 of 725

• “B.2.3 What is the “Ribbon-bar”?”

• “B.2.4 What are Ribbon names?”

• “B.2.5 What is the Ribbon Area?”

• “B.2.6 What is the visible Ribbon?”

• “B.2.7 What is the “Navigation Pane”?”

• “B.2.8 What is the Object Area?”

• “B.2.9 What are the object tabs?”

• “B.2.10 What is the Visible Object and the object panes?”

• “B.2.11 What is the “Status-bar”?”

B.2.1 What is the top window frame?

The top MS-Access window frame is a thick bar in dark red at the very top of the MS-

Access window and it contains, left to right:

• The “Quick Access Toolbar” (list of tool icons).

• Depending on context: “Contextual Ribbon label” (click B.3.4.2).

• The name of the currently open database file.

• The folder path to the currently open database.

• The three usual window icons placed at the topmost and rightmost side of any

window: the minimize window “ ” icon, the maximize window “ ” icon, and

the close window “ ” icon.

The “Contextual Ribbon label” may be empty or a label may be shown. Whether it is

empty, and what label is shown (if any) depends on what is the object currently viewed

in the “Object Area”. If you want to know more about contextual Ribbons, you may

click “B.3.4.1 What are contextual Ribbons?”.

B.2.2 What is the “Quick Access Toolbar”?

It is placed inside the top frame of the MS-Access windows, in its leftmost side. It

contains icons of commands and tools to do different actions on your database. You can

configure what commands are placed in the “Quick Access Toolbar”. To do it, click on

“File”, then on “Options” and then on “Quick Access Toolbar”. There you can add or

remove icons and/or change their order.

B.2.3 What is the “Ribbon-bar”?

It is placed right below the top window frame. It has no icons, and it is composed of a

list of Ribbon names. Clicking on any of the Ribbon names (except “File”) will display

the corresponding Ribbon in the Ribbon Area (click B.2.5). Notice you can only see one

Ribbon at a time in the Ribbon Area. The name of the currently visible Ribbon will

be highlighted and underlined in the “Ribbon-bar”.

B.2.4 What are Ribbon names?

The Ribbon names are placed inside the “Ribbon-bar”. A Ribbon name is the name of

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 29 of 725

each Ribbon. In Microsoft’s terminology “Ribbon names” are called “Ribbon-bar tabs”,

but I will not use this term to avoid confusion with the Table tabs and Query tabs.

Clicking on any of the Ribbon names (except “File”) will display the corresponding

Ribbon in the Ribbon Area. Notice you can only see one Ribbon at a time. The name

of the currently visible Ribbon will be highlighted and underlined in the “Ribbon-

bar”.

Notice that some Ribbon names are only shown depending on what object is currently

visible in the “Object Area”. These Ribbon names that are only shown depending on

what object is shown in the Ribbon Area are called “contextual Ribbon names”

(click B.3.4.3). The Ribbons corresponding to contextual Ribbon names are called

“contextual Ribbons” (click B.3.4.1). If you want to know more about contextual

Ribbons , you may click “B.3.4 What contextual Ribbon can I display?”.

B.2.5 What is the Ribbon Area?

It is the area below the “Ribbon-bar”, where the visible Ribbon is shown. A Ribbon is

a wide horizontal toolbar containing icons and commands grouped in Ribbon groups.

There are two configurations for the Ribbon Area: permanent or pop-up. In the

permanent configuration, the Ribbon Area is always visible. In the pop-up

configuration, the Ribbon Area is only visible after having clicked on a Ribbon name,

and it will be hidden when you click on some other part of the MS-Window.

To configure the Ribbon Area as permanent, click on any Ribbon name (except “File”)

to show it, and then click on the pin “ ” icon, placed in the bottom-right corner of the

Ribbon Area. This will configure the Ribbon Area as permanent, and the pin “ ” icon

will change to the menu “ ” icon.

To configure the Ribbon Area as pop-up, click on the menu “ ” icon placed in the

bottom-right corner of the Ribbon Area. This will hide the Ribbon Area, configure the

Ribbon Area as pop-up, and the menu “ ” icon will change to the pin “ ” icon.

B.2.6 What is the visible Ribbon?

The currently visible Ribbon is placed in the Ribbon Area (click B.2.5), right below the

“Ribbon-bar”. Each Ribbon is a toolbar with many commands, icons and tools. There

are many Ribbons, however, you can only view one Ribbon at a time. To view a

Ribbon, you only need to click on the corresponding Ribbon name, placed in the

“Ribbon-bar” (click B.2.3). Notice that some Ribbon names (the contextual Ribbon

names) are not shown permanently, so therefore, you can only select the corresponding

Ribbons when the Ribbon name is shown. If you want to know more about this, you

may click “B.3.4 What contextual Ribbon can I display?”.

The name of the currently visible Ribbon will be highlighted and underlined in the

“Ribbon-bar”.

B.2.7 What is the “Navigation Pane”?

The “Navigation Pane” is placed below the Ribbon Area, at the left side of the MS-

Access window. It lists the names of the objects (Tables, Queries, ...) that exist in the

database. If you double-click (do two quick clicks) on any object, it will be opened in

the “Object Area”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 30 of 725

You can hide the “Navigation Pane” by clicking on the hide “ ” icon placed in its top-

right corner. If you hide it, a vertical bar labeled “Navigation Pane” will remain at the

leftmost part of the MS-Access window.

You can display the “Navigation Pane” by clicking on the unhide “ ” icon at the top

of the vertical bar placed at the left of the window, labeled “Navigation Pane”.

If you want to know more about the “Navigation Pane” you may click “B.4 What is the

“Navigation Pane” and how it works?”.

B.2.8 What is the Object Area?

It is the MS-Access window area placed below the “Ribbon Area” and to the right of

the “Navigation Pane”. The “Object Area” can contain zero, one, or more opened

objects. If it contains zero opened objects, the “Object Area” is completely empty. If

it contains one or more opened objects, the top part of the “Object Area” will show one

“Object tab” (click B.2.9) for each opened object. The rest of the “Object Area” will

show one and only one of the opened “Objects”, called the “Visible Object”

(click B.2.10).

You can select which object is visible in the “Object Area” by clicking on its “Object

tab” at the top of the “Object Area” (click B.4.1.5).

B.2.9 What are the object tabs?

An object tab is the tab placed at the top of each object pane (click B.2.10).

Each “object tab” contains an icon (that identifies the object type) placed on its left

side, the object name to the right of the icon, and a close “X” icon on its rightmost side.

There can be many “Object tabs”, but only one object is visible at the “Object Area” at

any given moment.

If the MS-Access window width is too narrow to show all the tabs of opened objects,

MS-Access will show a next left “ ” icon on the leftmost side and/or a next right

“ ” icon on the rightmost side of the object tabs. The next left “ ” icon is shown

when there are hidden tabs to the left of the visible ones. The next right “ ” icon is

shown when there are hidden tabs to the right of the visible ones. If you click on the

next left “ ” icon, the first hidden tab on the left side will become visible, and the

required ones (depending on their width) on the right side will become hidden. If you

click on the next right “ ” icon, the first hidden tab on the right side will become

visible, and the required ones (depending on their width) on the left side will become

hidden.

You can select which object is visible in the “Object Area” by clicking on its “Object

tab” at the top of the “Object Area”.

By default, “Object tabs” are ordered left to right by the moment when the object was

opened: object opened longest ago is leftmost, and object opened most recently is

rightmost. However, you can change the order of tabs by doing drag-and-drop over the

tab that you want to move.

B.2.10 What is the Visible Object and the object panes?

The Visible Object is the object, among all currently opened object, that is visible in

the “Object Area”. To select which among the opened objects is the visible one, click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 31 of 725

on its object tab, at the top of the “Object Area”.

The “Visible Object” is show in an object pane, below the “Object tabs”. The structure

and elements of each object pane depend on the type of object (e.g., Table, Query,

Form, ...) and on the view-type (e.g., “Datasheet View”, “Design View”, “SQL View”,

...) of the object. If you want to know more about the object panes, you may click:

• “B.5 What is a Table/Query/Form in “Datasheet View”?”

• “B.6 What is a Table in “Design View”?”

• “B.7 What is a Query in “Design View”?”

• “B.8 What is a Form in “Design View”?”

• “B.9 What is a Query in “SQL View”?”

• “B.10 What is the “Relationships” pane?”

The Visible Object determines what “Contextual Ribbon names” (click B.3.4.3) you

will see in the “Ribbon-bar”, as I indicated when explaining the Ribbons above.

B.2.11 What is the “Status-bar”?

The “Status-bar” is placed at the very bottom of the MS-Access window, right above

of the bottom window frame. The “Status-bar” presents some information on the objects

and commands you are working with, and also, a few contextual buttons. When

contextual buttons are shown, they are placed in the rightmost side of the “Status-bar”.

One example of contextual buttons are the ones that allow you to change the view-type

(“Datasheet”, “Design”, “Layout”, ...) of the object that you are currently viewing in

the “Object Area” (click B.4.1.4).

B.3 What are the Ribbons?

A Ribbon is a wide horizontal toolbar containing icons and commands grouped in

Ribbon groups.

You may click:

• “B.3.1 What is a Ribbon group?”

• “B.3.2 Why do Ribbons change how they look?”

• “B.3.3 What permanent Ribbon can I display?”

• “B.3.4 What contextual Ribbon can I display?”

B.3.1 What is a Ribbon group?

It is a group of tool icons (within a Ribbon) that perform related functions. A Ribbon is

divided in Ribbon groups. Each Ribbon group is delimited by a vertical line in the

Ribbon. Each Ribbon group is identified by a Ribbon group name shown at the bottom

part of the Ribbon. The following screenshot shows the “Home” Ribbon, with its six

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 32 of 725

Ribbon groups, each with its Ribbon group name at the bottom.

In this example, the six Ribbon group names are “Views”, “Clipboard”, “Sort & Filter”,

“Records”, “Find” and “Text Formatting”. Some Ribbon groups have a “Dialog box

launcher” icon in their bottom-right corner (see it in the screenshot above). Clicking on

the “Dialog box launcher” will show a dialog box where more settings and configuration

options are shown, all related to the Ribbon group. In the screenshot above you may see

that the Ribbon groups “Clipboard” and “Text Formatting” have a “Dialog box

launcher”, while the other Ribbon groups do not have it.

B.3.2 Why do Ribbons change how they look?

Ribbons are a little puzzling initially because they are not always the same.

First, the Ribbon Area is sometimes hidden and sometimes shown. You may make the

Ribbon Area permanently shown by clicking on the pin “ ” icon located in its bottom

right corner (click B.1).

Second, the Ribbon that is shown in the Ribbon Area changes each time you click on a

Ribbon name (click B.2.4).

Third, some Ribbon names are not always shown. This is because some Ribbon names

(called “contextual Ribbons”: click B.3.4) are only shown if a given object (Table in

“Design View”, Table in “Datasheet View”, Query, ...) is visible in the “Object Area”.

Fourth, some contextual Ribbon names are duplicated, and you have to take also into

account what contextual Ribbon label is shown to identify which they are.

Finally, the command icons in each Ribbon are changed and relocated depending on

the MS-Access window width. When you make the window narrower, and all the icons

do not fit, some icon name-tags will be hidden. If you make the window even narrower,

some icons will be grouped and replaced by a drop-down menu icon: clicking on the

icon will show a pop-up menu with its tool icons. If you make the window narrower

still, a complete Ribbon group is replaced by a drop-down menu icon: clicking on the

icon will show all the tools in the Ribbon group.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 33 of 725

Check the following two screenshots and notice how the “Create” Ribbon changes very

significantly when making the MS-Access window smaller:

As you may see, the Ribbon groups “Queries, “Forms”, “Reports” and

“Macros & Code” have been each squeezed into just one drop-down menu. If you click

on one of these drop-down menus you will find all the tools of the corresponding Ribbon

group.

B.3.3 What permanent Ribbon can I display?

You can display (becoming the visible Ribbon) one of the permanent Ribbons by

clicking on the corresponding Ribbon name. The list of Ribbon names is the following

(as can be found left to right in the “Ribbon-bar”):

• “Home” Ribbon

Contains general purpose commands, like cut, paste, search or “Refresh all”.

• “Create” Ribbon

Contains commands to create new database objects: Tables, Queries, Forms,

Reports and Macros.

• “External Data” Ribbon

Contains commands to import, export and do other operations with external data.

• “Database Tools” Ribbon

Contains commands to view and create Relationships, compact and repair the

database, run macros, present object dependencies, and other database

operations.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 34 of 725

• “Plug-in” Ribbon

In case you incorporate a plug-in tool for MS-Access it may add its own Ribbon.

This is the case of the plug-in “Access SQL Editor” (the one I recommend you to

buy). If you install it, it will add the Ribbon name “Access SQL Editor” to the

“Ribbon-bar”. If you click on that Ribbon name, you will see a large Access SQL

Editor “ ” icon.

• Depending on context: contextual Ribbon

See the next section B.3.4 right below for an explanation.

B.3.4 What contextual Ribbon can I display?

You may click:

• “B.3.4.1 What are contextual Ribbons?”

• “B.3.4.2 What are contextual Ribbon labels?”

• “B.3.4.3 What are contextual Ribbon names?”

• “B.3.4.4 What contextual Ribbon can I display, depending on context?”

B.3.4.1 What are contextual Ribbons?

Contextual Ribbons are Ribbons that you can only select when its Ribbon label and

its Ribbon name are shown. A contextual Ribbon is shown in the “Ribbon Area” as

any other Ribbon.

B.3.4.2 What are contextual Ribbon labels?

Contextual Ribbon labels are placed (when shown) in the top window frame. A

contextual Ribbon label is a text string placed on top of the contextual Ribbon names,

that indicates what type of contextual Ribbons are currently available. Contextual

Ribbon labels are not shown all the time.

B.3.4.3 What are contextual Ribbon names?

Contextual Ribbon names are Ribbon names that are not shown all the time. The

contextual Ribbon names are placed (when shown) in the “Ribbon-bar”, at the right

of the permanently shown Ribbon names.

B.3.4.4 What contextual Ribbon can I display, depending on context?

You can display (becoming the visible Ribbon) one of the contextual Ribbons that are

available depending on context.

The contextual Ribbon that you can display at any given moment depends both on the

contextual Ribbon label shown, and also, on the contextual Ribbon name shown. You

need both because some contextual Ribbon names are duplicated, and you need to

know also the contextual Ribbon label to identify the contextual Ribbon. For example,

the contextual Ribbon name “Design” under the Ribbon label “Table Tools” will open

a different Ribbon than the same contextual Ribbon name “Design” under the Ribbon

label “Query tools”.

The next screenshot shows the contextual Ribbon label “Table Tools” and the contextual

Ribbon names “Fields” and “Table” under it. The Ribbon shown in the Ribbon area is

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 35 of 725

“Table” (you may see that its name is underlined):

The contextual Ribbon label and contextual Ribbon names that are shown at any given

moment depend on what object is shown in the “Object Area”. The following list

indicates what contextual Ribbon label and what contextual Ribbon names will be

shown depending on the type of object opened, and on the view-type in which the

object is opened in the “Object Area”:

• No object in the “Object Area” => no contextual Ribbon label

No contextual Ribbon.

• “Table pane” => “Table Tools” as contextual Ribbon label

o “Datasheet View”

“Fields” and “Table” as contextual Ribbon names from the “Ribbon-bar”, both

placed right below the contextual Ribbon label.

o “Design View”

“Design” as contextual Ribbon name from the “Ribbon-bar”, placed right below

the contextual Ribbon label.

• “Query pane”

o “Datasheet View” => no contextual Ribbon label

No contextual Ribbon.

o “Design View” or “SQL View” => “Query Tools” as contextual Ribbon label

“Design” as contextual Ribbon name from the “Ribbon-bar”, placed right below

the contextual Ribbon label.

• “Form pane”

o “Form View” => no contextual Ribbon label

No contextual Ribbon.

o “Datasheet View” => “Form Tools” as contextual Ribbon label

“Datasheet” as contextual Ribbon name from the “Ribbon-bar”, placed right

below the contextual Ribbon label

o “Layout View” => “Form Layout Tools” as contextual Ribbon label

“Design”, “Arrange” and “Format” as contextual Ribbon names from the

“Ribbon-bar”, placed right below the contextual Ribbon label.

o “Design View” => “Form Design Tools” as contextual Ribbon label

“Design”, “Arrange” and “Format” as contextual Ribbon names from the

“Ribbon-bar”, the three placed right below the contextual Ribbon label.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 36 of 725

• “Report pane”

o “Report View” => no contextual Ribbon label

No contextual Ribbon.

o “Layout View” => “Report Layout Tools” as contextual Ribbon label

“Design”, “Arrange”, “Format” and “Page Setup” as contextual Ribbon names

from the “Ribbon-bar”, the four placed right below the contextual Ribbon label.

o “Design View” => “Report Design Tools” as contextual Ribbon label

“Design”, “Arrange”, “Format” and “Page Setup” as contextual Ribbon names

from the “Ribbon-bar”, the four placed right below the contextual Ribbon label.

o “Print Preview”

All other normal Ribbon names are hidden except “File”, and also, you will

see “Print Preview” as contextual Ribbon name from the “Ribbon-bar”, and no

contextual Ribbon label is shown.

• “Macro pane” => “Macro Tools” as contextual Ribbon label

“Design” as contextual Ribbon name from the “Ribbon-bar”, placed right below the

Ribbon label.

• “Relationships” pane => “Relationship Tools” as contextual label

“Design” as contextual Ribbon name from the “Ribbon-bar”, placed right below the

Ribbon label.

B.4 What is the “Navigation Pane” and how it works?

The “Navigation Pane” is placed below the Ribbon Area, at the left side of the MS-

Access window, with the default title “All Access Objects” at its top. The “Navigation
Pane” lists the names of all the objects that exist in the database file. Each database

object belongs to one of the following object collections: Tables, Queries, Forms,

Reports and Modules. Object names within each object collection must by unique,

but object names can be duplicated if objects are of different collections (click D.2.5).

If you (double11) click on any object name, the corresponding object will be opened in

the “Object Area” (except Modules, that are opened in the window of the VBA editor).

You can also open an object directly in a specific view-type: right-click on the object

name and in the pop-up menu click on the specific view-type you want. You can open

objects in other ways, and also do other actions on them (click B.4.1).

11 If you configure the option “Single-click” you will open an object with one click (instead of with a

double-click), and also, you will select an object by just placing the mouse over it (instead of by clicking

on it).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 37 of 725

The next screenshot shows the “Navigation Pane”, on the left side of the MS-Access

window, with the its heading (at the top)including the title “All Access Objects”:

The database object names are grouped in the “Navigation Pane” by object name

groups. Each object name group has a specific heading, that is followed by a list of

the object names in that group. If there are no objects in a given object name group, the

corresponding object name group heading is not shown.

By default, the database object names are grouped by object collection, in the

following top-down order: Tables (topmost), Queries, Forms, Reports and Modules

(bottommost). You can configure how object names are grouped (click B.4.2.1).

By default, the database object names within each group are ordered alphabetically

by object name. You can configure how object names are ordered (click B.4.2.2).

By default, object name are displayed as a list, with a small icon to the left of each

object name that identifies its object type. These icons are: Table “ ”, Table Link

(see Linked Tables in K.3.4), Form “ ”, Report “ ” or Module “ ”). For the case

of Query names, a specific icon is shown for each type of Query: Select Query “ ”,

Union Query “ ”, Transform Query “ ”, Insert “ ” Query or Delete Query “ ”.

The Query type is the same as its outermost SQL operation. You can configure how

object names are displayed (click B.4.2.3).

You can hide the “Navigation Pane” by clicking on the hide “ ” icon placed in its top-

right corner. A vertical bar labeled “Navigation Pane” will remain at the leftmost part

of the MS-Access window.

You can unhide the “Navigation Pane” by clicking on the unhide “ ” icon at the top

of the vertical bar placed at the left of the window, labeled “Navigation Pane”.

You can change the width of the “Navigation Pane” by doing click and drag on the

vertical line that separates it from the “Object Area”.

If you want to know more about the “Navigation Pane”, you may click:

• “B.4.1 How do I open, close and do other actions on objects in the “Navigation
Pane”?”

• “B.4.2 How do I configure the way object names are grouped, ordered, displayed or

hidden in the “Navigation Pane”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 38 of 725

B.4.1 How do I open, close and do other actions on objects in the

“Navigation Pane”?

This section applies to the objects from the “Navigation Pane”, which are Tables,

linked Tables, Queries, Forms, Reports and Modules. Relationships are not objects

from the “Navigation Pane”: if you want to handle Relationships, click “B.10 What is

the “Relationships” pane?”.

Coming back to the objects from the “Navigation Pane”, you may click:

• “B.4.1.1 How do I search for an object name in the “Navigation Pane”?”

• “B.4.1.2 What is the object menu in the “Navigation Pane”?”

• “B.4.1.3 How do I open an object with the “Navigation Pane”?”

• “B.4.1.4 How do I change the view-type of an opened object?”

• “B.4.1.5 How do I view another of the opened objects?”

• “B.4.1.6 How do I save the layout/design of an opened object?”

• “B.4.1.7 How do I close an opened object?”

• “B.4.1.8 How do I rename an object?”

• “B.4.1.9 How do I run a Query?”

• “B.4.1.10 How do I select one or more objects?”

• “B.4.1.11 How do I edit a Query?”

• “B.4.1.12 How do I create an object?”

• “B.4.1.13 How do I delete objects?”

• “B.4.1.14 How do I copy/cut and paste objects?”

B.4.1.1 How do I search for an object name in the “Navigation Pane”?

The “Navigation Pane” has an object search bar at its top that allows you to search for

object names by substring. If you type-in a string in the object search bar, only the

objects whose name contains that string will be shown. This is done as you type, so

the more characters you type, the fewer objects are shown.

You can hide/unhide the search bar in either of the following ways:

• Right-click anywhere in the “Navigation Pane” heading and click on “Search Bar”

from the pop-up menu.

• Right-clicking anywhere in the “Navigation Pane” heading and click on

“Navigation Options” from the pop-up menu. A sub-window will be shown and

there you may untick/tick the checkbox “Show Search Bar”.

My advice is you always keep the object search bar shown because it is very useful.

B.4.1.2 What is the object menu in the “Navigation Pane”?

It is the menu with the actions that you can do over objects from the “Navigation

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 39 of 725

Pane”.

You show the object menu by right-clicking on an object name from the “Navigation
Pane”. The next screenshot shows the object menu you get for a Table:

The actions in the object menu depend on the object type, as follows.

Menu actions common to all the object types:

• “Open”

Opens the Table, linked Table, Form or Report in “Datasheet View”

(click B.4.1.3).

Runs the Query and presents its results in “Datasheet View” (click B.4.1.9).

Opens the VBA Module in the specific window of the VBA editor (click K.9.1).

• “Design View”

Opens the Table, linked Table, Query, Form or Report in “Design View”

(click B.4.1.3).

Opens the VBA Module in the specific window of the VBA editor (click K.9.1).

• “Export”

Exports the object to one of the formats that are available in the submenu that is

shown when you place the mouse over the “Export” row of the object menu.

• “Rename”

Allows you to change the object name (click B.4.1.8).

• “Hide in this Group”

Hides the object (click B.4.2.5).

• “Delete”

Deletes the object (click B.4.1.13). Notice that deleting an object cannot be

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 40 of 725

undone.

• “Cut” or“Copy”

Cuts or copies (respectively) the object (click B.4.1.14). Notice that you can

cut/copy and paste objects (Tables, Queries, ...) between different MS-Access

instance (windows), which is extremely useful.

• “Paste”

Pastes the object previously cut/copied in either this MS-Access instance

(window), or another MS-Access instance (window). Notice that you can cut/copy

and paste objects (Tables, Queries, ...) between different MS-Access instances

(windows), which is extremely useful. In case you had not previously copied an

object, “Paste” will be shadowed (see the screenshot above) and clicking on it will

have no effect.

• “Table Properties”, “Object Properties”, “View Properties”

Shows the “Navigation Pane” properties of the object. These are the creation and

modification dates, the object owner and a few other “Navigation Pane” properties.

Do not mistake the “Navigation Pane” properties of any object with the

“Properties Sheet” of Tables (click B.6.3), Queries (click B.7.1) and Forms

(click B.8.1). The latter are much more useful and important.

Menu actions specific of Tables and linked Tables:

• “Import”

Imports content into the Table or linked Table from one of the formats available

in the submenu shown when you place the mouse over the “Import” row of the

object menu.

• “Linked Table Manager”

Opens the “Linked Table Manager” (click K.3.10).

Menu actions specific of linked Tables:

• “Refresh Link”

Refreshes the link of the linked Table (click K.3.7).

• “Convert to Local Table”

Converts the linked Table into a local Table (click K.3.8).

Menu actions specific of Forms and Reports:

• “Layout View”

Opens the Form or Report in “Layout View.

Menu actions specific of Reports:

• “Print…” and “Print Preview”

Prints or displays a print preview (respectively) of the Report.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 41 of 725

B.4.1.3 How do I open an object with the “Navigation Pane”?

You can open an object in either of the following ways:

• (Double12) Click on the object name in the “Navigation Pane”.

• Right-click (i.e., click with the right mouse button) on the object name in the

“Navigation Pane” and click on “Open”13 from the pop-up menu.

• Select the object (click B.4.1.10) and then press the “Enter” key.

• Right-click (i.e., click with the right mouse button) on the object name in the

“Navigation Pane” and in the pop-up menu click on the specific view-type (e.g.,

“Design View” or “Layout View”) that you want.

If you use either of the three first ways, a Table, Table link, Query, Form or Report

is opened in “Datasheet View” in the “Object area”.

If you use the fourth way, the Table, Query, Form or Report will be opened in the

specific view-type that you selected. For the case of a Module, it will be opened in the

window of the VBA editor.

Notice that not all the view-types are shown in this pop-up menu. For example, the “SQL
View” is not shown. If you want a Query in “SQL View” you have to open it first in a

different view-type, and then change its view-type (click B.4.1.4) to “SQL View”.

Notice also that for the case of Union Queries, if you click on the view-type “Design
View”, they will be opened in “SQL View”, because they do not have a “Design View”

(click K.4.7). Finally, if you open a Query in “Design View”, but its “Design View” has

not been ever saved, it will be opened in “SQL View”: if you want to see it in “Design
View” you just need to change its view-type (click B.4.1.4).

A VBA Module is always opened in the specific window of the VBA editor.

B.4.1.4 How do I change the view-type of an opened object?

You can change the view-type of an opened object in either of the following ways:

• Click on either “Home” or “Design” from the “Ribbon-bar” and look at the leftmost

side of the Ribbon: if the view-type icon that you want (e.g., the Datasheet View

“ ” icon), is currently shown, you click on it; otherwise, you click on the “ ”

icon, and then click on the view-type that you want from the pop-up menu.

• Click on the view-type icon that you want from the “Status-bar”. The “Status-bar”

is placed at the right-bottom side of the MS-Access window frame. The view-type

icons that you can click (depending on the specific object) are:

o Design View “ ” icon

o Datasheet View “ ” icon (except for Reports)

12 If you configure the option “Single-click” you will open an object with one click (instead of with a

double-click), and also, you will select an object by just placing the mouse over it (instead of by clicking

on it).
13 For the case of “Modules”, there is no “Open” option in the pop-up menu, and you will have to click

on the “Design View” option.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 42 of 725

o SQL View “ ” icon (only for Queries)

o Form View “ ” icon (only for Forms)

o Layout View “ ” icon (only for Forms and Reports)

o Print Preview “ ” icon (only for Reports)

• Right-click on the object tab (at the top of the “Object Area”) and in the pop-up

menu click on the view-type that you want. The menu you get when you right-click

on a Table tab is shown in the following screenshot:

In the menu you can see the options “Save”, “Close”, “Close All”, plus, all the different

views in which the specific object (in this case a Table) can be presented.

Notice that each object can only be viewed in certain view-types. The available view-

types for each specific object are the ones listed for it in the corresponding bullet point

slightly above.

If you change the view-type of an object that has unsaved layout or design changes,

there are two possible cases:

• MS-Access asks if you want to save the unsaved changes

If you click “Yes”, the unsaved changes will be saved, and the object will be changed

to the new view-type. If you click “No”, changes will not be saved, and the object

will remain in the current view-type. To change the view-type without saving

changes, close the object (click B.4.1.7) and then open it (click B.4.1.3) in the view

type that you want.

• MS-Access does not ask if you want to save the unsaved changes

MS-Access reminds that this object has unsaved changes. It will therefore ask if

you want to save them at a later stage, when you either close the object

(click B.4.1.7) or change it to another view-type.

The first case usually happens when you change from “Design View” to “Datasheet
View”, while the second one happens when you change from “Datasheet View” to some

other view-type. However, this is not a complete list of all that can happen.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 43 of 725

B.4.1.5 How do I view another of the opened objects?

Click on its object tab (click B.2.9) at the top of the “Object Area” (click B.2.8).

If the MS-Access window width is too narrow to show all the tabs of opened objects,

MS-Access will show a next left “ ” icon on the leftmost side and/or a next right

“ ” icon on the rightmost side of the object tabs. The next left “ ” icon is shown

when there are hidden tabs to the left of the visible ones. The next right “ ” icon is

shown when there are hidden tabs to the right of the visible ones. If you click on the

next left “ ” icon, the first hidden tab on the left side will become visible, and the

required ones (depending on their width) on the right side will become hidden. If you

click on the next right “ ” icon, the first hidden tab on the right side will become

visible, and the required ones (depending on their width) on the left side will become

hidden.

By default, “Object tabs” are ordered left to right by the moment when the object was

opened: the object opened longest ago is leftmost, and the object opened most recently

is rightmost. However, you can change the order of tabs by doing drag-and-drop over

the tab that you want to move.

B.4.1.6 How do I save the layout/design of an opened object?

You save the layout and/or design changes of an opened object by right-clicking on its

tab (at the top of the “Object Area”) and clicking on “Save” from the pop-up menu.

If the object was opened in “Datasheet View”, you are saving its layout.

If the object was opened in “Design View”, you are saving its design.

For the specific case of Queries, if you did formatting changes in “Design View”, you

are saving its layout. If you did design changes (e.g., change the field order) in “Design
View”, you are saving its SQL code. If the Query was opened in “SQL View”, you are

saving its SQL code.

Notice that any data modification (i.e., add records, edit records, or delete records)

performed on a Table or Form in “Datasheet View” are directly updated on the

corresponding database Tables, right when you do each of them. Therefore, you do not

have to save them and actually you cannot discard them.

Finally, you can also save the layout and/or design changes of an opened object by

either closing it (click B.4.1.7) or changing its view-type (click B.4.1.4), and then

clicking “Yes” in the dialogue-box where MS-Access asks if you want to save changes.

However, this is risky because you may mistakenly close the dialogue box or click

“No”, therefore discarding your unsaved layout and/or design changes. For this reason,

this way of saving is considered a bad practice.

B.4.1.7 How do I close an opened object?

You close an opened object in either of the following ways:

• Click on the close icon “X” placed at the rightmost side of its tab (at the top of the

“Object Area”).

• Right-click on its tab and click on “Close” from the pop-up menu.

You can close all opened objects by right-clicking on any object tab (at the top of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 44 of 725

“Object Area”) and clicking on “Close all” from the pop-up menu.

If you close an object that has unsaved changes, MS-Access will ask if you want to

save changes to the design before closing the object. If you click “Yes” the unsaved

changes will be saved; otherwise, they will be lost.

Notice that MS-Access asks to save changes to the object design, even if you only did

changes to the object layout (click B.4.1.6). This may be confusing if you are unaware

of it, and this is why I am pointing it out.

B.4.1.8 How do I rename an object?

You rename an object by right-clicking (i.e., click with the right mouse button) on its

name in the “Navigation Pane” and click on “Rename” from the pop-up menu. The

object name will be selected (shown as shaded) and you can edit its name with the

keyboard, pressing the “Enter” key when you are done. If you change your mind and

do not want to rename the object, press the “Esc” key, and the object will not be

renamed.

Be aware that if you set the “Single-click” option, (click B.1.1) this causes a somehow

annoying side effect when renaming objects. If the “Single-click” option is set, and the

mouse stays within the “Navigation Pane” after you clicked on “Rename”, the

renaming will not work. The reason is that “Single-click” implies that objects are

selected by just placing the mouse-pointer over them: therefore, if the mouse-pointer

stays (after having clicked on “Rename”) within the “Navigation Pane”, the object

name below the mouse-pointer will be selected, and the object name that had just been

selected for renaming will be cleared. The solution is really simple (just remind about

it): when you want to rename an object, after having clicked on “Rename”, you must

immediately move the mouse-pointer out of the “Navigation Pane”. Once the mouse-

pointer is out of the navigation pane, you may edit the object name with the keyboard

as described above.

B.4.1.9 How do I run a Query?

You run a Query from MS-Access in either of the following ways:

• (Double14) Click on the Query name in the “Navigation Pane”.

• Right-click on the Query name in the “Navigation Pane” and click on “Open” from

the pop-up menu.

• If the Query is open in “Datasheet View”, you click on the Refresh All “ ” icon

from the “Home” Ribbon. Do not mistake it with the Refresh “ ” icon, that can be

shown instead of the Refresh All “ ” icon. In case you are seeing the Refresh “ ”

icon, click on the “ ” icon right below it, and click on “Refresh All” from the

pop-up menu. This will both run the Query and change the icon to the Refresh All

“ ” icon.

14 If you configure the option “Single-click” you will open an object with one click (instead of with a

double-click), and also, you will select an object by just placing the mouse over it (instead of by clicking

on it).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 45 of 725

• If the Query is opened in “Design View” or in “SQL View”, you change its view-

type to “Datasheet View” (click B.4.1.4).

If you are using the plug-in “Access SQL Editor” (click F.5), you can also run a Query

directly from it (click F.5.4.5).

Regardless of which way you run the Query, its results will be shown15 in “Datasheet
View” it its own MS-Access “Query pane”, inside the MS-Access object area, and

outside the “Access SQL Editor” pane.

B.4.1.10 How do I select one or more objects?

You select one object from the “Navigation Pane” either by clicking on it, or by placing

the mouse pointer over its object name, depending on setting of the “Single-click”

option. My advice is you set the “Single-click” option (click B.1.1), in which case you

select one object by placing the mouse pointer over its name in the “Navigation Pane”.

You select a range of contiguous objects by selecting (see previous paragraph) the

object name on one of the ends of the object range. You then press the “Shift” key

while you select the object name of the other end of the object range (this is called a

“shift select” or “Shift+select”).

You select an additional object to the ones already selected by pressing the “Ctrl” key

while you select the additional object name (this called a “control select” or

“Ctrl+select”). Notice that you can do this several times, to add several individual

objects to the set of already selected objects. Notice also that you can do this after having

selected a range of objects.

You unselect an object from the ones already selected by pressing the “Ctrl” key while

you select the additional object name (this called a “control select” or “Ctrl+select”).

Notice that you can do this several times, to unselect several individual objects to the

set of already selected objects. Notice also that you can do this after having selected a

range of objects.

When you have selected one or more objects, the selected object name(s) will be

highlighted with pink background. You can then delete them (click B.4.1.13) or

cut/copy them (click B.4.1.14).

B.4.1.11 How do I edit a Query?

If you are not using the plug-in “Access SQL Editor” click F.4.6.

If you are using the plug-in “Access SQL Editor” click F.5.

B.4.1.12 How do I create an object?

Depending on the type of “Navigation Pane” object that you want to create, you have

to go to different sections, as follows:

• To create a Table, click D.3.1.

• To create a linked Table, click K.3.6.

• To create a Query, click F.4.5.

15 Unless you configure a non-advisable option in the “Access SQL Editor”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 46 of 725

• To create a Form, click D.10.2.

• To create a Report, click D.12.

• To create a Module, click K.9.1.

Relationships are not objects from the “Navigation Pane”: if you want to create a

Relationship, click D.9.1.

In the sections above you will not only find the instructions on how to create each

specific object, but also design advice on how to configure it.

B.4.1.13 How do I delete objects?

To delete only one object, you right-click (i.e., click with the right mouse button) on

the object name in the “Navigation Pane” and click on “Delete” from the pop-up menu.

To delete one or more object(s), you first select it/them (click B.4.1.10). Then, you

either press the “Supr” key, or rather, right-click on one of the selected object names

and click on “Delete” from the pop-up menu.

Either way MS-Access will ask you if you are sure you want to delete the object(s), and

you will have to confirm or cancel.

B.4.1.14 How do I copy/cut and paste objects?

To copy/cut only one object from the “Navigation Pane”, you right-click (i.e., click

with the right mouse button) on the object name in the “Navigation Pane” and in the

pop-up menu click on “Copy” to copy it, or on “Cut” to cut it.

To copy/cut one or more object(s), you first select it/them (click B.4.1.10). Then, you

press “Ctrl-c” (i.e., press the “Ctrl” key, and without releasing it, press the “c” key) to

copy it/them or press “Ctrl-x” (i.e., press the “Ctrl” key, and without releasing it, press

the “x” key) to cut it/them. You can alternatively right-click on one of the selected

object names and in the pop-up menu click on “Copy” to copy it/them, or on “Cut” to

cut it/them.

To paste the object(s) that you have just cut/copied, you can do it in either of the

following ways:

• Right-click on any object name in the “Navigation Pane” and click on “Paste”

from the pop-up menu.

• Right-click anywhere on the “Navigation Pane” heading and click on “Paste” from

the pop-up menu.

• Place the mouse anywhere over the “Navigation Pane” and then press “Ctrl-v”

(i.e., press the “Ctrl” key, and without releasing it, press the “v” key).

Very important to note that you can cut/copy and paste objects between different

database files.

B.4.2 How do I configure the way object names are grouped, ordered,

displayed or hidden in the “Navigation Pane”?

You may click:

• “B.4.2.1 How do I configure the way object names are grouped in the “Navigation

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 47 of 725

Pane”?”

• “B.4.2.2 How do I configure the way object names are ordered in the “Navigation
Pane”?”

• “B.4.2.3 How do I configure the way object names are displayed in the “Navigation
Pane”?”

• “B.4.2.4 How do I hide/unhide whole object name groups in the “Navigation
Pane”?”

• “B.4.2.5 How do I hide/unhide an individual object name in its object group?”

• “B.4.2.6 How do I hide/unhide all system object names?”

B.4.2.1 How do I configure the way object names are grouped in the

“Navigation Pane”?

You can do it in either of the following ways:

• Right-click on the “Navigation Pane” heading (click B.4), move the mouse over

“Category” and on the resulting pop-up menu click on the grouping type you want

to select.

• Click on the “Navigation Pane” heading (except on the “ ” icon) and click on the

grouping type you want to select (grouping types are shown under the label

“Navigate To Category”).

See in the following screenshot the pop-up menu shown when you right-click on the

“Navigation Pane” heading:

If you place the mouse pointer over “Category” (in the menu shown above), you can

select one among the following five grouping types that MS-Access offers:

• Personalized

Shows object names grouped as you have manually configured. You can define your

own group names and assign each object name to the group name you want in the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 48 of 725

dialog box of “Navigation Options”. The order of groups is alphabetical by group

name. The last group of objects is “Unassigned Objects” that includes the names of

objects that you have not yet assigned to a specific group. In this case, the default

label inside the “Navigation Pane” heading is “Personalized”.

• Tables and Related Views
Shows objects grouped by the Table name they are directly related to. The last group

of objects is “Unrelated Objects” that includes the names of objects not directly

related to any Table. In this case, the default label inside the “Navigation Pane”

heading is “All Tables”.

• Object Type (default grouping)

Shows objects grouped by object type, in the following top-down order of groups:

Tables, Queries, Forms, Reports and Modules. In this case, the default label inside

the “Navigation Pane” heading is “All Access Objects”.

• Created Date
Shows objects grouped by their object creation date, in the following top-down order

of groups: Today, Yesterday, Two Days Ago, Last Week, Two Weeks ago, Last

Month and Older. In this case, the default label inside the “Navigation Pane”

heading is “All Dates”.

• Modified Date
Shows objects grouped by their date of last modification, in the following top-down

order of groups: Today, Yesterday, Two Days Ago, Last Week, Two Weeks ago,

Last Month and Older. In this case, the default label inside the “Navigation Pane”

heading is “All Dates”.

B.4.2.2 How do I configure the way object names are ordered in the

“Navigation Pane”?

Right-click anywhere on the “Navigation Pane” heading, move the mouse over “Sort
By” and click on the order type you want to select.

You can select two different aspects of the way object names are ordered within each

object group. The first aspect you can select is whether object names are ordered within

each object group in ascending or descending order. The second aspect you can select

is the criterion to order the object names.

You can select one among the following five ordering criteria that MS-Access offers:

• Name (default)

Objects are ordered within each object group alphabetically on the object name.

• Type

Objects are ordered within each object group based on the object type (taking also

into account the Query type).

• Created Date
Objects are ordered within each object group based on the creation date of each

object.

• Modified Date
Objects are ordered within each object group based on the date of last modification

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 49 of 725

of each object.

• Remove Automatic Sorts
Objects are ordered within each object group as the user has manually configured.

If you have selected this option, you can change the order of an object within each

object group by doing drag-and-drop over the object.

B.4.2.3 How do I configure the way object names are displayed in the

“Navigation Pane”?

Right-click on the “Navigation Pane” heading, move the mouse over “View By” and

click on the viewing type you want to select.

You can select one among the following three viewing types that MS-Access offers:

• List (default)

Each object name is displayed with an object type small icon on its left side.

• Icons

Each object name is displayed with an object type large icon on its left side. I do

not recommend this view because is the same as “list”, but you can see fewer objects

on the screen due to the larger size of icons.

• Details

Each object name is shown with an object type large icon on its left side, the object

type in text (“Table”, “Query”, “Form”, “Report” or “Module”) on its right side,

and the object creation date plus the object last modification date below the object

name.

B.4.2.4 How do I hide/unhide whole object name groups in the “Navigation
Pane”?

To hide/unhide a given object name group, click on the hide “ ” icon or on the unhide

“ ” icon, that is placed on the right side of each object group heading. Notice that in

this case the object group heading itself is not hidden, but all its object names are

hidden.

Another way to hide/unhide a given object name group, is right-clicking on the

“Navigation Pane” heading and click on “Navigation Options” from the pop-up menu.

This will show a sub-window where you can see three object grouping types (“Tables
and Related Views”, “Object Type” and “Personalized”). Select the grouping type that

you want, and then tick/untick each individual object group that you want to

unhide/hide. Notice that in this case the object group heading is hidden in addition to

all its object names.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 50 of 725

The next screenshot shows the sub-window that will appear when you click on

“Navigation Options”:

To hide all the object name groups except one, click anywhere on the “Navigation

Pane” heading (except on the “ ” icon) and in the pop-up menu (under the heading

“Filter By Group”) click on the group you want to see. When you do this, the

“Navigation Pane” heading will change to the group heading of the only group that

you have selected to be shown.

You can unhide all the object name groups in either of the following ways:

• Click on the “Navigation Pane” heading (except on the “ ” icon) and click on “All
the Access Objects” placed at the bottom of the pop-up menu.

• Right-click on the “Navigation Pane” heading and click on “Show all groups” from

the pop-up menu.

When you unhide all object name groups, the “Navigation Pane” heading will change

to the default heading of the object name grouping type that you are using at this

moment.

B.4.2.5 How do I hide/unhide an individual object name in its object group?

MS-Access allows you to hide an object name by right-clicking on its name and clicking

on “Hide in this Group” from the pop-up menu. Hidden objects are not shown in its

corresponding object group, unless you set the option “Show Hidden Objects”.

In case you need to see all hidden objects (e.g., to browse through them and/or to

one/modify one or more) you can make MS-Access show all of them by setting the

option “Show Hidden Objects”. You can unset this option when you are done handling

the objects you wanted and will all stop being shown. You can set or unset this option

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 51 of 725

in either of the following ways:

• Right-click on the “Navigation Pane” heading and click on “Navigation Options...”

from the pop-up menu.

• Click the sequence “FileOptionsCurrent Database”. This will show a sub-

window where you should scroll until you see the heading “Navigation Options”,

and there click on the button “Navigation Options...”.

Regardless of which way you use, a sub-window will open, and on its bottom-left side

you will see the option “Show Hidden Objects” with a checkbox on its left side. By

ticking or unticking that checkbox MS-Access unhides or hides all objects marked as

hidden. After having ticked/unticked the checkbox, you should click on the “OK” button

to hide this “Navigation Options” sub-window.

Notice that when hidden objects are shown their name is shadowed, to distinguish them

from unhidden objects.

If you want to permanently unhide a specific object, set the option “Show Hidden
Objects” (as indicated above), right-click on the object name and click on “Unhide in
this Group” from the pop-up menu. Then, you have to unset the option “Show Hidden
Objects” to hide again all hidden objects.

B.4.2.6 How do I hide/unhide all system object names?

You can hide/unhide all system object names by setting/unsetting the option “Show
System Objects”. You can set/unset this option in either of the following ways:

• Right-click on the “Navigation Pane” heading and click on “Navigation Options...”

from the pop-up menu.

• Click the sequence “FileOptionsCurrent Database”. This will show a sub-

window where you should scroll until you see the heading “Navigation Options”,

and there click on the button “Navigation Options...”.

Regardless of which way you use, a sub-window will open, and on its bottom-left side

you will see the option “Show System Objects” with a checkbox on its left side. By

ticking or unticking that checkbox “MS-Access unhides or hides all system objects.

After having ticked/unticked the checkbox, you should click on the “OK” button to hide

this “Navigation Options” sub-window.

The unhidden system objects will be shown in their corresponding object group. System

object names will be shadowed to indicate that their built-in configuration is as hidden.

B.5 What is a Table/Query/Form in “Datasheet View”?

A Table or Form in “Datasheet View” allows to view, enter, delete and modify their

records. A Query in “Datasheet View” allows to view the Query results.

If you want to create and configure Tables, click D.3.

If you want to create and configure Queries, click F.4.5.

If you want to create and configure Forms, click D.10.

Coming back to a “Table/Query/Form pane” in “Datasheet View”, it shows each record

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 52 of 725

as a row, shows the field names as columns (with the field name as the column

heading), and shows the field values of each record as a value in a cell (row and

column).

If all the rows and/or columns do not fit in the vertical and/or horizontal size of the

“Table/Query/Form pane”, then a vertical and/or a horizontal scrollbar will be shown.

The vertical scrollbar will be placed at the leftmost side of the pane. The horizontal

scrollbar will be placed at the bottom of the pane, right above the “Navigation bar”.

At the very bottom of the “Table/Query/Form pane” you see the “Navigation bar”:

You may see the elements I have just described in the following screenshot of a “Table

pane” in “Datasheet View”:

In a “Table pane” (not in “Query pane” nor in a “Form pane”) it is possible that you also

see an additional column with the heading “Click to Add”. If this happens, I advise you

remove this column because I consider it a bad practice (click B.1.1).

You may sometimes see a “+” sign to the left of the records, where you can click to

show sub-Tables of related values. My advice is you do not use this functionality

because it sometimes fails and creates problems.

You may click:

• “B.5.1 What is the “Navigation bar” in “Datasheet View”?”

• “B.5.2 How do I select a range of fields/records in “Datasheet View”?”

• “B.5.3 How do I select one field’s value in “Datasheet View”?”

• “B.5.4 What are the differences between selecting one field and one field’s value in

“Datasheet View”?”

• “B.5.6 How do I manage a Table/Query/Form “Property Sheet” in “Datasheet
View”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 53 of 725

B.5.1 What is the “Navigation bar” in “Datasheet View”?

The “Navigation bar” serves to go to the record you want, to know in which record

you are, and to create a new record. The “Navigation bar” is extremely useful to find

your way around in a Table/Query/Form with lots of records. The next screenshot shows

the “Navigation bar”:

The “Navigation bar” has the following elements:

• Position box “ ”

Shows the row number of the currently selected record and the total number of

records in the Table/Query/Form. In the screenshot you can see “1 of 28” indicating

that the currently selected record is number 1 out of a total of 28 records.

• Goto buttons (“ ” and “ ”)

To go to the first record in the Table click on “|”, to go to the previous record to

current one click on “”, to go to the next record to current one click on “”, and

finally, to go to the last record click on “|”. These icons are placed to the left and

right of the position box. They will be shadowed when cannot be applied.

• Create new record button “ ”

Clicking “ ” moves you to the last row of the “Table/Form/Query pane”, which is

the row that serves to create new records.

In a “Query pane” that cannot add records (click K.4.4), the “create new record”

button “ ” will be shaded and will not work, which is what you typically want.

If the source database file is read-only, the “create new record” button “ ” will be

shaded and will not work (click L.8.2).

• Toggle filter “ ” or “ ”

Shows if the records displayed in the Table/Query/Form are filtered or not. Also,

clicking on it allows you to toggle between showing all the records (i.e., no filter),

or showing only the filtered records. The filters are configured using the filter icons

from the “Sort & Filter” Ribbon group from the “Home” Ribbon.

• Search box “ ”

Finds records using incremental substring match. You just type-in the text you

are looking for and MS-Access will find (while you type) the first field (cell) that

includes that string. If you are done typing-in the searched text and you want to move

to the next match, press the “Enter” key. The search box is placed on the rightmost

side of the “Navigation bar”.

B.5.2 How do I select a range of fields/records in “Datasheet View”?

In order to do different operations (e.g., copy, paste, delete, ...) over the fields (cells)

of a Table/Query/Form in “Datasheet View”, you will need first to select the range of

fields (cells) that you want to act upon. After you have selected the range of fields that

you want, you can actually do the operation (e.g., copy, paste, delete, ...) over the fields.

MS-Access provides the following very flexible ways to select the range of fields

(cells) that you want from a Table/Query/Form in “Datasheet View”:

• Select all the rows and columns (i.e., all the Table’s records with all their fields).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 54 of 725

• Select one row of fields (i.e., one record, with all its fields).

• Select one column of fields (i.e., one field value-list, i.e., a field name across all the

records).

• Select one field (i.e., one field in one record. Notice this is different from selecting

one field’s value, click B.5.4).

• Select a range of contiguous rows of fields (i.e., a range of records, each with all

its fields).

• Select a range of contiguous columns of fields (i.e., a range of field names for all

the records).

• Select an arbitrary rectangular range of fields (i.e., some contiguous fields from

some contiguous records).

The following screenshot shows an arbitrary rectangular range of selected fields

(cells). See how they are shaded in blue to indicate they have been selected:

To use any of the selection options in the list above, you first open the

Table/Query/Form in “Datasheet View” (click B.4.1.3).

You then use the selection option that you want, among the following ones.

How do I select all the rows and columns?

This is, selecting all the Table/Query/Form records with all their fields.

Click on the top-left corner-box of the pane (it is the corner-box right below the object

icon in the tab, that has a small shaded triangle). This will cause MS-Access to select

the complete record-list (including everything outside of the current viewing area).

The Table/Query/Form should now have a pink border (all around, not every cell) and

all its cells should have light blue background, thus showing that they are actually

selected.

How do I select one row with all its fields?

This is, one record with all its fields.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 55 of 725

Click on the box shaded in gray, placed to the left of the record you want to select (i.e.,

the box at the left of the first field).

The record that you wanted to select should now have a pink border and all its cells

should have light blue background, thus showing that they are actually selected.

How do I select one column of fields?

This is, one field value-list. In other words, all the fields corresponding to one field

name in all the records in the Table.

Click on the field name, placed in the cell at the top of the column you want to select.

The column that you wanted to select should now have a pink border and all its cells

should have light blue background, thus showing that they are actually selected.

How do I select one field?

This is, one field of one record. Notice that selecting one field is different from

selecting one field’s value (click B.5.4).

Place the mouse within the field you want to select. Now you will have to move the

mouse slowly to place it near the borders of the field, but still being inside. A good

approach is to move it near the leftmost side of the field. You have to slowly move it

until the mouse pointer changes to a white cross “ ”. It may take you a little the first

time you try, but believe me, the white cross will appear. The next screenshot shows

what you should see:

While the mouse pointer is still a white cross “ ”, do a mouse click.

The field that you wanted to select should now have a pink border and a light blue

background, thus showing that they are actually selected.

How do I select a range of contiguous rows of fields?

This is, a range of records, each with all its fields.

You can select a row range with either of the two following options:

• Click-and-drag rows

Place the mouse within the box shaded in gray placed at the left of one of the rows

at either end of row range you want to select. Press the right mouse-button, and

also, without releasing the button, drag the mouse and place it over the row at

the other end of the range you want to select. You now release the mouse button,

and the row range is selected. Notice that you can select rows outside of the initial

viewing area, because MS-Access will automatically scroll the rows when you

drag the mouse outside of the viewing area.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 56 of 725

• Select and Shift+select rows

Select one of the rows placed at either end of the range you want to select (see

above how to select one row). Now select the row placed at the other end of the

range, but, when you do the mouse-click to select it, do the click while pressing

the Shift key (a so-called “Shift+click”). In case you want to select rows outside

of the initial viewing area, scroll down/up until you can see the row placed at the

other end of the range you want.

The row range that you wanted to select should now have a pink border and all its cells

should have light blue background, thus showing that they are actually selected.

How do I select a range of contiguous columns of fields?

This is, the fields of a range of contiguous field names for all the records.

You can select a column range with either of the two following options:

• Click-and-drag columns

Place the mouse within the field with the field name placed at the top of the column

placed at either end of the column range you want to select. Press the right

mouse-button, and also, without releasing the button, drag the mouse and place

it over the column placed at the other end of the range you want to select. You

now release the mouse button, and the column range is selected. Notice that you

can select columns outside of the initial viewing area, because MS-Access will

automatically scroll the columns when you drag the mouse outside of the viewing

area.

• Select and Shift+select columns

Select one of the columns placed at either end of the range you want to select (see

above how to select one column). Now select the column placed at the other end

of the range, but, when you do the mouse-click to select it, do the mouse-click

while pressing the Shift key (a so-called “Shift+click”). In case you want to select

columns outside of the initial viewing area, scroll right/left until you can see the

column placed at the other end of the range you want.

The column range that you wanted to select should now have a pink border and all its

cells should have light blue background, thus showing that they are actually selected.

How do I select an arbitrary rectangular range of fields?

This is, some contiguous fields from some contiguous records.

You can select a rectangle of fields with either of the two following options:

• Click-and-drag fields

Place the mouse within the field placed in one of the four corners of the rectangle

you want to select. Now you will have to move the mouse slowly to place it near

the borders of the field, but still being inside. The best approach is to move the

mouse near the leftmost side of the field. You have slowly move it until the mouse

pointer changes to a white cross “ ”. It may take you a little the first time you try,

but believe me, the white cross will appear. The screenshot above shows what you

should see. While the mouse pointer is a white cross “ ”, press the right mouse-

button, and also, without releasing the button, drag the mouse and place it over

the field placed at the opposite end of the rectangle you want to select. You now

release the mouse button, and the rectangle of fields is selected. Notice that you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 57 of 725

can select fields outside of the initial viewing area, because MS-Access will

automatically scroll the columns and rows when you drag the mouse outside of the

viewing area.

• Select and Shift+select fields

Select the field placed in one of the four corners of the rectangle you want to

select (see above how to select one field). Now place the mouse within the field

placed at the opposite corner of the rectangle of fields, and also, do a mouse-

click while pressing the Shift key (a so-called “Shift+click”). In case you want to

select fields outside of the initial viewing area, scroll right/left and/or up/down

until you see the field placed at the opposite corner of the rectangle of fields you

want.

The rectangle of cells that you wanted to select should now have a pink border and all

its cells should have light blue background, thus showing that they are actually selected.

As you have noticed along the explanation in this section, the way to do the different

selection types follows some common principles and should be reasonably easy to

remember.

B.5.3 How do I select one field’s value in “Datasheet View”?

You select one field’s value in either of the following ways:

• Clicking while the mouse pointer is within the field, but not near its borders

This will select one field’s value.

This will also place the “type-in cursor” (a vertical bar “|” blinking for a while)

where you clicked, within the string representing the field value.

If you rather place the mouse pointer within the field and near its borders, the

mouse pointer becomes a white cross “ ”, and when clicking you would select one

field instead of one field’s value. If you want to know the difference, you may click

“B.5.4 What are the differences between selecting one field and one field’s value in

“Datasheet View”?”).

• Pressing the “Enter” key or the “Tab” key

If you press the “Enter” key or the “Tab” key, you will select the field’s value of

the field placed to the right of the currently selected field.

This will also select the whole string representing the field value: this is highlighted

by showing the string representing the field value in white font over black

background.

• Pressing the up-arrow “” key, the down-arrow “” key, or the page keys

If you press the up-arrow “” key or the down-arrow “” key, you will select the

field’s value of the field placed up or down (respectively) to the currently selected

field. Likewise, if you press the “Page up” key or the “Page down” key, you will

select the field’s value of the field placed one page up or one page down

(respectively) to the currently selected field.

This will also select the whole string representing the field value: this is highlighted

by showing the string representing the value in white font over black background.

• Pressing the right/left arrow keys

Pressing the left-arrow “” key or right-arrow “” key is slightly tricky, because

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 58 of 725

it has different effects, depending on the location of the type-in cursor “|” and on

whether you did any editing on the field or not:

o If the whole string representing the field value is selected (i.e., it is shown with

white font over black background), and you did not edit the field:

When you press the left-arrow “” key or the right-arrow “” key you will

select the field’s value of the field placed to the left or right (respectively) of the

currently selected field.

o If the type-in cursor “|” is within the string representing the field value:

When you press the left-arrow “” key or the right-arrow “” key you will

move the type-in cursor one character left or right (respectively) within the

string representing the field value. This is useful when you are editing the string

representing the field value.

o If the type-in cursor “|” is at the end (rightmost) of the string representing the

field value:

When you press the left-arrow “” key you will move the type-in cursor one

character to the left. However, if you press the right-arrow “” key you will

select the field’s value of the field placed to the right of the currently selected

field.

o If the type-in cursor “|” is at the beginning (leftmost) of the string representing

the field value:

When you press the right-arrow “” key you will move the type-in cursor one

character to the right. However, if you press the left-arrow “” key you will

select the field value of the field placed to the left of the currently selected field.

Note the following relevant remarks:

• If the currently selected field is the rightmost one of the record and according to the

bullets above you select the field’s value to its right, you will actually select the

field’s value of the leftmost field of the record placed below.

• If the currently selected field is the leftmost one of the record and according to the

bullets above you select the field’s value to its left, you will actually select the

field’s value of the rightmost field of the record placed above.

• If part of the string representing the value is selected for editing (white font over

black background), the type-in cursor “|” will be placed as follows. If you selected

doing double-click, it will be placed in the rightmost side of the selection. If you

selected doing click-and-drag, it will be placed where you released the mouse

button.

If you correctly selected the field’s value, the field’s border should now be highlighted

in pink color, and the background of the field should be white or light gray (and should

not be light blue).

Notice that when you select a field’s value the value shown may change: if you want

to know more about this, you may click “E.2.3 Why is a value shown in a different way

when the Table/Query/Form field’s value has been selected?”.

Notice that selecting one field is different from selecting one field’s value. If you want

to know more about the differences, you may click “B.5.4 What are the differences

between selecting one field and one field’s value in “Datasheet View”?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 59 of 725

B.5.4 What are the differences between selecting one field and one

field’s value in “Datasheet View”?

Selecting one field (click B.5.2) selects the complete value of the field, and also, the

field’s metadata (e.g., data type and format).

Selecting one field’s value (click B.5.3) selects the value of the field, represented as a

string that you can edit.

Selecting one field is indicated by highlighting the field border with pink color, and the

field background with light blue color. The value shown in the field does not change.

Selecting one field’s value is indicated by highlighting the field border with pink color,

but the field background stays with the same color it had (white or light gray). The

value shown in the field will change if the field formatting is different from the

formatting used in the string representing the value. What you see inside the field is the

string representing its value. Depending on how you selected the field’s value you may

see the string representing its value in black font over white/gray background, or in

white font over black background. The part of the string that is shown in white font

over black background is selected for editing.

Selecting one field is done by clicking within the field, when the mouse is near the field

border, and the mouse icon becomes a white cross “ ”).

Selecting one field’s value is done by clicking within the field, when the mouse is not

near the field border, and the mouse is not a white cross “ ”. Notice there are other

ways of selecting one field’s value (click B.5.3).

When you select one field, you are selecting its metadata (field type and formatting)

in addition to its value. Therefore, if you copy and paste it, you will paste the field

value, its data type and its formatting (provided that the target application is

compatible, like for example Excel).

When you select one field’s value, you are only selecting the field’s value itself.

Therefore, if you copy and paste it, you will only paste the field value as text.

When you select one field, you are selecting the whole field itself. Therefore, if you

press a key (e.g., “9” or “Supr”), the value of the field will be overwritten16 by the key

you have pressed (i.e., the field value will now be “9” or blank, respectively), and the

field will change to being selected as a field’s value.

When you select one field’s value, you are only selecting the field value itself,

represented by a string. Therefore, if you press a key (e.g., “9”), the result will depend

on whether part of the string representing the field value is selected (i.e., with white

font over black background) and on the position of the type-in cursor “|”. To know

more about editing the string representing the field value, you may click E.2.2.

You can select one field and also a range of fields (click B.5.2).

Conversely, you can only select one field’s value, and you cannot select a range of

field’s values.

16 If the field has a drop-down menu configured, it may behave differently: pressing a character key when

the field is selected will select the field’s value, instead of overwriting the value of the field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 60 of 725

B.5.5 How do I find a record in a Table/Query/Form “Datasheet View”

You do it in either of the following ways:

• Type-in the string you are looking for in the Search box “ ” of the

“Navigation bar” (click B.5.1). MS-Access will find (while you type) the first field

(cell) that includes that string. If you are done typing-in the searched text and you

want to move to the next match, press the “Enter” key.

• Click on the Find “ ” icon from the “Quick Access Toolbar”. If you did not add it

to the “Quick Access Toolbar”, click on “Home” from the Ribbon-bar and then click

on the Find “ ” icon from the Ribbon. Either way will show the “Find” tab of the

“Find and Replace” dialog box, as shown in the next screenshot:

You can type the searched string in the “Find What:” box, and configure the

corresponding options using the drop-down menus and checkboxes.

• Use the vertical scrollbar on the right side of the “Table/Query/Form pane” to

manually find the record, combining this with sorting the records (click H.2.3). This

is somehow cumbersome but may work well for a small number of records.

B.5.6 How do I manage a Table/Query/Form “Property Sheet” in

“Datasheet View”?

A Table or Query in “Datasheet View” does not have a “Property Sheet”.

A Form in “Datasheet View” has a “Property Sheet”, but it is the same as the Form

“Property Sheet” in “Design View”. If you want to know how to configure the

“Property Sheet” of a Form, you may click “B.8.2 How do I configure a Form’s

“Property Sheet” in “Datasheet View” or “Design View”?”.

B.6 What is a Table in “Design View”?

A Table in “Design View” allows to configure its fields, the field’s properties and the

Table’s properties.

If you want to create and configure Tables, click D.3.

Coming back to a “Table pane” in “Design View”, you will see two different parts: the

top sub-pane and the bottom sub-pane. On the top sub-pane, you see the list of fields

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 61 of 725

of the Table. On the bottom sub-pane, you see the properties of the selected field. See

the next screenshot:

The top sub-pane shows the Table fields (one in each row). For each Table field name

(i.e., each row), it contains (left to right) the name of the field, the data type of the

field, and the optional description (free text) of the field. In the screenshot above you

may see two rows: the first (top) row represents a field named “Capital” with Short Text
data type and no description; the second row represents a field named “Cal_Year” with

Number data type and no description.

The bottom sub-pane shows the field properties of the field that is currently selected

(the field that is highlighted in the top sub-pane). In the screenshot above the currently

selected field is “Cal_Year”.

The bottom sub-pane has two tabs: “General” and “Lookup”. The one shown by default

is the “General” tab. You can show the tab you want by clicking on the corresponding

tab name “General” and “Lookup”.

If you want to know how to view the Table fields and their “General” and “Lookup”

properties, you may click:

• “B.6.1.1 How do I view the Table fields in “Design View”?”

• “B.6.1.2 What are a Field’s “General” tab properties in “Design View”?”

• “B.6.1.3 What are a Field’s “Lookup” tab properties in “Design View”?”

If you want to configure the indexes of a Table, you may click:

• “B.6.2 How do I manage Table indexes in “Design View”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 62 of 725

If you want to configure a Table’s “Property Sheet”, you may click:

• “B.6.3 How do I unhide/hide a Table “Property Sheet” in “Design View”?”

• “B.6.4 How do I configure a Table “Property Sheet” in “Design View”?”

If you want to create and configure Tables, you may click:

• “D.3 How do I create and design a Table and its fields?”

• “D.4 How do I configure a Table field data type and size?”

• “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

• “D.8 How do I configure the properties of a Table?”

B.6.1 How do I view, add, delete and configure my Table fields?

You may click:

• “B.6.1.1 How do I view the Table fields in “Design View”?”

• “B.6.1.2 What are a Field’s “General” tab properties in “Design View”?”

• “B.6.1.3 What are a Field’s “Lookup” tab properties in “Design View”?”

• “B.6.1.4 How do I select one or more Table fields in “Design View”?”

• “B.6.1.5 How do I add Table fields in “Design View”?”

• “B.6.1.6 How do I copy/cut and paste Table fields in “Design View”?”

• “B.6.1.7 How do I reconfigure my Table fields in “Design View”?”

• “B.6.1.8 How do I delete Table fields in “Design View”?”

• “B.6.1.9 How do I reorder Table fields in “Design View”?”

B.6.1.1 How do I view the Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You now view all the Table fields on the top sub-pane. Each field is in one row. Within

each row, you see (left to right) the field name, the field type and the optional field

description (click B.6).

Clicking anywhere within a field row in the top sub-pane will show its properties in

the bottom sub-pane. There are two property tabs: the “General” properties tab

(click B.6.1.2) and the “Lookup” properties tab (click B.6.1.3).

You may also view the Table’s “Property Sheet” (click B.6.3).

Once you are done viewing your fields, you may close the Table (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 63 of 725

B.6.1.2 What are a Field’s “General” tab properties in “Design View”?

The “General” tab contains field properties other than the ones to configure how to

enter data (see next subsection). Some examples of these properties are “Field Size”,

“Required” or “Indexed”.

The “General” tab properties of a field depend on the field’s data type. You will

therefore see different properties if you select another field with a different data type,

or, if you change the data type of the current field. If you want to know more about this,

you may click:

• “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”.

B.6.1.3 What are a Field’s “Lookup” tab properties in “Design View”?

The “Lookup” tab contains field properties to configure how to enter data in the field

when the Table is in “Datasheet View”.

The “Lookup” tab properties of a field depend on the field’s data type. You will

therefore see different properties if you select another field with a different data type,

or, if you change the data type of the current field. If you want to know more about this,

you may click:

• “D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field?”

• “K.1.8 What are good practices in configuring my drop-down menus?”

B.6.1.4 How do I select one or more Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You can then select field rows as follows:

• To select one field row

Click on the box shaded in gray, placed to the left of the field name you want to

select. This is the same process as for selecting rows in a Table or Query result. The

border of the complete field row (not only one cell) should be pink and the square

to the left of the field name should be dark gray: these two highlights show that this

field row has been selected.

• To select a range of contiguous field rows

This is the same process as for selecting a range of contiguous rows in a Table or

Query result. You can select a field row range in either of the following ways:

o Click-and-drag field rows

Place the mouse within the box shaded in gray placed at the left of one of the

field rows at either end of row range you want to select. Press the right mouse-

button, and also, without releasing the button, drag the mouse and place it

over the field row at the other end of the range you want to select. You now

release the mouse button, and the field row range is selected.

o Select and Shift+select field rows

Select one of the field rows placed at either end of the range you want to select

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 64 of 725

(see above how to select one field row). Now select the field row placed at the

other end of the range, but, when you do the mouse-click to select it, do the

click while pressing the Shift key (a so-called “Shift+click”).

Regardless of how you did it, the border of the whole range of field rows should

be pink and the square to the left of all the field names of the range should be dark

gray: these two highlights show that this range of field rows has been selected.

• To select an arbitrary set of field rows

Select and Ctrl+select arbitrary field rows

Select one of the field rows of the set you want to select (see above how to select

one field row). Now select another field row of the set, but, when you do the

mouse-click to select it, do the click while holding down the “Ctrl”17 key (a so-

called “Ctrl+click”). Do this as many times as you want.

Once you have finished doing this, all the field rows in the selected set should have

the box to the left in dark gray and the last field row you selected will its border

highlighted in pink color. The dark gray boxes tell you that all that field rows have

been selected.

When you select an arbitrary set of rows (this is, not a range of contiguous field

rows) in a Table in “Design View” you can only use this arbitrary set to configure

the Key fields. If you try to do any other action (e.g., move or delete a selected)

different from defining the Key fields, it will not work.

Selecting Table fields in “Design View” is very useful to do different operations (e.g.,

move, delete, set as Key fields, ...) over them. After you have selected the field rows

that you want, you click the command to do the actual operation (e.g., move, delete, set

as Key fields, ...) over the selected field rows. For example, if you wanted to configure

the Primary Key fields, you could now click on “Design” from the “Ribbon-bar”

(below the “Table Tools” contextual label) and then on the Primary Key “ ” icon, and

all the fields that you selected will be configured as Key fields.

B.6.1.5 How do I add Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You can then add field row(s) to the Table in either of the following ways:

• Click on the “Field name” cell of any blank row (below the last row of the current

fields) and type-in the field’s name. Click on the “Field type” cell of the same field

row, and type-in or select with the menu the field type. Click on the “Description
(Optional)” cell and type-in your comment. You can do these three actions in any

order.

• Right-click anywhere within any current field row and click on “Insert Rows” from

the pop-up menu. This will insert a blank row immediately above the one where

you right-clicked. You can now configure this blank row as indicated in the first

bullet point above.

• Select a range of field rows (click B.6.1.4), right-click anywhere within any of

17 The “Ctrl” key is the so-called “Control” key. It is usually labeled “Ctrl” in keyboards.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 65 of 725

them and click on “Insert Rows” from the pop-up menu. This will insert as many

blank rows as you had selected. These blank rows are inserted right above the

selected range of field rows. You can now configure each of these blank rows as

indicated in the first bullet point above.

• Copy and paste (click B.6.1.6) one (or more) existing field row(s), and then modify

its/their field name(s), field type(s) and description(s). Copy and paste field rows is

very convenient when you want to add several fields with similar configuration

(same field type-size, Required=Yes, “Lookup” properties, etc.).

To decide what field type you choose, and also to possibly configure other field

properties, you may click:

• “D.4 How do I configure a Table field data type and size?”

• “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

• “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

In case you leave blank rows between configured field rows, the blank rows will be

removed when saving and closing the Table design.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.1.6 How do I copy/cut and paste Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You can then copy or cut field row(s) in the following two ways:

• Right-click anywhere within the field row and click on “Copy” or “Cut”

(respectively) from the pop-up menu.

• Select one field row, or a range of consecutive field rows (click B.6.1.4), and then

either:

o Press “Ctrl-c” (i.e., press the “Ctrl” key, and without releasing it, press the “c”

key) to copy.

o Press “Ctrl-x” (i.e., press the “Ctrl” key, and without releasing it, press the “x”

key) to cut.

o Right-click anywhere within the selected field row(s) and click on “Copy” or

“Cut” (respectively) from the pop-up menu.

You can paste the previously copied or cut field row(s) in either of the following ways:

• Right-click anywhere within a field row and click on “Paste” from the pop-up menu.

• Click anywhere within a field row, and then press “Ctrl-v” (i.e., press the “Ctrl”

key, and without releasing it, press the “v” key).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 66 of 725

In these two bullet points, the copied/cut field rows (one or more) is/are inserted

right above the field row where you right-clicked or clicked.

• Select one field row, or a range of consecutive field rows (click B.6.1.4), right-click

on one of the selected rows and click on “Paste” from the pop-up menu.

• Select one field row, or a range of consecutive field rows (click B.6.1.4), and then

press “Ctrl-v” (i.e., press the “Ctrl” key, and without releasing it, press the “v” key).

In these two bullet points, the selected field row(s) will be removed (you get a box

where you can confirm or cancel) and the copied/cut field rows (one or more) is/are

inserted instead of the removed one(s).

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.1.7 How do I reconfigure my Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

The top sub-pane shows the Table fields (one in each row). For each Table field name

(i.e., each row), it contains (left to right) the name of the field, the data type of the

field, and the optional description (free text) of the field.

Clicking on each row, you may edit the field’s name, change the field’s data type and/or

edit the field’s description. To change the field’s data type (and size) you may click:

• “D.4 How do I configure a Table field data type and size?”

Clicking on each field in the top sub-pane you will see its properties in the bottom

sub-pane. You may click B.6.1.2 for a brief description of the “General” properties

and B.6.1.3 for a brief description of the “Lookup” properties.

If you want to reconfigure the properties of your Table fields, you may click:

• “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

• “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.1.8 How do I delete Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You can delete field rows in either of the following ways:

• Right-click anywhere within a field row and click on “Delete Rows” from the pop-

up menu.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 67 of 725

• Select one field row, or a range of consecutive field rows (click B.6.1.4), and then

either:

o Press the “Supr” key.

o Right-click anywhere within the selected field row(s) and click on “Delete
Rows” from the pop-up menu.

Either way you will get a box where you can confirm or cancel the delete operation.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.1.9 How do I reorder Table fields in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

Select one field row, or a range of consecutive field rows (click B.6.1.4), that you want

to relocate.

Do drag-and-drop (up or down) over any of the dark gray boxes placed to the left of the

field name of the selected field row(s). When you press down the mouse button inside

any of the dark gray boxes placed to the left of the field name of the selected field

row(s), a thick black horizontal line will be shown. This black line shows where the

selected fields will be moved to when you release the mouse button. When you move

the mouse up or down (without having released the mouse button), the thick black

horizontal line will move up or down, indicating where the selected fields will be moved.

You can also change the Table field order by doing cut and paste of field rows

(click B.6.1.6), but I consider this extremely risky, and I advise you avoid doing this.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.2 How do I manage Table indexes in “Design View”?

You may click:

• “B.6.2.1 How do I view Table indexes in “Design View”?”

• “B.6.2.2 How do I select fields in Table indexes in “Design View”?”

• “B.6.2.3 How do I delete, insert or move fields in Table indexes in “Design View”?”

B.6.2.1 How do I view Table indexes in “Design View”?

If you rather want to configure simple indexes, you may click D.5.1.8. If you want to

configure composite or simple indexes, you may click D.7.2.

To view the Table indexes, open the Table in “Design View” (click B.4.1.3).

Click on “Design” from the “Ribbon-bar” (below the “Table Tools” contextual label)

and then click on the Indexes “ ” icon. This opens a dialog box called “Indexes” that

shows all the indexes in the Table and allows to create new indexes and/or to configure

existing ones.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 68 of 725

The next screenshot shows the “Indexes” dialog box. Notice that the heading of the

dialog box has the title “Indexes:” followed by the Table name (in this case,

T_Capital_Rainfall_District) whose indexes are being configured:

The leftmost column (with heading “Index Name”) shows the indexes configured in

this Table. Each simple or composite index is shown indicating its index name. These

index names are not used externally, and they are only used within the “Indexes” sub-

window to tell apart the different indexes defined in this Table. The index of the

Primary Key is shown with name “PrimaryKey”.

The central column (with heading “Field Name”) shows the name(s) of the Table fields

belonging to each index. A simple index does not have, below its first index field

row, another index field row with a blank index name. A composite index has, below

its first index field row, another index field row with a blank index name.

If an index is the one corresponding to the Table’s Primary Key, its “Primary” property

will be “Yes”, there will be a key “ ” icon to the left of all its index field rows, and its

name will usually be “PrimaryKey”.

In the rightmost column (with heading “Sort Order”) you may see the sort order of each

field: “Ascending” or “Descending”.

If you configured simple indexing on some individual fields (click D.5.1.8) and/or

composite indexes (click D.7.2) and/or a simple or composite Primary Key (D.6), all

these indexes will be shown in the “Indexes” dialog box as follows:

• Each simple index is shown as one index having only one field (i.e., one row) with

the index name equal to its field name (unless you had changed it). Since this is not

the index of the primary Key, the property “Primary” of this index will be set to

“No”. The property “Unique” will be set to “Yes” if this field was configured as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 69 of 725

indexed without duplicate values, and to “No” if it was configured as indexed with

duplicate values. The property “Ignore Nulls” will be set to “No”, because this is its

default value (unless you changed it).

• A simple Primary Key (i.e., one Key field) will appear as one index having only

one field (i.e., one row) with the index name “PrimaryKey” and showing the key

“ ” icon to the left of the index name. The corresponding field name will appear to

the right of the “PrimaryKey” index name. Since this is the index of the Table’s

Primary Key, the properties “Primary” and “Unique” will be both set to “Yes”. The

value of the property “Ignore Nulls” is irrelevant because primary Key fields cannot

contain Null.

• Each composite index will appear as one index having several fields (i.e., several

rows) with the index name that you assigned to it. One of the index field names will

appear to the right of the index name, and the other fields in the composite index

will appear below it (with a blank cell to their left). Since this is not the index of the

primary Key, the property “Primary” of this index will be set to “No”. The property

“Unique” will be set to “Yes” if this field was configured as indexed without

duplicate values, and to “No” if it was configured as indexed with duplicate values.

The property “Ignore Nulls” will be set to “No”, because this is its default value

(unless you changed it).

• A composite Primary Key (i.e., several Key fields) will appear as one index with

the index name “PrimaryKey” showing the key “ ” icon to the left of all its index

field rows. One of the index field names will appear to the right of the “PrimaryKey”

index name, and the other fields in the composite index will appear below it (with a

blank cell to their left). Since this is the index of the Table’s Primary Key, the

properties “Primary” and “Unique” will be both set to “Yes”. The value of the

property “Ignore Nulls” is irrelevant because Key fields cannot contain Null.

In the screenshot above, you may see that the Table has a composite Primary Key,

with three fields (“Capital”, “District” and “Cal_Year”). The composite Primary Key is

shown as a composite index named “PrimaryKey”, with its “Primary” property set to

“Yes” and each of its index field rows has the key “ ” icon to its left. In addition to this

index, there are three simple indexes, with duplicate values, each associated to the

fields “Capital”, “District” and “Cal_Year”.

Once you are done viewing your index(es), close the “Indexes” dialog box by clicking

on the close “X” icon on its top-right corner.

You may now close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

B.6.2.2 How do I select fields in Table indexes in “Design View”?

Open the “Indexes” dialog box (click B.6.2.1).

You select one index field row by clicking on the small cell on the leftmost side of the

field row you want to select. The small cell is now highlighted in dark gray, and the

whole index field row is highlighted with a pink border. This highlighting shows that

the row has been selected.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 70 of 725

You select a range of contiguous index field rows in either of the following ways:

• Click-and-drag on the small cell on the leftmost side of the index field row on one

of the ends of the range. Click-and-drag means press the mouse button and then

move the mouse up or down while keeping the mouse button pressed. While you

move the mouse, you will see that the corresponding range of fields is highlighted:

all the small cells on the left side of the range become dark gray, and the whole

range of index field rows has a pink border.

• Select the index field row (see slightly above) on one end of the range that you

want, and then Shift-select the index field row on the other end of the range. Doing

a Shift-select is the same as doing a select, buy holding the “Shift” key pressed

while you do the mouse click.

Regardless of how you did it, you should see that the corresponding range of fields is

highlighted: all the small cells on the left side of the range are dark gray, and the whole

range of index field rows shows a pink border. This highlighting shows that the range

of index field rows has been selected.

Notice that you cannot select non-contiguous index field rows. Also, you cannot use

“Ctrl+click” to select/unselect additional individual index field rows.

You may now insert, delete or move (click B.6.2.3) the selected fields in order to

reconfigure your indexes (click D.7.3).

B.6.2.3 How do I delete, insert or move fields in Table indexes in “Design
View”?

You delete index field rows in either of the following ways:

• Right-click anywhere inside an index field row and click on “Delete Rows” from

the pop-up menu.

• Select a range of index field rows (click B.6.2.2) and press the “Supr” key. This

will delete the whole range of index field rows.

You insert one index field row by right-clicking anywhere inside an index field row

and clicking on “Insert Rows” from the pop-up menu. This will insert one blank index

field row right above of the row where you right-clicked.

You move an index field row, or a range of them, by first selecting (click B.6.2.2)

it/them and then doing drag-and-drop clicking on any small cell on the left side of the

range.

If you want to reconfigure your indexes, you may click D.7.3.

B.6.3 How do I unhide/hide a Table “Property Sheet” in “Design View”?

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

You unhide the “Property Sheet” of a Table in either of the following ways:

• Right-click anywhere on the “Table pane” and click on “Properties” from the pop-

up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Table Tools” contextual label)

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 71 of 725

and then on the Property Sheet “ ” icon.

Either way the Table’s “Property Sheet” will be unhidden, becoming visible on the

right side of the “Object Area”.

You hide the Table’s “Property Sheet” in either of the following ways:

• Click on the close icon “X” on the top-right corner of the “Property Sheet”.

• Right-click anywhere on the “Table pane” (except inside the “Property Sheet”) and

click on “Properties” from the pop-up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Table Tools” contextual label)

and then on the Property Sheet “ ” icon.

Notice that the way to hide or unhide the “Property Sheet” is exactly the same (so

called “toggle mode”), except for the case of hiding it by clicking on its close “X” icon.

If you want to know how to configure the “Property Sheet” of a Table in “Design
View”, you may click B.6.4.

Do not mistake the “Navigation Pane” properties (click B.4.1.2) of any given object

with the “Properties Sheet” of Tables (click B.6.3), Queries (click B.7.1) and Forms

(click B.8.1).

As a final remark, if you select any object name (click B.4.1.10) in the “Navigation

Pane”, and then you click on the Property Sheet “ ” icon from the “Design” Ribbon

(see above), this will show the “Navigation Pane” properties (click B.4.1.2) instead of

unhiding/hiding the “Property Sheet” of the Visible Object (click B.2.10), as it is

indicated above. This may be very puzzling if you are not aware of it. This may be an

MS-Access bug.

B.6.4 How do I configure a Table “Property Sheet” in “Design View”?

You first show the “Property Sheet” of the Table (click B.6.3). A Table has only one

“Property Sheet”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 72 of 725

The following screenshot shows a Table with its “Property Sheet” open:

The Table’s “Property Sheet” properties include many configurable elements. Most of

the configurable elements are used quite unfrequently, so I will only cover here the

following two ones:

• (Table) “Validation Rule”:

This is a Boolean expression (over he combined field values of each and every new

record) record that must not return False. If the Boolean expression returns Null,

the record validation rule is considered correct. MS-Access will not allow you to

enter any new record into the Table that returns False in the record validation rule.

The record validation rule is a very useful feature you should use a lot. If you

want to know more, you may click “D.8 How do I configure the properties of a

Table?”.

• (Table) “Validation Text”:

This is the text that is shown to the user in case the record validation rule returns

False, to inform why the record cannot be entered. If you leave this blank, a default

error message will be shown, in which the Boolean expression of the record

validation rule will be displayed.

Once you are done with all your Property configuration, you hide the “Property Sheet”

of the Table (click B.6.3).

B.7 What is a Query in “Design View”?

A Query in “Design View” allows to configure the formatting and other properties of

the Query results when they are shown in “Datasheet View”.

If you want to create and configure Queries, click F.4.5.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 73 of 725

Coming back to a “Query pane” in “Design View”, you will see two sub-panes, one at

the top, and one at the bottom, as you may see in the next screenshot:

You can change the relative size of each sub-pane within the “Query pane” by doing

drag-and-drop on the line that divides both panes. Actually, you can hide either sub-

pane by taking the division line all the way to the top, or to the bottom, of the “Query

pane”.

The top sub-pane shows the main input Table(s) or Query(es) to the Query shown in

the “Query pane”. Each input Table or Query is shown as a box, with the Table/Query

name in the heading, and its field names listed inside the box.

The bottom sub-pane shows the “Query design grid”. In this grid, each column

represents each of the output fields of the Query, plus the “TRANSFORM” and “PIVOT”

fields, plus the “ORDER BY” expressions (not shown in the screenshot above). The

“Query design grid” is very useful to configure the formatting (i.e., the way the values

will be shown) of each of the fields, by opening the Query’s “Property Sheet”.

If you want to configure a Query’s “Property Sheet”, you may click:

• “B.7.1 How do I unhide/hide a Query’s “Property Sheet” in “Design View”?”

• “B.7.2 How do I configure a Query’s “Property Sheet” in “Design View”?”

If you want to code Queries in SQL, you may click “Part F. Writing SQL Queries to

use my database”.

B.7.1 How do I unhide/hide a Query’s “Property Sheet” in “Design
View”?

If the Query is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 74 of 725

You unhide the Query’s “Property Sheet” in either of the following ways:

• Right-click anywhere on the “Query pane” and click on “Properties” from the pop-

up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Query Tools” contextual

label) and then on the Property Sheet “ ” icon.

Either way the Query’s “Property Sheet” will be unhidden, becoming visible on the

right side of the “Object Area”.

You hide the Query’s “Property Sheet” in either of the following ways:

• Click on the close icon “X” on the top-right corner of the “Property Sheet”.

• Right-click anywhere on the “Query pane” (except inside the “Property Sheet”) and

click on “Properties” from the pop-up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Query Tools” contextual

label) and then on the Property Sheet “ ” icon.

Notice that the way to hide or unhide the “Property Sheet” is exactly the same (so

called “toggle mode”), except for the case of hiding it by clicking on its close “X” icon.

If you want to know how to configure the “Property Sheet” of a Query in “Design
View”, you may click B.7.2.

Do not mistake the “Navigation Pane” properties (click B.4.1.2) of any given object

with the “Properties Sheet” of Tables (click B.6.3), Queries (click B.7.1) and Forms

(click B.8.1).

As a final remark, if you select any object name (click B.4.1.10) in the “Navigation

Pane”, and then you click on the Property Sheet “ ” icon from the “Design” Ribbon

(see above), this will show the “Navigation Pane” properties (click B.4.1.2) instead of

unhiding/hiding the “Property Sheet” of the Visible Object (click B.2.10), as it is

indicated above. This may be very puzzling if you are not aware of it. This may be an

MS-Access bug.

B.7.2 How do I configure a Query’s “Property Sheet” in “Design View”?

A Query has several “Property Sheet” that can be shown: one for the Query as a whole

(labeled “Query Properties”), one for each output field (labeled “Field Properties”)

and one for each input record-list (labeled “Field List Properties”).

You first show the Query’s “Property Sheet” (click B.7.1). You then show the specific

properties that you want, as follows:

• You show the “Query Properties” of the Query as a whole, in either of the following

ways:

o Click on the gray background of the top sub-pane.

o Click on the white background of the bottom sub-pane.

o Click anywhere inside a column (in the bottom sub-pane) that does not

correspond to any output field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 75 of 725

• You show the “Field Properties” of a given output field by clicking anywhere

inside the column (in the bottom sub-pane) corresponding to that output field.

• You show the “Field List Properties” of a given input field value-list, by clicking

anywhere on the box (in the top sub-pane) representing that input field value-list.

The following screenshot shows the “Property Sheet” of the Query

“A_Rainfall_by_Quarters” corresponding to the “Field properties” of its output field

“Cal_Year”:

The “Query properties” shown under the “General” tab include many configurable

elements, but most of them are used very unfrequently. I will therefore only cover the

“RecordsetType” property. I advise you always configure it to “Snapshot” to prevent

Table modification from Queries (click K.4.4).

The “Field Properties” shown for each output field under the “General” tab are the

following:

• “Description”: allows to add a comment to this field.

• “Format”: allows to set the format in which values are presented (click H.6). This

is a very useful property. You can configure the format you want for the values in

this field by typing-in the format value you want or by clicking on the rightmost side

of the “Format” row and clicking on an option from the drop-down menu.

• “Decimal Places”: the number of decimals to be shown (only for numeric fields).

• “Input mask”: allows to restrict input values using masks (click D.5.2.4).

• “Caption”: allows to show in “Datasheet View” the name you write here as column

header, instead of the actual output field name.

• “Text Format”: allows to select between “Plain Text” and “Rich Text” (only for

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 76 of 725

Short Text and Long Text fields).

The “Field List Properties” shown for each input field value-list under the “General”

tab are “Alias” and “Source”. They are used very unfrequently, so I will not cover them

here.

Finally, you hide the “Property Sheet” of the Query (click B.7.1).

B.8 What is a Form in “Design View”?

A Form in “Design View” allows to configure the formatting of fields, the supporting

Table and other relevant properties of the Form.

If you want to create and configure Forms, click D.10.

The “Property Sheet” of Tables and Queries can only be unhidden and configured in

“Design View”. However, in the case of Forms, the “Property Sheet” can be unhidden

and configured in either “Datasheet View” or “Design View”. If you want to configure

a Form’s “Property Sheet”, you may click:

• “B.8.1 How do I unhide/hide a Form’s “Property Sheet” in “Datasheet View” or

“Design View”?”

• “B.8.2 How do I configure a Form’s “Property Sheet” in “Datasheet View” or

“Design View”?”

B.8.1 How do I unhide/hide a Form’s “Property Sheet” in “Datasheet
View” or “Design View”?

If the Form is not opened in “Datasheet View” or “Design View”, you either open it

(click B.4.1.3) or change its view-type (click B.4.1.4). The Form should now be opened

in either “Datasheet View” or “Design View”.

You unhide the Form’s “Property Sheet” in either of the following ways:

• Right-click anywhere on the “Form pane” and click on “Properties” from the pop-

up menu.

• If the Form is opened in “Datasheet View”, click on “Datasheet” from the “Ribbon-

bar” (below the “Form Tools” contextual label) and then on the Property Sheet “ ”

icon.

• If the Form is opened in “Design View”, click on “Design” from the “Ribbon-bar”

(below the “Form Design Tools” contextual label) and then on the Property Sheet

“ ” icon.

Either way the Form’s “Property Sheet” will be unhidden, becoming visible on the

right side of the “Object Area”.

You hide the Form’s “Property Sheet” in either of the following ways:

• Click on the close icon “X” on the top-right corner of the “Property Sheet”.

• Right-click anywhere on the “Form pane” (except inside the “Property Sheet”) and

click on “Properties” from the pop-up menu.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 77 of 725

• If the Form is opened in “Datasheet View”, click on “Datasheet” from the “Ribbon-

bar” (below the “Form Tools” contextual label) and then on the Property Sheet “ ”

icon.

• If the Form is opened in “Design View”, click on “Design” from the “Ribbon-bar”

(below the “Form Design Tools” contextual label) and then on the Property Sheet

“ ” icon.

Notice that the way to hide or unhide the “Property Sheet” is exactly the same (so

called “toggle mode”), except for the case of hiding it by clicking on its close “X” icon.

If you want to know how to configure the “Property Sheet” of a Form you may

click B.8.2.

Do not mistake the “Navigation Pane” properties (click B.4.1.2) of any given object

with the “Properties Sheet” of Tables (click B.6.3), Queries (click B.7.1) and Forms

(click B.8.1).

As a final remark, if you select any object name (click B.4.1.10) in the “Navigation

Pane”, and then you click on the Property Sheet “ ” icon from the “Design” Ribbon

(see above), this will show the “Navigation Pane” properties (click B.4.1.2) instead of

unhiding/hiding the “Property Sheet” of the Visible Object (click B.2.10), as it is

indicated above. This may be very puzzling if you are not aware of it. This may be an

MS-Access bug.

B.8.2 How do I configure a Form’s “Property Sheet” in “Datasheet
View” or “Design View”?

A Form has several “Property Sheet” that can be shown, one for each of the different

elements of the Form. The name of the element whose properties are being shown is

displayed in an element box with a drop-down menu that is placed at the top-left side

of the “Property Sheet”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 78 of 725

In the following screenshot you can see the “Property Sheet” of the Form

“T_Capital_Rainfall_Q” (that is open in “Datasheet View”), showing the properties of

the field “Capital”:

You first unhide the Form’s “Property Sheet” (click B.8.1). You can then select the

element whose properties are being shown in the following two ways:

• Click on the element you want in the “Form pane” (regardless of it being in

“Datasheet View” or “Design View”).

• Click on the drop-down menu “ ” icon of the element box at the top-left side of

the “Property Sheet” and select the element you want by clicking on its name from

the drop-down menu.

Either way, you will see that the name of the element that you clicked is displayed in

the element box at the top-left side of the “Property Sheet”, and its corresponding

properties are shown.

The Form’s elements are grouped in four “Selection types”. When you select a given

element so its properties are shown, the element’s “Selection type” will be displayed

at the top of the “Property Sheet”. The four “Selection types” are:

• “Form”:

Shows the properties of the Form as a whole.

• “Label”:
Shows the properties of one of the Form’s column headings. The specific column

heading whose properties are shown is indicated in the element box by the column

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 79 of 725

name followed by “_Label”.

• “Text Box”:
Shows the properties of one of the Form’s columns, whose name is indicated in the

element box.

• “Section”:
Shows the properties of the “FormFooter”, “FormHeader” or “Detail”, as shown in

the element box.

The properties of the selected element (indicated in the element box) are shown in five

tabs:

• “Format”:

Shows the value formatting properties of the element.

• “Data”:

Shows properties related to the management of data in the element.

• “Event”:

Shows properties related to each “event” (i.e., click, open, close, ...) you can do on

the element. The properties allow to invoke user-defined VBA subroutines or

associate other actions to these events. The “Event” properties make Forms very

powerful and flexible.

• “Other”:

Shows other properties of the element.

• “All”:

Shows all the properties of the element, this is, all the properties listed in the other

four tabs.

Since Forms have many properties, in order to help you find the one you want, you can

choose between showing them in alphabetical order or in their default order. To toggle

between both ordering types, click on the A-Z “ ” icon placed at the top right corner of

the “Property Sheet”.

Finally, you hide the “Property Sheet” of the Form (click B.8.1).

B.9 What is a Query in “SQL View”?

A Query in “SQL View” allows to view and edit the SQL code of the Query.

If you want to create and configure Queries, click F.4.5.

As of the writing of this book, the editing capacities in “SQL View” are extremely poor.

Microsoft announced that it would add the Monaco SQL editor to MS-Access along the

second Quarter of 2021.

Unless the Monaco editor is finally incorporated to MS-Access, my advice is that you

never use “SQL View”, and you rather edit your SQL code using the plug-in “Access
SQL Editor”. If you want to know more about this, you may click “F.5 How do I edit my

SQL Queries with the plug-in “Access SQL Editor”?”.

Just for the record, the “SQL View” has a specific “Property sheet”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 80 of 725

If you want to code Queries in SQL, you may click “Part F. Writing SQL Queries to

use my database”.

B.10 What is the “Relationships” pane?

It is a tool to create, view, modify and delete the Relationships (click C.11) that you

want to establish between your Tables.

If you want to create and configure Relationships, you may click “D.9 How do I create

and configure my Table Relationships?”.

If you want to know more about the “Relationships” pane, you may click:

• “B.10.1 How do I open the “Relationships” pane?”

• “B.10.2 How do I view my Relationships?”

• “B.10.3 How do I view a Relationship’s properties?”

• “B.10.4 How do I change the layout of the “Relationships” pane?”

• “B.10.5 How do I edit an existing Relationship?”

• “B.10.6 How do I create a new Relationship?”

• “B.10.7 How do I delete a Relationship?”

• “B.10.8 How do I close the “Relationships” pane?”

B.10.1 How do I open the “Relationships” pane?

You open the “Relationships” pane in either of the following ways:

• Click on “Database Tools” from the “Ribbon-bar”, and then on the Relationships

“ ” icon.

• If the currently viewed object is a Table in “Datasheet View”, click on “Table”

from the “Ribbon-bar” (below the “Table Tools” contextual label), and then on the

Relationships “ ” icon.

• If the currently viewed object is a Table in “Design View”, click on “Design” from

the “Ribbon-bar” (below the “Table Tools” contextual label), and then on the

Relationships “ ” icon.

Either way will open the “Relationships” pane in the “Object Area” (click B.2.8) of the

MS-Access window.

B.10.2 How do I view my Relationships?

The Relationships are viewed with the “Relationships” pane.

Open the “Relationships” pane (click B.10.1).

If you have not created any Relationships, the “Relationships” pane will be blank (gray

background).

If you have already created Relationships, it may happen that the “Relationships” pane

is not showing all your Relationships because it is possible to hide Table-boxes

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 81 of 725

(click B.10.4.5), which also hides all their Relationships. My advice is you do not hide

Table-boxes, and therefore, all the Relationships are shown in the “Relationships”

pane.

When you have created Relationships, each Table having Relationships is represented

in the “Relationships” pane as one (or more) Table-boxes.

Each Table-box has:

• A heading with the name of the Table that the Table-box represents, possibly

followed by the suffix “_1”, “_2”, “_3”, etc. (click B.10.4.4).

• A list of all the field names of the Table that the Table-box represents, in the same

order as they are defined in the Table.

• If the list of field names does not fit in the current size of the Table-box, a vertical

scrollbar will be shown on the right side of the Table-box.

• A key “ ” icon placed to the left of each of the field names of the Primary Key of

the Table that the Table-box represents.

Each Relationship is represented as one (or more) connecting lines between the

master Table-box and its slave Table-box. Each line connects one different master-

slave field pair in the Relationship. Therefore, if the Relationship involves “n” master-

slave field pairs, then the Relationship is represented as “n” connecting lines between

its master Table-box and its slave Table-box, one line for each master-slave field pair.

The crooked endpoints of each of the Relationship’s connecting lines are labeled to

identify the Relationship’s type, as follows:

• One-to-many Relationships (click C.11.2) with referential integrity

(click C.11.1):

Each of the Relationship’s connecting lines has a “1” at the crooked endpoint of

the master Table-box and one infinity symbol “” at the crooked endpoint of the

slave Table-box.

• One-to-one Relationships (click C.11.2) with referential integrity (click C.11.1):

Each of the Relationship’s connecting lines has a “1” at both crooked endpoints.

• Relationships without referential integrity (click C.11.1):

Each of the Relationship’s connecting lines has a dot “.” at both crooked endpoints.

Notice that in one-to-one Relationships with referential integrity, and in Relationships

without referential integrity, you cannot visually distinguish in the “Relationships”

pane which is the master Table-box and which is the slave Table-box.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 82 of 725

The next screenshot shows the “Relationships” pane with three Tables and two

Relationships with referential integrity: a one-to-one and a one-to-many:

As you may see in the screenshot above, connecting lines representing Relationships

may come out of either the left side and/or the right side of the field’s name: this does

not have any meaning, and it is only a layout matter.

A given field from a given Table-box will have as many connecting lines as the

number of Relationships with other Table-boxes in which the field is a master field.

In the screenshot above you may see that the field “Capital” from the Table-box

“T_Capital_Cities” has two connecting lines (one on the right and one on the left),

because it is a master field in two Relationships with two other Table-boxes.

If a given Table field is involved in more than one Relationship as a slave field, MS-

Access will show as many Table-boxes for that Table, as the number of Relationships

in which the Table field is a slave field. This is required to have each Relationship

represented as a set of connecting lines between two different Table-boxes.

If the layout of Table-boxes and Relationships is too large to fit in the current viewing

area of the “Relationships” pane, a vertical and/or horizontal scrollbar will be shown

(see the screenshot above). You can use these scrollbars to select what part of the

complete diagram of Table-boxes and Relationships is shown in the viewing area of the

“Relationships” pane.

Once you are done viewing your Relationships, close the “Relationships” pane

(click B.10.8).

B.10.3 How do I view a Relationship’s properties?

To view the properties of a Relationship, you have to first view the Relationship

(click B.10.2) in the “Relationships” pane. You can then view the properties of the

Relationship in either of the following ways:

• Double-click on any of the lines that represent the Relationship. Remind that you

have to double-click on the straight part of the line and not on either of its crooked

endpoints.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 83 of 725

• Right-click on one of the lines that represents the Relationship and click on “Edit
Relationship” from the pop-up menu. Remind that you have to right-click on the

straight part of the line and not on either of its crooked endpoints.

• Select the Relationship by clicking on one of the lines that represents it (the line will

become highlighted in bold). Remind that you have to click on the straight part

of the line and not on either of its crooked endpoints. After having selected the

Relationship, click on the Edit Relationships “ ” icon from the “Relationship
Tools / Design” contextual Ribbon.

• Click on the Edit Relationships “ ” icon, from the “Relationship Tools / Design”

contextual Ribbon when no Relationship is selected (i.e., when no Relationship line

is highlighted in bold). This will open a blank “Edit Relationships” box where you

will have to select the name of the two Table-boxes that identify the Relationship

whose properties you want to view. You can select the name of each of the two

Table-boxes clicking on the drop-down menu “ ” icon below the labels “Table or
Query” (master Table) and “Related Table/Query” (slave Table) at the top of the

“Edit Relationships” box. Notice that you have to select first the master Table (i.e.,

the Table under the label “Table or Query”).

• Double-click on the background of the “Relationships” pane, on any Table-box field

or on any crooked line endpoint. This will open a blank “Edit Relationships” box

where you will have to select the name of the two Table-boxes that identify the

Relationship whose properties you want to view. You can select the name of each

of the two Table-boxes clicking on the drop-down menu “ ” icon below the labels

“Table or Query” (master Table) and “Related Table/Query” (slave Table) at the

top of the “Edit Relationships” box. Notice that you have to select first the master

Table (i.e., the Table under the label “Table or Query”).

• Drag-and-drop any field from either of the two Table-boxes of the Relationship to

any field of the other Table-box. MS-Access will then show a dialog box asking if

you want to edit the existing Relationship (or create a new one), where you should

click on “Yes”.

Regardless of which of the above ways you used, you will end with an “Edit
Relationships” box where you can view the properties of the Relationship you wanted.

The following screenshot shows an “Edit Relationships” box (this corresponds to an

already existing Relationship because the top-right button is “OK”):

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 84 of 725

The “Edit Relationships” box shows the following properties:

• Master Table-box name

Placed on the top-left, below the label “Table/Query:”, with gray background. What

is shown is not the master Table name, but rather the name of one of the Table-

boxes that represent the master Table. Remind that the “Relationships” pane may

show several Table-boxes (click B.10.4.4) to represent a given Table.

• Master field names

Placed on the top-left, below the name of the master Table-box, with white

background. Each master field name is in one row. On the right of each master

field made you can see its corresponding slave field name.

• Slave Table-box name

Placed on the top-right, below the label “Related Table/Query:”, with gray

background. What is shown is not the slave Table name, but rather the name of

one of the Table-boxes that represent the slave Table. Remind that the

“Relationships” pane may show several Table-boxes (click B.10.4.4) to represent

a given Table.

• Slave fields

Placed on the top-right, below the name of the slave Table-box, with white

background. Each slave field name is in one row. On the left of each slave field

name you can see its corresponding master field name.

• Relationships’ referential integrity

If the “Enforce Referential Integrity” checkbox is ticked, this Relationship has

referential integrity (click D.9.3). If it is unticked, this Relationship does not have

referential integrity.

• “Cascade Update Related Fields” checkbox

If this checkbox is ticked, when you change the value of a master field in a master

record, the system will automatically update (click D.9.4) the value of the slave

field, in all its corresponding slave records. If it is unticked, the system will not

perform the automatic update.

• “Cascade Delete Related Records” checkbox

If this checkbox is ticked, when you delete a master record, the system will

automatically delete (click D.9.5) all its corresponding slave records. If it is

unticked, the system will not allow you to remove a master record until you have

previously removed all its slave records.

• Relationship Type

Placed at the bottom-center, the cell to the right of the “Relationship Type” label

shows the type of this Relationship. The Relationship type can be “One-To-Many”

(click C.11.2), “One-To-One” (click C.11.2) or “Indeterminate” (click C.11.3).

Once you are done viewing your Relationships, close the “Relationships” pane

(click B.10.8).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 85 of 725

B.10.4 How do I change the layout of the “Relationships” pane?

You may click:

• “B.10.4.1 How do I select/unselect Table-boxes?”

• “B.10.4.2 How do I unhide/hide Relationships?”

• “B.10.4.3 How do I unhide/hide the “Add Tables” sub-pane?”

• “B.10.4.4 How do I unhide or add Table-boxes?”

• “B.10.4.5 How do I hide or delete a Table-box?”

• “B.10.4.6 What is the difference between unhide/hide and add/delete a Table-box?”

• “B.10.4.7 How do I move a Table-box?”

• “B.10.4.8 How do I resize a Table-box?”

• “B.10.4.9 How do I front-display a Table-box?”

• “B.10.4.10 How do I save the “Relationships” pane layout?”

B.10.4.1 How do I select/unselect Table-boxes?

You select one, or more, Table-box(es) in either of the following ways:

• Click on a Table-box frame, on its header, or on any of its fields.

• Click-and-drag the mouse inside the “Relationships” pane. This will show a

rectangle having one corner where you pressed the mouse-button, and the opposite

corner at the current position of the mouse. All the Table-boxes that lie (totally or

partially) within the shown rectangle will be selected when you release the mouse

button.

When a Table-box is selected, its frame is highlighted in yellow.

You select one, or more, additional Table-box(es) in either of the following ways:

• Control-click on the Table-box frame, on its header, or on any of its fields.

• Control-click-and-drag the mouse inside the “Relationships” pane. This will show

a rectangle having one corner where you pressed the mouse-button, and the opposite

corner at the current position of the mouse. All the Table-boxes that lie (totally or

partially) within the shown rectangle will be additionally selected when you

release the mouse button.

You unselect one selected Table-box by Control-clicking on its frame, on its header,

or on any of its fields.

You unselect all the selected Table-boxes by clicking on the gray background of the

“Relationships” pane.

For all the indications above, if you click between the fields, or on the blank space

below the last field, it will have no effect.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 86 of 725

B.10.4.2 How do I unhide/hide Relationships?

You unhide all the Relationships in either of the following ways:

• Right-click anywhere on the gray background of the “Relationships” pane and click

on “Show All Relationships” from the pop-up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Relationship Tools”

contextual label), and then click on the All Relationships “ ” icon.

You unhide all the Relationships of one unhidden Table-box in either of the following

ways:

• Right-click on the Table-box header, or on any of its fields, and click on “Show
Direct Relationships” from the pop-up menu.

• Select the Table-box (click B.10.4.1) and click on the Direct Relationships “ ”

icon from the “Relationship Tools / Design” contextual Ribbon. If you had selected

several Table-boxes, this action is applied to the last selected Table-box.

You unhide one Relationship by unhiding its two Table-boxes (click B.10.4.4).

You hide all the Relationships (and all the Table-boxes) by clicking on “Design” from

the “Ribbon-bar” (below the “Relationship Tools” contextual label), and then clicking

on the Clear Layout “ ” icon. Notice that this will also clear the “Relationships” pane

layout.

You hide a Relationship by hiding one of its two Table-boxes.

Note that whenever you unhide/hide a Relationship, you also unhide/hide its two

Table-boxes (respectively). Note that whenever you unhide a Table-box

(click B.10.4.4), all its Relationships with other visible Table-boxes are also

unhidden.

For all the indications above, if you click between the fields, or on the blank space

below the last field, it will have no effect.

B.10.4.3 How do I unhide/hide the “Add Tables” sub-pane?

You unhide the “Add Tables” sub-pane in either of the following ways:

• Right-click on the gray background of the “Relationships” pane and click on “Show
Table…” from the pop-up menu.

• Click on “Design” from the “Ribbon-bar” (below the “Relationships Tools”

contextual label), and then click on the Add Tables “ ” icon.

Either way will show the “Add Tables” sub-pane on the right side of the “Relationships”

pane. The “Add Tables” sub-pane shows (clicking on the “Tables” tab at its top) a list

of all the (non-system) local Tables. Notice that linked Tables are listed by clicking on

the “Links” tab at its top.

You select Table names from the “Add Tables” sub-pane by clicking on one Table

name and possibly doing Shift+click and/or Ctrl+click on other Table names.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 87 of 725

You unhide the “Add Tables” sub-pane in either of the following ways:

• Click on the close icon “X” on its top-right corner

• Click on “Design” from the “Ribbon-bar” (below the “Relationships Tools”

contextual label), and then click on the Add Tables “ ” icon.

B.10.4.4 How do I unhide or add Table-boxes?

The procedure to unhide or add (click B.10.4.6) a Table-box is exactly the same.

You unhide or add one, or more, Table-boxes (each of them representing a different

Table) in either of the following ways:

• Drag-and-drop the Table name from the “Navigation Pane” to the “Relationships”

pane.

• Double-click on a Table name in the “Add Tables” sub-pane (click B.10.4.3).

• Drag-and-drop a Table name from the “Add Tables” sub-pane (click B.10.4.3) to

the “Relationships” pane.

• Select any number of Table names on the “Add Tables” sub-pane (click B.10.4.3)

and click on the “Add Selected Tables” button (at the bottom of the “Add Tables”

sub-pane). This will unhide or add one Table-box representing each of the selected

Table names.

Regardless how which way you chose, if the Table name has one, or more, hidden

Table-box(es) representing it, then the hidden Table-box with lowest integer suffix18

(see below) will be unhidden. Otherwise, a new Table-box named with the

corresponding integer suffix (see below) will be added.

Note that whenever you unhide a Table-box, all its Relationships with other visible

Table-boxes are also unhidden. Note that whenever you unhide a Relationship

(click B.10.4.2), its two Table-boxes are also unhidden.

The Table-box name of a newly added Table-box representing a given Table is

determined as follows:

1. If there is no existing Table-box (hidden or unhidden) with the same name as the

Table name, then, the Table-box name will be the Table name.

2. Otherwise, the Table-box name will be the Table name with the suffix “_n” where

“n” is the lowest integer such that there is no other Table-box (hidden or unhidden)

with that same name.

Because of this naming algorithm, my advice is you never name your Tables using the

suffix “_1”, “_2”, “_3”, etc. If you really need to name a series of Tables with sequential

suffixes, use “_a”, “_b”, “_c”, etc. (click D.2.4.6).

B.10.4.5 How do I hide or delete a Table-box?

The procedure to hide or delete (click B.10.4.6) a Table-box is exactly the same.

You hide or delete a Table-box in either of the following ways:

18 For this purpose, having no suffix is considered lower than suffix number 1.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 88 of 725

• Right-click on the Table-box header, or on any of its fields, and click on “Hide
Table” from the pop-up menu.

• Select the Table-box(es) that you want (click B.10.4.1) and then click on the Hide
Table “ ” icon from the “Relationship Tools / Design” contextual Ribbon.

When doing the above, if the Table-box has at least one Relationship, then the Table-

box is hidden. If the Table-box rather has no Relationships, then the Table-box is

deleted. Remind that there can exist Relationships that are not currently shown, because

one of their two Table-boxes is hidden.

When a Table-box is hidden, all its Relationships are also hidden.

If a Table has several unhidden Table-boxes, and you want to hide or delete all of

them, you have to manually hide or delete each of them.

If you hide or delete Table-boxes, the layout that you had configured for them (i.e.,

their size and position within the “Relationships” pane) is lost. Therefore, when they

are unhidden or added, MS-Access will decide in what size and position they are

depicted, regardless of how you had previously arranged them.

For all the indications above, if you click between the fields, or on the blank space

below the last field, it will have no effect.

B.10.4.6 What is the difference between unhide/hide and add/delete a Table-

box?

Hiding a Table-box means that it becomes not visible, but it will become visible when

you unhide all the Relationships and their Table-boxes (click B.10.4.2).

Deleting a Table-box means that it becomes not visible, and it will not become visible

when you unhide all the Relationships and their Table-boxes (click B.10.4.2). Actually,

the Table-box has been deleted (not hidden), and its integer suffix (click B.10.4.4) has

been cleared.

When you hide/delete (click B.10.4.5) a Table-box that is involved in at least one

Relationship, the Table-box will actually be hidden.

When you hide/delete (click B.10.4.5) a Table-box that is not involved in any

Relationship, the Table-box will actually be deleted. If you later need this Table-box,

you will have to add a new Table-box (click B.10.4.4) for that Table.

B.10.4.7 How do I move a Table-box?

You move a Table-box by doing drag-and-drop on its heading. I strongly recommend

you move Table-boxes to place them in a clear and useful layout, so you may properly

see all the Table-boxes and all their Relationships. You would typically place the

master Table-boxes with many Relationships in the middle of the “Relationships” pane,

and Table-boxes with less Relationships around them. It is also important to place all

Table-box replicas one on top of another, and with the same size, to visualize that all of

them represent the same Table.

Do not forget to save the “Relationships” pane layout after your changes

(click B.10.4.10).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 89 of 725

B.10.4.8 How do I resize a Table-box?

Click-and-drag on one of its frame corners or frame sides. When you press the mouse

button while the mouse cursor is on the frame of the Table-box the mouse icon changes

to the resize icon. You can then drag the mouse to enlarge or reduce the Table-box.

Once you release the mouse button, the Table-box will stay with the size you

configured.

You may also automatically resize a Table-box to adjust its width its longest field name,

and its height to its number of fields. To do this, right-click on the Table-box header, or

on any of its field names, and click on “Size to Fit” from the pop-up menu. Notice

however that the resizing does not take into account the Table-box name, so its width

may conceal part of it: this on my view severely limits the usefulness of this feature.

For all the indications above, if you click between the fields, or on the blank space

below the last field, it will have no effect.

B.10.4.9 How do I front-display a Table-box?

You front-display a Table-box by just selecting it (click B.10.4.1).

Front-displaying a Table-box means displaying it over the other Table-boxes with

which it overlaps. Front-displaying Table-boxes is very useful to configure the

Relationship’s layout that you want.

B.10.4.10 How do I save the “Relationships” pane layout?

You save the layout of the “Relationships” pane in either of the following ways:

• Right-click on the tab of the “Relationships” pane and click on “Save” from the

pop-up menu.

• Right-click anywhere on the gray background of the “Relationships” pane and click

on “Save Layout” from the pop-up menu.

Once you have saved your “Relationships” pane layout, you may close it (click B.10.8).

Notice that you do not need to save the changes on the Relationships themselves: if

you create, modify or delete Relationships, these changes are automatically saved.

You only need to save the layout of the “Relationships” pane.

You can also save the layout changes of the “Relationships” pane by closing it

(click B.10.8) and in the dialog box that will pop-up with the warning message “Do you
want to save changes to the layout of 'Relationships'” you click on “Yes”. Although

you can save the layout in this way, it is risky, and it is therefore not recommended.

B.10.5 How do I edit an existing Relationship?

Open the “Relationships” pane (click B.10.1).

View the Relationship’s properties (click B.10.3).

Configure the Relationship’s properties (click D.9.2).

Close the “Relationships” pane (click B.10.8).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 90 of 725

B.10.6 How do I create a new Relationship?

If you want to create a Relationship, you may click “D.9.1 How do I create a new

Relationship?”.

B.10.7 How do I delete a Relationship?

Open the “Relationships” pane (click B.10.1).

If it is not unhidden, you unhide the Relationship (click B.10.4.2) that you want to

delete. You can then delete the Relationship in either of the following ways:

• Right-click on one of the lines that represents the Relationship and click on “Delete”

from the pop-up menu.

• Select the Relationship by clicking on one of the lines that represents it (the line will

become highlighted in bold), and then press the “Supr” key.

In both cases above, when I say you (double)click on a line you have to do it with the

mouse placed on the straight body of the line, and not on either of the crooked

endpoints. If you click on either crooked endpoint of a line, this will be as clicking

on the background of the “Relationships” pane. Notice also the lines are narrow, and

if you do not place the mouse correctly over the line, you will be clicking on the

background of the “Relationships” pane, getting a different outcome.

When you delete a Relationship, a pop-up confirmation box will be shown: if you click

on “Yes”, the Relationship is then deleted, and cannot be recovered (there is no paper

trash or undo for this).

When you are done deleting Relationships, close the “Relationships” pane

(click B.10.8).

B.10.8 How do I close the “Relationships” pane?

You close the “Relationships” pane in either of the following ways:

• Click on the Close “X” icon in the tab of the “Relationships” pane.

• Click on the Close “ ” icon placed on right side of the “Design” contextual Ribbon.

If the “Design” Ribbon is not currently shown, click on “Design” from the “Ribbon-

bar” (below the “Relationship Tools” contextual label).

• Right-click on the tab of the “Relationships” pane and click on either “Close” or

“Close All” from the pop-up menu.

• Right-click anywhere on the gray background of the “Relationships” pane and click

on “Close” from the pop-up menu.

Regardless of the way you close the “Relationship Tools” pane, if it contains unsaved

layout changes, MS-Access will show a dialogue-box asking if you want to save the

changes to the layout. This dialog box has the buttons “Yes”, “No” and “Cancel”:

• “Yes” saves the layout and closes the “Relationships” pane.

• “No” does not save the layout and closes the “Relationships” pane.

• “Cancel” does not save the layout and cancels the closing of the “Relationships”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 91 of 725

pane.

B.11 Can I use a drop-down/expression menu even if its icon

is not shown?

Yes, if you click on the place where the drop-down/expression menu icon is displayed,

the menu will be shown, even if the menu icon is not shown. For the case of property

cells, if you click on the place where the menu icon is displayed, the menu will be

shown even without having previously selected the cell.

This capacity just described applies to:

• Row property drop-down menu “ ” icon

• Row expression menu “ ” icon in rows

• Cell value drop-down menu “ ” icon

• Cell property drop-down menu “ ” icon

• Cell configuration drop-down menu “ ” icon

• Cell expression menu “ ” icon

Clicking directly on the rightmost side of the cell/row to show the menu saves you one

click every time you want to modify a value/property/value/expression. This is quite

useful both for entering data and for modifying your database design.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 92 of 725

PART C. CONCEPTS AND INTERNALS OF DATABASES

You may click:

• “C.1 What are the main concepts of databases?”

• “C.2 What are objects, names, keywords, data types, constants, variables,

operators, functions and expressions?”

• “C.3 What are fields, field value-lists, records and record-lists?”

• “C.4 What are database Tables?”

• “C.5 What is a pointer?”

• “C.6 What is a Null?”

• “C.7 What are duplicate records and duplicate field values?”

• “C.8 What is indexing?”

• “C.9 How do I prevent duplicate field values and duplicate records?”

• “C.10 What are the Table Key(s) and how should I handle them?”

• “C.11 What is a Relationship?”

C.1 What are the main concepts of databases?

You may click:

• “C.1.1 What is a database, a record and a field?”

• “C.1.2 What is the difference between a database and a spreadsheet?”

• “C.1.3 What is a database design?”

• “C.1.4 What is an SQL Query?”

• “C.1.5 What is the Structured Query Language (SQL)”

• “C.1.6 How is a database used?”

C.1.1 What is a database, a record and a field?

A database is a large collection of data stored in a structured and organized way, plus,

a collection of functions (called Queries) to produce useful reports and summaries

from the database data. In each Query you may define, in a reasonable simple way, very

complex operations over the database in order to produce very different types of reports,

listings, summaries, statistics and any processed data you may need out of the database.

More advanced Queries also allow you to automatically modify/update the data stored

in the database.

Conceptually, data in a database is stored and processed as record-lists.

A record-list is a list of records, such that each and every record in the record-list has

the same ordered list of fields. Each record-list stores a variable number of records,

and records are stored in no particular order (although they can be ordered when listing

them).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 93 of 725

A record is an ordered list of fields, each field in the record having a different field

name, a specific data type and some other field properties. All the records in each

record-list have always the same ordered list of fields, fields names and field types.

You can think of a record-list as a table with a fixed number of columns (the fields),

and a variable number of rows (the records). If you have a record-list of invoices, you

visualize a table in which each row in the table is one record with the data

corresponding to one concrete invoice and each column is a list of values for one

specific field name of the invoices (invoice date, invoice amount, invoice VAT, …).

You can have many different tables in the database, each with its own specific

structure.

If you currently handle different types of data (list of employees, list of customers, list

of invoices, list of bank account balances, list of suppliers, list of orders, …) in a sparse

way (e.g., in different excel files, word documents, …), you may consolidate everything

in a single database, with a set of suitable database Tables. The advantage is not only

having all the information in a single file, and in a homogeneous format, but much more

interesting, that you can process and exploit all that information in your Tables

obtaining valuable summaries, reports, statistics, forecasts, etc. by writing your own

Queries.

C.1.2 What is the difference between a database and a spreadsheet?

The main overall differences between a spreadsheet and a database are:

• Databases can relate the values of one Table column to the values of another

column on another Table, allowing to cross reference the values between all the

Tables in a very sound and error-free way. Spreadsheets cannot do this.

• Databases impose that all the values in each column of each of its Tables (sheets)

have the same data type and interpretation (semantics), while in a spreadsheet you

can do whatever you want.

• Databases can check for you that the values in certain columns are unique, while

a spreadsheet cannot do it. This is useful!

• Databases separate the code (Queries) to process the data from the data itself

(Tables) making it much more difficult to unknowingly modify the code.

Spreadsheets mix cells with data and formulas throughout the sheet: very flexible,

but very risky.

• Databases require considerably more initial work than a spreadsheet before you

can start using them and are more rigid in the way you use them. However,

databases are much safer than spreadsheets in terms of accidental errors, and can

handle much larger amounts of data, and more diverse, than using a collection of

spreadsheets.

In a spreadsheet (from Excel, Google sheet, or a similar application), you refer to values

by the coordinates in the spreadsheet. You usually mix cells with stored values with

cells with formulas the way you want and without any restriction. Spreadsheets are

incredibly flexible and easy to write, and also, allow you to do a quick solution for what

you want to calculate or process. However, a spreadsheet is not a good tool to store and

process large amounts of data in a professional way because mixing up the data and

the code (i.e., the formulas) is dangerous, and its flexibility implies that it is quite easy

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 94 of 725

to introduce errors in the data or calculations. Also, it is not easy to properly connect

and combine different spreadsheets, so if you want a global coherent view of large

and diverse types of data, spreadsheets do not work well.

You can think of a database somehow as large number of spreadsheets, each of them

with homogeneous column values, that can be connected and that work in a totally

coherent and homogeneous way. In a database, you would have some spreadsheets

(with homogeneous column values) to store the information, following fixed patterns

(these are called Tables), and you would have other “spreadsheets” to do whatever

processing you want over the stored data (these are called Queries). This is, in a

database the stored data and the code the manipulates the data is totally separated.

Also, the code that processes the data is hidden inside the Query objects, to avoid

accidental manipulation of the code. Unlike spreadsheets that are totally flexible in the

way you want to structure and store your information, databases require that the stored

data follows some specific structure and rules (described in this Lightning Guide). The

most fundamental restriction is that in database Tables all the cells (fields) in each

column must have the same data type and value interpretation (semantics).

If you really like spreadsheets, you will just love databases!!

C.1.3 What is a database design?

The database design consists of:

• Defining the database Tables (click C.4)

• Defining the Relationships between Tables (click C.11).

If you want more detail on database design, you may click “Part D. Designing my

databases with MS-Access”.

C.1.4 What is an SQL Query?

If at this moment you are reading this Lightning Guide linearly, click to read

“F.4.2 What is an SQL Query?” and then return here (you return by simultaneously

pressing the “Alt” and “” keys).

C.1.5 What is the Structured Query Language (SQL)

If at this moment you are reading this Lightning Guide linearly, click to read

“F.1 What is the Structured Query Language (SQL)?” and then return here (you return

by simultaneously pressing the “Alt” and “” keys).

C.1.6 How is a database used?

Using a database consists of inputting data records (click Part E) into the database

Tables, coding Queries (click Part F) to exploit the data in the database, and running

the Queries (click B.4.1.9) to obtain the desired summaries, statistics, reports, etc. from

your database.

When you first create the database, you usually upload to it some amount of current and

past information records. This usually implies reformatting existing information to adapt

it to the design of the database and pasting it (click E.5) in blocks to the different

database Tables. When doing this you have to be careful with the consistency of the past

information records (click E.9) that you are uploading.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 95 of 725

You then code some initial Queries to obtain relevant reports out of the database. One

Query may provide total expenses by category per year, another one the listing of

employees in any given year, or whatever complex information you may want to get.

The lifecycle of the database (click Part I) continues as you input records arising from

the day to day activity, and you further create/modify/delete Queries as you see fit to

suit the information you want to get from the database.

C.2 What are objects, names, keywords, data types, constants,

variables, operators, functions and expressions?

You may click:

• “C.2.1 What is an object and a name?”

• “C.2.3 What is a keyword?”

• “C.2.4 What is a data type?”

• “C.2.5 What is a constant?”

• “C.2.6 What is a variable?”

• “C.2.7 What is an operator?”

• “C.2.8 What is a function?”

• “C.2.9 What is an expression?”

• “C.2.10 What is an SQL operation?”

• “C.2.11 What is expression syntax?”

C.2.1 What is an object and a name?

A name (also called “alias”) is a text string that serves to reference your database

objects as well as the properties of objects. Some examples of database objects are

Tables, Queries and SQL operations within your Query code. Some examples of

object properties are the fields, that are a property of Tables, Queries and SQL

operations.

If you want to know more about the importance of assigning proper names to your

Tables, Queries, fields and other database objects/properties, you may click “D.2 How

do I carefully assign good names from the very beginning?”.

C.2.2 What is a qualified field name?

In some database scopes (e.g., within your SQL code) a field name may be ambiguous,

because you have two fields with the same name and in the same scope. In this case, to

distinguish both fields, each equal field name is prefixed with the object name to which

each of the two fields belongs. Each field name and its prefix object name are separated

with a period “.” character. The prefixing object name is called the “qualifier” and the

resulting field name is called a “qualified field name”.

For example, if you have two Tables “US_Data” and “EU_Data” that each contain the

same field name “Yearly_Sales”, and you want to use both fields in the same SQL scope

(e.g., in the same Join operation), then you have to prefix the field name by the Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 96 of 725

name, getting “US_Data.Yearly_Sales” and “EU_Data.Yearly_Sales”. These two

qualified field names are not ambiguous, and it is now perfectly clear which specific

field you are referring to in your SQL code.

Some other examples of qualified field names are:

 Car_parts.Windshield_model

 Customer_Order.Windshield_model

 Capital_Cities.City

 City_Rainfal.City

If you want to know more about qualifying names, you may click “D.2.5 What are the

MS-Access formal rules for identifiers?”.

C.2.3 What is a keyword?

A keyword is a name that MS-Access ha assigned to his system objects, operators

and built-in functions. The SQL operators (e.g., “SELECT”, “FROM”, “WHERE”, “IN”,

“AND”, ...) are keywords. Built-in function names (e.g., Iif(), Log(), Switch(), ...) are

keywords. VBA data type identifiers (e.g., Double, Date, Integer, ...) are also

keywords. MS-Access ignores case in keywords, as it does in names and text strings

(click A.4.3). For example, “SELECT”, “select”, “Select” and “SeLeCt” are

considered exactly the same keyword by MS-Access.

MS-Access does not allow you to use keywords as names whenever this could create

an identifier conflict. You can use a longer name that includes a keyword inside it

without any problem, but you should avoid names that are too similar to a keyword to

avoid poorly readable SQL code.

C.2.4 What is a data type?

A data type is the way to interpret generic binary information stored in the computer as

a specific type of information. The different specific types of information are the

different data types. In MS-Access you have data types for integer values, for fractional

values, for date and time, for Boolean values, for text strings and to represent other types

of information.

In MS-Access you have two different sets of data types. One is the Table field types

and the other one is the VBA data types. The Table field types are the data types of

the fields storing the information in your database Tables. The VBA data types are the

data types used in your Query fields, in the expressions in your SQL code (i.e., your

Queries) and in the expressions in your VBA code (i.e., your user-defined functions).

Throughout this Lightning Guide, Table field types are denoted in bold Calibri font (e.g.,

Number-Integer, Number-Double, Short Text, Yes/No, Date/Time, etc..), while VBA

data types are denoted in bold italic Times font (e.g., Integer, Double, String, Boolean,

Date, etc.). The Table field types and the VBA data types have slightly different

names, but there is an exact one-to-one equivalence between most (not all) of them. If

you want to know more about this equivalence, you may click “G.2 How do I manage

VBA data types and Table field types-sizes?”.

C.2.5 What is a constant?

A constant is a concrete fixed value. You can have constants of different Table field

types and VBA data types. I briefly summarize here some MS-Access rules to represent

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 97 of 725

constants:

• Boolean constants:

Values True and False (as such, not enclosed in quotes, as it is done for text string

constants).

• Integer number constants:

The usual way to write positive and negative integer numbers in decimal notation.

Some examples of integer constants are: 123, 456, 0, and -15.

• Fractional number constants:

The usual way to write positive and negative fractional numbers in decimal notation.

You can also use scientific notation. Some examples of fractional constants are:

4.0346, 730, -3.234 and 3.5656E-23.

• Date and time constants:

Notice that both the Date/Time Table field type and the Date VBA data type always

store a date-part and a time-part. However, you may have constants where the

date-part and/or the time-part is zero, as follows:

o Zero-time constants are Date/Time or Date constants where the time-part of

the value is zero. One way of typing them is month number, day number and

year number, separated by “/” and enclosed between “#”. Some examples are:

#3/30/2017# and #12/31/87#

o Zero-date constants are “Date/Time or Date constants where the date-part of

the value is zero. One way of writing them is: hour (0 to 23) and minutes (and

optionally seconds) separated by “:”. Some examples are: #23:59#, #23:59:46#

o Date-and-time constants are Date/Time or Date constants that have a non-zero

date-part and a non-zero time-part. One way of writing them is writing the date-

part and the time-part separated by a blank “ ”, and all enclosed between “#”.

Some examples are: #3/30/2017 23:59#, #1/28/2017 23:59:46#

Notice that MS-Access will check that date constants correspond to a correct

calendar/clock value. If you use a constant of a non-existing date (e.g., #2/29/1987#

or #11/31/2019#) or time (e.g., #24:00#, #23:60#), this will not be accepted by MS-

Access, and will report an error.

• Text string constants:

A string of characters enclosed in double quotes or in single quotes. Some

examples are: "Overlap dates", 'US-Cities', "Engine_Parts", and 'Delivery_Date'.
Notice that in VBA code you cannot use single quotes to enclose text strings.

If you want to know more about MS-Access constants, you may click “G.4 How do I

write a constant?”.

C.2.6 What is a variable?

A variable is a name that represents a generic value. Variables usually belong to one

specific data type, although in VBA they can also be Variant, which is a kind of

wildcard “generic” data type.

C.2.7 What is an operator?

An operator is a named mathematical computation over some input variables that

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 98 of 725

returns one result. Each time you apply the operator to some concrete input values it

produces one single concrete output value. Most operators work over either one input

variable (also called unary operator) or two input variables (also called binary operator).

The input variables of an operator are usually called “operands”. Some examples of

operators are: “AND”, “OR”, “+”, “-”, “/” and “*”.

Operators are deterministic and do not have memory. This means that if you use the

operator with the same input values, you always get the same result.

The way to use an operator is by writing its name usually before its input variable (if it

only takes one input value) or writing its name between its two input variables (if it

takes two input values). Some examples of operators with two input values are the

following:

 3 + 4

 34.5 * 36.34

 True AND True

Each value operator has a specific data type (or compatible ones) for each of its

operands and for its output result. For example, the Comparison operator “<” may take

two String operands and produces a Boolean result. Some data types are compatible,

allowing them to be combined. For example, with the “+” operator you can add an

integer-like value with a fractional value, and you can also add a fractional value with

a Date/Time value.

If you want to know more about MS-Access value operators, you may click “G.1 What

are the main differences between the three expression scopes?”

C.2.8 What is a function?

A function is a named mathematical computation that takes some variables as input

and produces one single output value as a result. Each time you apply the function with

some concrete input values, the function is computed, and it returns one single concrete

output value. The input variables of a function are usually called “arguments”.

Functions (with very few exceptions) are deterministic and do not have memory. This

means that if you use the function over the same input values, you always get the same

result.

The way to use (also called “invoke”, “instantiate” or “run”) a function is by writing its

name followed by its input values separated by commas and enclosing all of the input

values in a pair of parentheses. Some examples are:

 Round(10.45, 2)

 Is_Null("Ford_Mustang")

 Overlap_dates(#3/1/1980#, #6/23/1982#, #1/1/1981#, #12/31/1981#)

Most functions belong to one data type, corresponding to the data type of the value that

it returns. For example, Boolean functions are the ones that produce a Boolean value,

and Integer functions are the ones that produce an Integer value. Some examples of

functions, and their data type are:

 Round(Floating_variable, decimal_positions) (returns an Integer)

 Is_Null(Input_Variable) (returns a Boolean)

 Iif(Age>0,(Height/Age)^2, "Error") (returns a Variant)

Each input variable of a function may belong to a different data type. You may check

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 99 of 725

the three example functions above and see that they contain input values of different

data types. Most functions have a fixed number of input variables. Most functions have

input variables each of them belonging to a specific data type.

Notice however that there are some functions that return a Variant (see description

above on VBA data types) and/or that have one or more input variables of variant type.

It is also possible to have functions with a variable number of input variables.

If you want to know more about MS-Access functions, you may click “G.6 How do I

use functions in an expression?”.

C.2.9 What is an expression?

An expression is a mathematical formula composed of variables combined with

constants, operators and/or functions that has parts of it enclosed between

parentheses. When you replace the variables by concrete input values, the expression

produces one single result. Each time you compute the expression over some input

values for its variables, the expression returns one single concrete result.

Expressions (unless they contain non-deterministic functions) are deterministic and do

not have memory. This means that if you compute an expression over the same input

values, you always get the same result.

An expression belongs to one data type, corresponding to the data type of the value

that it returns. For example, Boolean expressions are the ones that produce a Boolean

True or False value, and integer expression are the ones that produce an Integer value.

An expression can also return a variant data type. Some examples of expressions, and

their data type are:

 Iif(My_Date >= Date()-180,From-To,Date()+34) (returns a Date)

 (Age > 0) and (Age < 120) (returns a Boolean)

 Iif(Age>0,Average((Height/Age)^2,-1) (returns a Double)

The constants, variables, operators and functions in an expression can be of different

data types. You may check the three example expressions above and see that they

contain constants, variables, operators and functions of different data types.

An expression may return different results depending on the computation order (also

called evaluation order). For example, the expression “(3*4)+2” produces 14 but it

produces 18 if I change the parentheses to “3*(4+2)”. The evaluation order is

determined by the parentheses. When parentheses are not used, expressions have

specific default evaluation rules. Expressions are normally evaluated left to right, but

some operators have higher evaluation precedence. For example, “*” has precedence

over “+”. My advice is that, unless you are very sure of the evaluation rules for an

expression, you should write parentheses to indicate explicitly the evaluation order

that you want for it.

If you want to know more about MS-Access SQL operations, you may check different

chapters/sections clicking on “Part F. Writing SQL Queries to use my database”. If

you want to know more about MS-Access value expressions, you may check different

chapters/sections clicking on “Part G. Writing expressions”.

C.2.10 What is an SQL operation?

An “SQL operation” is a mathematical formula composed of record-list variables

(Query name or Table names) combined with record-list operators (SQL operators) and

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 100 of 725

functions that has parts of it enclosed between parentheses. When you replace the

record-list variables by concrete input values, the SQL operation produces one single

resulting record-list.

You probably have noticed that this is the same definition as the one for an expression,

that I used in the previous section. I am using the term SQL “operation” instead of SQL

“expression” to avoid having to constantly clarify along this Guide if an “expression”

is a “SQL expression” or a “value expression”. Moreover, the term “SQL expression”

is ambiguous, because it can refer both to an expression built using the SQL operators

(e.g., a Select operation) and to a value expression used inside your SQL code (e.g.,

“Log(x)”).

Conceptually, both SQL operations and expressions are just expressions. However, the

way to design and write an SQL operation and an expression is very different. SQL

operations are written using the SQL language, while expression are written using more

conventional operators and functions, like “+”, “*”, “Max()” or “Round()”.

If you want to know more about MS-Access SQL operations, you may check different

chapter/sections clicking on “Part F. Writing SQL Queries to use my database”. If you

want to know more about MS-Access value expressions, you may check different

chapter/sections clicking on “Part G. Writing expressions”.

C.2.11 What is expression syntax?

The expression syntax are the rules that indicate how to write correctly an expression.

Each expression is written according to some rules called expression syntax. These

rules include what operators you may use (like “+”, “-”, “/”, “AND”, “OR”, …), what

functions you may use (like “Average()”, “Date()”, “Year()”, “Iif()”, …), how to make

references to variables, how to write constants, and other rules (parentheses,

identifiers, ...) that state how an expression can be written. If you write an expression

that does not conform to the expression syntax, MS-Access will show an error message

with some indication of the cause of the error. A simple example of a syntax error is

wrong parentheses matching (i.e., the expression has a different number of open

parentheses and close parentheses).

MS-Access has different expression syntax in its SQL operations, in its VBA

expressions and in its Table “Design View” expressions. You should be very aware of

this fact. If you want to know more about this, you may click “G.1 What are the main

differences between the three expression scopes?”.

If you want to know more about MS-Access SQL operation syntax, you may check

different chapters/sections clicking on “Part F. Writing SQL Queries to use my

database”. If you want to know more about MS-Access expression syntax, you may

check different chapters/sections clicking on “Part G. Writing expressions”.

C.3 What are fields, field value-lists, records and record-lists?

You may click:

• “C.3.1 What are fields, field names and field types?”

• “C.3.2 What is a record and a record type?”

• “C.3.3 What is a record-list?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 101 of 725

• “C.3.4 What is a field value-list?”

C.3.1 What are fields, field names and field types?

In a database the smallest element of information is the field. Each field stores one and

only one value19, has a field name (click C.2.1) to identify it, and has an associated

data type which is called field type (e.g., Short Text, Number, Date/Time, ...).

The value stored by the field always corresponds to its field type. The field may also

be empty, in which case it is said to store the special element “Null” (click C.6). Field

types and Nulls are both very important for the correct processing in the database. If

you want to know more about configuring field types, you may click “D.4 How do I

configure a Table field data type and size?”.

A few examples of field names, field types and field values are:

Field Name => Invoice_Date Field Name => Invoice_Num Field Name => Amount

Field Type => Date/Time Field Type =>
Number-

Long
 Field Type =>

Number-
Double

Field Value => 03-jan-2015 Field Value => 125 Field Value => 457.56

C.3.2 What is a record and a record type?

A record is a fixed ordered list of fields, each field with a different field name. An

example of a record is:

Invoice_Date Invoice_Num Amount Invoice_VAT Description Customer

Date/Time
Number-

Long
Number-
Double

Number-
Double

Short Text Short Text

03-ene-15 501 457,56 96,09 Transceiver Cisco

The field names in any given record must be different to avoid ambiguity when

referring to them in the SQL code of Queries. However, the field types in a record do

not need to be unique and may be repeated one or more times, as needed. The field

names in different records may be repeated without causing any problem, and actually

this is usual practice.

The record type is the ordered list of field types in the record. The record type of the

record example above is:

Date/Time
Number-

Long
Number -

Double
Number-
Double

Short Text Short Text

You may see in this example that a record can have duplicated field types, as I already

mentioned.

C.3.3 What is a record-list?

A record-list is a list of records, all of which have the same fixed ordered list of field

names, and the same record type. A record-list is therefore a list of homogeneous

records. Record-lists are quite dynamic, and it is frequent to add and remove records

19 There in exception to this, allowing for storage of lists of Number and Short Text values, but its usage

is very unfrequent.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 102 of 725

from any record-list as a consequence of database processing.

Let me show you an example of a record-list:

Invoice_Date Invoice_Num Amount Invoice_VAT Description Customer

Date/Time
Number-

Long
Number-
Double

Number-
Double

Short Text Short Text

03-ene-15 501 457,56 96,09 Transceiver Cisco

04-sep-15 503 1.435,34 301,42 Wifi Access Point NEC

08-mar-15 502 747,67 157,01 Wifi Access Point Telefonica

08-jul-15 504 1.335,00 280,35 120 cans Tata

07-ene-16 505 1.892,90 397,51 IP Switch Huawei

26-oct-16 506 4.125,89 866,44 2000 SIM cards Telefonica

26-feb-16 507 144,70 30,39 130 cans Tata

13-ene-17 508 2.690,55 565,02 131 cans Huawei

18-dic-17 509 5.160,00 1.083,60 IP Switch Tata

15-feb-17 510 2.243,01 471,03 Consulting Services Cisco

20-ene-18 512 1.058,50 222,29 IP Switch NEC

05-oct-18 511 1.695,56 356,07 1678 SIM cards Telefonica

05-feb-18 513 6.540,04 1.373,41 Wifi Access Point NEC

All the information in the database is stored and processed as record-lists. Each

database Table stores one record-list. Each database Query, written in SQL, takes one

or more record-lists as input, and produces as a result one new specific output record-

list. A Query is therefore like a function that takes one or more record-lists as arguments

and produces one and only one output record-list as a result. The SQL language allows

a very powerful and flexible way to select, merge, combine, split, and perform many

other operations over record-lists. In summary, the concept of record-list is absolutely

fundamental in databases!

You may visualize a record-list as a table, a record as a row in the table, a field-list as a

column in the table, and a field value as a cell in the table. However, calling “table” to

record- lists creates great ambiguity between a “table” (a record-list) and a “Table” of

the database, which are similar, but not the same thing. A database Table is a very

specific database object, and it stores a record-list, but it is not the same as a record-

list (a database Table has very specific properties and characteristics). At the same time,

not every record-list is a database Table. For this reason, throughout this Lightning

Guide I will specifically use the term record-list to refer to a record-list and the term

Table (with capital “T”) to refer to a database Table.

C.3.4 What is a field value-list?

In most books the term field is used to denote either of:

• The field name

• One value element in one specific record

• The list of all field values belonging to a given field within a record-list.

To avoid this undesirable ambiguity, I will mostly use the term “field name” to denote

the field name, the term “field value” to denote one value of one record, and the

specific term “field value-list” to denote the list of all field values belonging to a given

field within a given record-list.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 103 of 725

Notice that a given field name of a record-list applies both to the corresponding field-

list of the record-list, and to each and every field value belonging to that field value-

list.

C.4 What are database Tables?

Each record-list permanently stored (i.e., not just temporally used along Query

processing) in a database is stored in a Table. In addition to storing a record-list, a Table

has some important configured properties over its fields. When designing a database,

defining the Tables that will store the record-lists of the database is a fundamental

design decision. When you define the set of Tables of your database you should

carefully think what are the “entities” you want to represent in each Table, what are the

relevant data elements that make a proper description of each entity, and what are the

corresponding field properties in the Table. In a more operative way, when defining

each Table you need to define the names of its fields, the data type of each field, and the

order of the fields. In addition to this very basic definition of the Table, you will usually

also define the Key fields of the table, indexed fields, value masks, Relationships with

other database Tables and a few other advanced properties.

If you define a database, and at a later stage you want to change the Tables (add fields,

remove fields, change properties modify Relationships, …) this will be possible, but, it

will require to adjust a number of Queries and other database characteristics because

they will be affected by the changes in the Table design. This is why you should devote

some time and thought to define the database Tables in the initial database design, and

also, devote some time and thought every time you want to modify them.

If you want to configure your Tables in MS-Access, you may click “D.3 How do I create

and design a Table and its fields?”.

C.5 What is a pointer?

A pointer is an internal storage address of the database that allows the system to locate

each record and field value stored in the database.

The system uses record pointers to “move”, “order” and “copy” the records, without

actually moving, ordering or copying them. What the system does is move, order or

copy the record pointers, but not the record data itself. The system also uses the record

pointer whenever it needs to access the actual record values, for example, to show them

to you in the screen, or to do a calculation over them.

The system also uses field pointers, in addition to record pointers. In this way, the

content of a record is not the actual list of values, but a list of field pointers each

pointing to the corresponding field value.

You can think of a pointer as a kind of web-link (i.e., a web URL). You can copy the

web-link, mail it to a friend, insert it in a document, include it in your list of favorites,

and in the history of the navigator, but, the actual webpage stays put in its web server.

You only copy, move, duplicate or store the link (“pointer”) to the webpage, and not

the webpage itself.

Handling data with pointers has lots of advantages. When you have the same value (e.g.,

an e-mail address, a person name, …) in different records of the database, that value (on

most cases) is not stored twice in the database storage, the system just duplicates the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 104 of 725

field pointer, saving storage and avoiding possible data incoherence. Also, when the

system processes the records (e.g., change the order of the record-list according to the

value of a specific field) or runs a Query to get some results, the system will not actually

copy the records nor move them around in the system storage, and rather will just

copy or move the corresponding record pointers.

You will not handle pointers when you work with a database, because it is an internal

system tool. However, understanding what a pointer is will be very useful for you to

understand indexing and Relationships, which are very relevant when working with a

database.

Chapter “C.8 What is indexing?” presents some of the advantages of handling data

based on pointers.

C.6 What is a Null?

You may think of a Null as an unknown value.

Actually, a Null is a field pointer pointing to an invalid place (e.g., non-existing place)

in the system storage. Recall that a field pointer is an internal storage address of the

database that allows the system to locate field values stored in the database. Therefore,

a Null is a pointer to a non-existing storage place. Since the database system processes

fields by handling their corresponding field pointers, whenever the field pointer is not

valid, then the system is handling a Null.

A Null is not a valid value (and it is not the neutral element). A Number field

containing the value “0” is not a Null. The zero-length string (i.e., the string containing

zero characters) is not a Null. A string only composed of invisible characters (e.g.,

space, tab, new-line, ...) is not a Null. The case of String fields is particularly

problematic, because a Null, a zero-length string and an invisible string are all

different, but they all look the same as an empty cell on the screen.

Because a Null is like an unknown value, this may cause very different effects in your

database operators and functions. Fields having Null are treated as containing the same

value for the purpose of duplicate records because they are considered “equally

unknown”. However, comparing two Nulls with the “=” operator returns Null (it does

not return True), because being both unknown the result of asking if they are the same

is also unknown. Almost all value operators (click G.5) with one (or both) Null

operand(s) return Null. However, there are a few exceptions in which the value operator

returns a valid value. Most built-in functions with one (or more) Null arguments return

Null. However, there are some built-in functions with one (or more) Null arguments

that will return a valid value, while others will crash.

In spite of Nulls being highly undesirable, Nulls are unavoidable. Even if none of

your Tables have Nulls, outer join SQL operators, functions and other circumstances

will most likely generate Nulls, whether you like it or not. Therefore, you need to know

what a Null is, what it implies, and how to properly handle it.

If you want to know more about the different effects of Nulls and how to handle them,

you may click “K.5 Why and how should I carefully handle Nulls in my Queries?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 105 of 725

C.7 What are duplicate records and duplicate field values?

You may click:

• “C.7.1 What are duplicate records?”

• “C.7.2 What are duplicate field values?”

C.7.1 What are duplicate records?

Duplicate records are records from the same record-list that have the same value (or

Null) in all their field names, field name to field name. In other words, if we compare

their values field name by field, name they have the same value (or Null) in all of the

field names. Notice that for the purpose of duplicate records two Null are considered

as the same value.

Let us check duplicate records in the following example record-list:

T_Temperatures_A

Capital District Cal_Year Quart Temp_max Temp_min

Brasilia Asa_Norte 2018 Q1 17.5

Brasilia Asa_Norte 2018 Q1 17.5

Brasilia Asa_Norte 2018 Q1

17.5

Sao Paulo Jardins 2018 Q1 17.5

Brasilia Asa_Sul 2018 Q1 17.5

Brasilia Asa_Norte 2019 Q1 17.5

Brasilia Asa_Norte 2018 Q2 17.5

Brasilia Asa_Norte 2018 Q1 22.7

Brasilia Asa_Norte 2018 Q1 17.5 11.5

The first two records (shaded in light green) are duplicate records, because they have

the same values (or Null) under the same field names. The third record is not a

duplicate record because it has exactly the same values (or Null) as the first two

records, but, it is not under the same field names. Remaining records are not duplicate

records because each of them has one field with a different value from the first two

records. I have shaded in light orange the field values that are different in the records

that are not duplicate records.

Obviously, you can have more than two duplicate records in a given record-list.

Duplicate records are undesirable on most occasions, because sometimes are openly

wrong, and sometimes create ambiguity between an invalid and a valid record. One

example of being openly wrong would be the case of a Table of capital cities (with just

the capital name as its single field). There are no two capital cities with the same name,

so if you have two records with the same name, it is an error. One example of creating

ambiguity is a Table of invoices with fields “Invoice_Date”, “Amount” and

“Customer”. You could have several invoices in the same day for the same customer,

and if you see two with the same amount, you would be in doubt if it is really two

invoices, or it was duplicated by mistake. It would be better practice to add a field like

“Invoice_number” that makes every record in the invoice Table unique.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 106 of 725

Having, or not having, duplicate records in a record-list is a very important question that

will arise when analyzing other aspects of databases. For each record-list that you will

be handling in the database, either as a Table or a Query result, it is very important that

you are perfectly aware about whether it may have, or may not have, duplicate records.

In the large majority (but not all) of Tables you will not want duplicate records. You

can do a good database design and configure Table properties and the system will

automatically prevent duplicates. If you want to know more about how to prevent

duplicate records in Tables with MS-Access, you may click “C.9 How do I prevent

duplicate field values and duplicate records?” and “D.6 How do I configure the Primary

Key field(s) of a Table?”.

Regarding record-lists produced by Queries, in particular during intermediate

processing, they may have duplicate records. Even if all the database Tables are

duplicate-free, the Query processing may generate duplicate records. The SQL

language has ways to remove duplicates (the “DISTINCT” clause and the “UNION”

operator) in case you do not want duplicates in a given output record-list.

C.7.2 What are duplicate field values?

Duplicate field values are records from the same record-list that have the same values

in a group of field names, field name to field name. In other words, if we compare their

values field name by field name (for field names belonging to the group) between the

two records, they all have the same value. Notice that in this definition Null is not

considered the same value, while in the definition for duplicate records Null is

considered as the same value.

Let us check duplicate field values over the group of field names “Capital”, “District”

and “Cal_Year” in the following example record-list:

T_Temperatures_B

Capital District Cal_Year Quart Temp_max Temp_min

Brasilia Asa_Norte 2018 Q1 17.5

Brasilia Asa_Norte 2018 Q2 17.5

Sao Paulo Centro 2018 Q2 17.0

Brasilia Asa_Sul 2018 Q3 17.5

Brasilia Asa_Norte 2018 Q4 22.7

Brasilia Asa_Norte

Q4 27.5

Brasilia Asa_Norte

Q1 18.5

The first two records (shaded in green) have duplicate field values over the group of

field names “Capital”, “District” and “Cal_Year”, because they have the same values

under the same field names. The third to fifth record are not duplicate field values of

the first two records because they have a different value in either of the three field

names. The third to fifth records are also not duplicate field values among themselves.

The field with a different value in records third to fifth has been shaded in light orange.

The last two records are not duplicate values over “Capital”, “District” and “Cal_Year”,

because they have the same values under field names “Capital” and “District”, but, they

do not have the same value under field name “Cal_Year”. They both have Null under

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 107 of 725

“Cal_Year”, and Null is not considered the same value for the purpose of duplicate

field values. Recall that Null is considered the same value for the purpose of duplicate

records.

Obviously, you can have more than two duplicate field values over a certain group of

field names in a given record-list.

Notice that being duplicate-free over all the field names is not the same as being

duplicate-free, because duplicate-free requires that Nulls also are not the same, while

Nulls are not considered to be duplicates over a group of field names.

C.8 What is indexing?

Indexing is a computer science technique that allows to get the result of certain

operations over lists much faster. In particular, it allows to order a list instantaneously

and to get a partition of a list over a given value in a very fast way.

An index is a list of record pointers, ordered on the values of one (or more) field

value-list.

If you want to know more, you may click:

• “C.8.1 Why is indexing useful?”

• “C.8.2 Can I create one index over a list of field names (called a composite index)?”

• “C.8.3 What different types of indexes are there?”

• “C.8.4 What indexes can I configure in a given Table?”

• “C.8.5 Why should I use indexing in my database?”

If you want to know how to configure indexes in MS-Access, you may click:

• “D.5.1.7 What is the “Required” Table field property?”

• “D.5.1.8 What is the “Indexed” Table field property?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

Also, if you configure a simple or composite Key in the Table, MS-Access will

automatically configure the Key field(s) as a simple or composite (respectively) index

without duplicate values and without Nulls. If you want to know more about how to

configure your Key fields, you may click:

• “D.6 How do I configure the Primary Key field(s) of a Table?”.

C.8.1 Why is indexing useful?

In databases, indexing consists of building an ordered list of pointers (click C.5) to the

records of a record-list, where the order of the pointers is based on the values of the

record fields. An index is therefore a list of record pointers, ordered on the values of

one (or more) field value-lists. The cost of indexing is that the system has to devote

some previous processor time to build the index and also use some memory to store

the index(es). The index is valid while the record-list is the same. If you modify the

record-list by removing or inserting a record, you have to update the indexes.

Let us see the advantages of indexing. Imagine you have a record-list of invoices with

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 108 of 725

1,000,000 records. Now you want to run a Query with the following SQL code (if you

want to know more about the Select operation, you may click “F.7 What is a Select

operation and how do I write it?”):

 SELECT Invoice_num, Invoice_Date, Amount

 FROM Invoices_list

 WHERE Amount < 3,000

Without indexing, the system would have to retrieve the million records from the

database Table, and painfully go over all of them, checking one by one if the value of

its “Amount” field is lower than 3,000 or not. In case it is lower, the record is included

in the output record-list of the Query, and in case it is not, the record is not included. It

is pretty clear that checking the value of 1,000,000 records one by one will take some

time before getting the output record-list.

An excellent alternative to this one-by-one approach is to use indexing and binary

search. If the Invoice record-list was ordered, from min to max value of “Amount”,

you do not need to check the million records. Rather, you use a search method called

binary search, which is much faster. To apply binary search to an indexed record-list,

you first fetch the record in the middle of the record-list and check if its “Amount” value

is higher or lower than 3,000. In case it is higher, you fetch and check the record in the

position three quarters in the record-list, and in case is lower, you fetch and check the

record in the position one quarter. You do the same a few times until you find two

consecutive records such that the first one has “Amount” lower than 3,000 and the

second one has “Amount” higher or equal to 3,000. Then, all the records from the

beginning of the record-list up to, but not including, the one with “Amount” higher

than 3,000 are exactly the ones that satisfy the “WHERE” expression.

The principle of indexing is exactly the same as the one of ordering the elements in any

directory (words in a paper dictionary, terms in an encyclopedia, files in a file cabinet,

flights in an airport bill-board, etc.). Because the elements (words, files, flights, ...) are

ordered according to some criterion (alphabetically, by flight time, by flight destination

city, ...), you can find the one you want in a fast way. Imagine how much time it would

take you to find the word you want in a paper dictionary if it had an unknown ordering

of words!!!

As you have noticed from the examples that I have just shown, indexing and binary

search require much fewer record fetching and value checking operations than the

brute-force approach of looking through 1,000,000 records one by one. If we call “N”

the number of elements in the list, binary search only requires in the order of log2(N)

lookups, while a normal (i.e., sequential) search over a non-indexed list requires an

average of N/2 lookups. For a list of N=1,000,000 records, N/2 is 500,000 while log2(N)

is only around 20! As you may see, the advantage in processing time is enormous: from

doing record fetching and lookup over 500,000 records down to only 20 records!! The

longer the list, the largest the advantage of indexing plus binary search over sequential

search.

But probably you may think the following:

Yeah, great, but you need to know in advance that I am going to do a search

on the field “Amount”. What if I use a “WHERE” clause over “Invoice_Date”,

or over some other field? Then, having the list ordered by “Amount” would

not help a bit, right??

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 109 of 725

You are right, but, the great thing about indexing is that you may have each record-list

ordered under many field names at the same time. This is so because indexing does

not change the order of the records in the record-list. The records are statically stored

in some position of the computer storage, and the system does not move them around

(it would be too costly in terms of processor time). What the system does to order a

record-list is to create an index, this is, an ordered list of record pointers. Recall that

a record pointer is an internal storage address of the database that allows the system to

locate each record stored in the database. Therefore, the system can build and store

several indexes, this is, several ordered lists of record pointers. Each index is

ordered following the criterion of the values of one specific field name. If a record-list

has an index on a given field name, then we say the record-list is indexed on that field

name.

Let me try to show all of this with an example. Let us consider the following Table of

invoice records:

R_POINTER Invoice_Date Invoice_Num Amount Invoice_VAT Description Customer

103==> 03-ene-15 501 457,56 96,09 Transceiver Cisco

104==> 04-sep-15 503 1.435,34 301,42 Wifi Access Point NEC

105==> 08-mar-15 502 747,67 157,01 Wifi Access Point Telefonica

106==> 08-jul-15 504 1.335,00 280,35 Tata

107==> 07-ene-16 505 1.892,90 397,51 IP Switch Huawei

108==> 26-oct-16 506 4.125,89 866,44 2000 SIM cards Telefonica

109==> 26-feb-16 507 144,70 30,39 Tata

110==> 13-ene-17 508 2.690,55 565,02 131 cans Huawei

111==> 18-dic-17 509 5.160,00 1.083,60 IP Switch Tata

112==> 15-feb-17 510 2.243,01 471,03 Consulting Services Cisco

113==> 20-ene-18 512 1.058,50 222,29 IP Switch NEC

114==> 05-oct-18 511 1.695,56 356,07 1678 SIM cards Telefonica

115==> 05-feb-18 513 6.540,04 1.373,41 Wifi Access Point NEC

The first column shown (called “R_POINTER”) is not a field name of the Table. Rather,

it represents the “record pointer”, which is the internal identifier used by the database

system to locate each record in the system storage. If we want to index this Table under

each and every of its field names, then the database system will build the following six

indexes (i.e., six ordered lists of record pointers), each index corresponding to the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 110 of 725

ordered values of each of the record’s field names:

Index on
Invoice_Date

Index on
Invoice_Num

Index on
Amount

Index on
Invoice_VAT

Index on
Description

Index on
Customer

103==> 103==> 109==> 109==> 106==> 112==>

105==> 105==> 103==> 103==> 109==> 103==>

106==> 104==> 105==> 105==> 110==> 110==>

104==> 106==> 113==> 113==> 114==> 107==>

107==> 107==> 106==> 106==> 108==> 113==>

109==> 108==> 104==> 104==> 112==> 104==>

108==> 109==> 114==> 114==> 107==> 115==>

110==> 110==> 107==> 107==> 111==> 106==>

112==> 111==> 112==> 112==> 113==> 109==>

111==> 112==> 110==> 110==> 103==> 111==>

113==> 114==> 108==> 108==> 104==> 114==>

115==> 113==> 111==> 111==> 105==> 108==>

114==> 115==> 115==> 115==> 115==> 105==>

As you may see, one given record-list can have several indexes associated to it, and

this is actually quite frequent in database Tables.

Notice that some of the field value-lists in this example have duplicate values and/or

Nulls.

There is no problem with this, because indexing works in the presence of duplicate

values and/or Nulls. When a field value-list has duplicate values, the index lists each

group of duplicate values in the correct order in respect to the other values, and the

duplicate values do not follow any specific order among themselves. Regarding Nulls,

for the purpose of indexing they are considered as the same “unknown” value, and they

are placed the first ones (in ascending order) in the index. To clarify this, I have marked

with the same color the groups of duplicate field values (or Nulls) under the field name

“Description”. You may see that each group of duplicate values is correctly ordered in

respect to the other values.

The relative order of the records within each group of duplicate values can be whatever:

the example above could order the pointers with the same color in a different way and

the index would still be totally correct.

C.8.2 Can I create one index over a list of field names (called a

composite index)?

Yes, we can! A composite index is one index created with the ordering criterion of a

list of fields instead of the ordering criterion of just one field, as you have seen up to

now.

The way to build a composite index is by starting to order the record pointers on the

values of the first field name. Each group of record pointers corresponding to the

same value in the first field is then ordered on the values of the second field in the list

of fields. Each group of record pointers that have the same value A in the first field and

also the same value B in the second field is then ordered on the values of the third field,

and so on.

When configuring a composite index, you can choose for each field in the list of fields

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 111 of 725

if you want ascending or descending as an ordering criterion of the values of that field.

If you created a composite index on the list of field names “Description”, “Customer”

and “Amount”, all in ascending order, you would get the following result:

T_Invoices_Indexing

R_POINTER Invoice_Date Invoice_Num Amount Invoice_VAT Description Customer

109==> 26-feb-16 507,00 144,70 30,39

Tata

106==> 08-jul-15 504,00 1.335,00 280,35

Tata

110==> 13-ene-17 508,00 2.690,55 565,02 131 cans Huawei

114==> 05-oct-18 511,00 1.695,56 356,07 1678 SIM cards Telefonica

108==> 26-oct-16 506,00 4.125,89 866,44 2000 SIM cards Telefonica

112==> 15-feb-17 510,00 2.243,01 471,03 Consulting
Services

Cisco

107==> 07-ene-16 505,00 1.892,90 397,51 IP Switch Huawei

113==> 20-ene-18 512,00 1.058,50 222,29 IP Switch NEC

111==> 18-dic-17 509,00 5.160,00 1.083,60 IP Switch Tata

103==> 03-ene-15 501,00 457,56 96,09 Transceiver Cisco

104==> 04-sep-15 503,00 1.435,34 301,42 Wifi Access Point NEC

115==> 05-feb-18 513,00 6.540,04 1.373,41 Wifi Access Point NEC

105==> 08-mar-15 502,00 747,67 157,01 Wifi Access Point Telefonica

You may check that the list of record pointers (i.e., the index) is ordered first on

ascending value of “Description”, then on ascending value of “Customer” and finally

on ascending value of “Amount”.

Although the relevance of this fact is usually low, I want to point out that the fields that

make a composite index are stated in order, and the order you choose has some impact

on the performance of the index. As I stated slightly above, the records in the list are

ordered on the first place according to the values of the first field in the index, the ones

with the same value in the first field are then ordered among themselves according to

the value of the second field in the index and so on. I will not go into the detail of why

this impacts performance, and will only indicate that to improve performance, you

should put first the fields with less duplicate values in the record-list (i.e., the ones that

are more “unique”) and last the fields with more duplicate values.

Notice further that, like it happens with a simple index, a composite index may also be

built over a record-list that has duplicate value arrays in the fields belonging to the

index. When I say duplicate “value array” I mean that the values of two records, when

comparing, field name by field name, the values of the fields in the index, have the same

values in all the field pairs of fields belonging to the index. This is, two or more records

have the same value array in the fields belonging to the index. Like in the simple index

case, this is not a substantial problem and indexing works fine over composite indexes

in the presence of duplicate value arrays: it is just less efficient (the more duplicates, the

less efficient).

If you want to know how to actually configure a composite index with MS-Access, you

may click “D.7 How do I add simple and/or composite index(es) to a Table?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 112 of 725

C.8.3 What different types of indexes are there?

You may click:

• “C.8.3.1 What are simple indexes and composite indexes?”

• “C.8.3.2 What are indexes with duplicate values and without duplicate values?”

• “C.8.3.3 What are indexes that ignore Nulls and not ignore Nulls?”

• “C.8.3.4 What are indexes with Nulls and without Nulls?”

• “C.8.3.5 What is an index without duplicate values and without Nulls?”

C.8.3.1 What are simple indexes and composite indexes?

You can configure simple indexes and composite indexes. I described composite

indexes in “C.8.2 Can I create one index over a list of field names (called a composite

index)?”.

A composite index is built over one ordered list of fields, while the simple index is

built over only one field. There is no conceptual difference between a simple and

composite index: a simple index is just a particular case of the more general concept

of composite index. A simple index is the particular case where there is only one field

in the index field list. However, it is usual practice to distinguish both and this is why a

specific name has been assigned to each.

Because a simple index is just a particular case of a composite index, I will do all my

explanations about “indexes” in a generic way. I will only make a distinction between

a simple and a composite index if it is required for some reason.

C.8.3.2 What are indexes with duplicate values and without duplicate

values?

As I explained in “C.8.1 Why is indexing useful?”, indexing works and serves to

improve performance. Performance is improved even in the presence of duplicate value

arrays in the index fields across the records in the Table.

Therefore, it makes sense to configure indexes even if there are duplicate value arrays.

However, it also makes sense to configure indexes that prevent the existence of

duplicate value arrays in the fields of the index. I will call this type of index an index

without duplicate values. When this type of index is configured in a Table, the system

prevents inputting in the Table any new record that has a duplicate value array in the

fields of the index in respect to every other record already existing in the Table. This

type of index guarantees that each and every record in the Table will have a different

value array in the Table fields that are included in the index. Just to clarify, when I say

same “value array” this means that the values of the fields are the same comparing

fieldname by fieldname between two different records, considering the fields

belonging to the index.

Notice that guaranteeing that the index value arrays are unique does not guarantee that

there will not be duplicate records. The reason for this is the possible presence of Nulls

in the fields belonging to the index. Because Null is not a value, two Nulls in the same

field in two different records will be considered as different values por the purpose of

accepting a newly input record into the Table. This causes that even if you configure an

index without duplicate values, it is possible to have duplicate records in the Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 113 of 725

C.8.3.3 What are indexes that ignore Nulls and not ignore Nulls?

As I have shown in “C.8.1 Why is indexing useful?”, indexing works and serves to

improve performance even in the presence of Nulls in the index fields. Therefore, it

makes sense to configure indexes that include in the index the records that have Nulls

in the index fields, across the records of the Table. This is called in MS-Access “not

ignore Nulls”.

However, it also makes sense to configure indexes that exclude from the index the

records that have Null in one or more index fields. Excluding from the index the records

with Nulls in one or more index fields will make the index have a better performance

for the records that do not have Nulls. This is called in MS-Access “ignore Nulls”

I want to highlight that it is very different to configure an index to ignore Nulls (i.e.,

not including in the index the records that have one or more Nulls in the index fields),

than to configure the index fields as without Nulls (i.e., configuring all the fields in the

index as “Required=Yes” and making sure the fields do not contain any pre-existing

Null). Configuring an index to ignore Nulls just makes the index slightly more efficient,

but it does not guarantee the absence of Nulls in the index fields of your Table records.

However, configuring all the index fields as without Nulls actually enforces that there

are no Nulls in the index fields. Notice that in case there are Nulls in a Table field when

you configure it as “Required=Yes”, MS-Access will issue a warning message, but the

Nulls will stay there. If you want the field value-list to contain no Nulls, you should

manually remove from the field value-lit all its pre-existing Nulls.

C.8.3.4 What are indexes with Nulls and without Nulls?

An index without Nulls is when all the field value-lists in an index do not contain any

Null. Otherwise, I will call it an index with Nulls. To configure a Table field as without

Nulls you have to set its Required property to “Yes” (click D.5.1.7), and in case you get

a warning that the field contains Nulls, you should manually remove all the Nulls from

the field.

Notice that in MS-Access the property “Required” is not part of the configuration of

the index itself, and rather it is a configuration of each individual Table field. Therefore,

configuring a given Table field as with Nulls or without Nulls will first affect the field

itself, because it cannot have Nulls across all Table records, and second, this will affect

all the Table indexes that include the field.

I want to highlight that it is very different to configure an index to ignore Nulls (i.e.,

not including in the index the records that have one or more Nulls in the index fields),

than to configure the index fields as without Nulls (i.e., configuring all the fields in the

index as “Required=Yes” and making sure that the index fields do not contain any pre-

existing Null). Configuring an index to ignore Nulls just makes the index slightly more

efficient, but it does not guarantee the absence of Nulls in the index fields of your Table

records. However, configuring all the index fields as without Nulls actually enforces

that there are no Nulls in the index fields. Recall that in case there are Nulls in a Table

field when you configure it as “Required=Yes”, MS-Access will issue a warning

message and you should manually remove from the field all its pre-existing Nulls.

C.8.3.5 What is an index without duplicate values and without Nulls?

An index without duplicate values and without Nulls is an index configured as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 114 of 725

without duplicate values (click C.8.3.2 and to configure D.7.1 and D.7.2) and where

all its fields are configured as without Nulls (click C.8.3.4 and to configure D.5.1.7).

This should not be mistaken with an index configured as without duplicate values and

ignore Nulls (click C.8.3.3 and to configure D.7.1 and D.7.2), which is a very different

thing.

An index without duplicate values and without Nulls has several important properties:

• It prevents duplicate records in the Table.

If you want more detail on this, you may click “C.9 How do I prevent duplicate field

values and duplicate records?”.

• The index fields can be configured in MS-Access as the Primary Key.

If you want more detail on this, you may click “C.10 What are the Table Key(s) and

how should I handle them?”.

• The index fields can be the master fields in a Relationship with referential

integrity.

If you want more detail on this, you may click “C.11.1 What is a Relationship with

referential integrity?”.

• The index fields can be used in a many-to-many Relationship.

If you want more detail on this, you may click “C.11.4 What is a many-to-many

Relationship?”.

• Any superset of the index fields can be the slave fields in a one-to-one

Relationship.

If you want more detail on this, you may click “C.11.2 What are “one-to-many”

and “one-to-one” Relationships?”.

If you want to know more about the interactions between Nulls, duplicates, indexing

and Key fields, you may click “K.2.3 What are the interactions between Nulls,

duplicates, indexing, and Key field(s)?”.

C.8.4 What indexes can I configure in a given Table?

Some important remarks that you should know about configuring indexes in your Tables

are the following:

• Remind that configuring indexing over one individual field name (i.e., a simple

index) is just a particular case of configuring indexing over a list of field names

(i.e., a composite index). The particular case is the one where the list only contains

one field name.

• You can configure several simple indexes and/or composite indexes in the same

Table.

• A given Table field may belong to several composite indexes, and it can also be a

simple index in itself, all at the same time.

• You can configure, on a given Table, some indexes with duplicate values (only to

improve performance) and other indexes without duplicate values (to also restrict

the values of records in the Table).

• You can configure each index in the same Table to include or not (i.e., not ignore

or ignore) the records that have one or more Nulls in the index fields. Configuring

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 115 of 725

an index to not include records with Nulls just makes the index slightly more

efficient, but it does not prevent Nulls in the corresponding fields of your Table

records.

• It is very different to configure an index to ignore Nulls (i.e., not including in the

index the records that have one or more Nulls in the index fields), than to configure

the index fields as without Nulls (i.e., configuring all the fields in the index as

“Required=Yes” and making sure that the fields do not contain any pre-existing

Null). Configuring an index to ignore Nulls just makes the index slightly more

efficient, but it does not guarantee the absence of Nulls in the index fields of your

Table records. However, configuring all the index fields as without Nulls (i.e.,

configuring all the fields in the index as “Required=Yes” and making sure that the

fields do not contain any pre-existing Null) actually enforces that there are no Nulls

in the index fields. Recall that in case there are Nulls in a Table field when you

configure it as “Required=Yes”, MS-Access will issue a warning message, but the

Nulls will stay in the Table: if you do not want Nulls, you should manually remove

from the field all its pre-existing Nulls.

• Linking with the previous point, it is very different to configure an index without

duplicate values and ignore Nulls, than to configure an index without duplicate

values and without Nulls. The latter index has very valuable properties

(click C.8.3.5), while the former index is just an index without duplicate values

where records with Null in one (or more) index field(s) are not included in the index.

• Combining the configuration of duplicate values, “Required” (i.e., without Nulls)

and ignoring Nulls, you can configure in the same Table or in different Tables:

• Indexes with duplicate values, with Nulls and not ignore Nulls

• Indexes with duplicate values, with Nulls and ignore Nulls

• Indexes with duplicate values and without Nulls

• Indexes without duplicate values, with Nulls and not ignore Nulls

• Indexes without duplicate values, with Nulls and ignore Nulls

• Indexes without duplicate values and without Nulls

• It is very different to configure a composite index over a given list of Table field

names than configuring a simple index over each and every individual field in the

list. The composite index will improve performance when expressing Query

conditions over the whole list of fields (e.g., in Relationships), while each simple

index will improve performance when expressing Query conditions over each

individual field.

• It is very different to configure a composite index without duplicate values over

a given list of Table field names than to configure a simple index without duplicate

values over each and every individual field in the list. Configuring a simple index

over each and every individual field name in the list is a much more restrictive

condition, because it implies there should be no duplicate values in each of the

individually indexed fields, while the composite index only prevents duplicate value

arrays over all the index fields.

• It is very different to configure a composite index without duplicate values and

without Nulls values over a given list of Table field names than to configure a

simple index without duplicate values and without Nulls over each and every

individual field in the list. In the second case, you can configure each and every

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 116 of 725

of the index fields as the Primary (simple) Key, while in the first case you cannot.

• If you configure indexing without duplicate values over a given group of Table

field name(s) called {Field_group}, you can also configure indexing without

duplicate values over any list of field names that includes {Field_group} and the

no-duplicate-value condition is guaranteed for sure. This is so because just one

field name that has no duplicate values, implies that any group of field names that

includes that field will have no duplicate values: the values of this individual field

will be different for sure in all the Table records, regardless of the values of the

other field names in the list.

C.8.5 Why should I use indexing in my database?

Configuring indexes in your Tables is very useful, and it should be done in almost

every Table.

Having one or more indexes (with or without duplicate values and with or without-

Nulls) in a Table serves a very relevant purpose:

• Largely improving the performance of your database

You may click “C.8.5.1 Why indexing improves performance?”.

Having at least one index without duplicate values and without Nulls in a Table

serves an extremely relevant purpose:

• Preventing duplicate records in the Table

You may click “C.8.5.2 Why indexing prevents duplicate records in a Table?”.

Having one or more indexes without duplicate values and without Nulls in a Table

serves a very relevant purpose:

• Establishing Relationships with referential integrity between Tables

You may click “C.8.5.3 Why indexing allows establishing Relationships

between Tables?”.

C.8.5.1 Why indexing improves performance?

If my explanation in “C.8.1 Why is indexing useful?” was so bad that you do not see

how/why indexing works, you should not worry a bit: just take my word for it (hey, I

am a Professor!).

The only relevant point is that you should configure indexing in every Table field

name, or list of field names, over which it is likely that you will establish some Query

condition (e.g., a “WHERE” or “ON” expression). The reason is that this will make your

Queries much faster. If that field or list of fields can have duplicates or Nulls, you

should configure the index to allow duplicates or not, and ignore Nulls or not, as it

corresponds according to other criteria.

C.8.5.2 Why indexing prevents duplicate records in a Table?

Duplicate records in Tables (click “C.7.1 What are duplicate records?”) create

significant risks of incorrect interpretation of the records and it is difficult to find a sound

reason why you would need them. Preventing duplicate records in Tables is done

automatically by the database if you define at least one index without duplicate values

and without Nulls.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 117 of 725

I strongly recommend you prevent duplicate records in (almost) all your Tables.

Remind that each field, or group of fields, having an index without duplicate values

and without Nulls can be configured in MS-Access as the Primary Key of the Table.

If you want to know more about the concept of Table Key, you may click “C.10 What

are the Table Key(s) and how should I handle them?”.

C.8.5.3 Why indexing allows establishing Relationships between Tables?

I have not yet explained Relationships, but I will do it in “C.11 What is a Relationship?”

further down. You can click C.11, read it, and then come back, or rather, continue

reading here just believing what I say.

You can only create a Relationship with referential integrity (i.e., a one-to-many or a

one-to-one Relationship) if the master field(s) have an associated index without

duplicate values and without Nulls. Notice that it is not enough that some of the

master fields have such an index: what is required is that exactly the master fields have

an associated index without duplicate values and without Nulls. If a Table does not

have any index without duplicate values and without Nulls, it is impossible to

establish a Relationship with referential integrity where that Table is the master Table

(i.e., from that Table to any other Table).

You can only create a one-to-one Relationship if the slave the fields (or any subset of

the) have an index without duplicate values and without Nulls. If the slave Table

does not have any such index, it is impossible to establish a one-to-one Relationship

to it.

You can only create a many-to-many Relationship between several Tables if each and

every Tables has an index without duplicate values and without Nulls with the same

number of fields and where the list of field type and size of the index fields of all the

Tables is the same. Otherwise, it is impossible to establish a many-to-many

Relationship between that Tables.

You will certainly want to define Relationships in your database, so you should first

define at least one index without duplicate values and without Nulls in (almost) every

Table, each time you create it.

C.9 How do I prevent duplicate field values and duplicate

records?

You may click:

• “C.9.1 How I do I prevent duplicate field values over a group of field name(s) in my

Tables?”

• “C.9.2 How I do I prevent duplicate records in my Tables?”

• “C.9.3 How do I prevent duplicate records in my Query’s record-lists?”

C.9.1 How I do I prevent duplicate field values over a group of field

name(s) in my Tables?

The way the system prevents duplicate values over a group of field names in a Table is

by checking if any new record that the user wants to insert in the Table is a duplicate

value over that group of fields. This implies that every time you want to insert a new

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 118 of 725

record, the system must search the whole Table, to check if the new record is a duplicate

value over the group of fields. How can we do this checking in a fast way? The answer

is simple: build an index without duplicate values and without Nulls over that group

of field names!! This will allow the system to automatically check in a very fast way if

the field values of the new record that is being inserted are duplicate values or not, and

therefore, the system can decide if the new record can be inserted or not.

Therefore, if you want to configure the system to prevent duplicate values in a Table

over a group of field names, you must configure indexing without duplicate values

over that group of fields in that Table.

If you configure indexing without duplicate values over a group of field names, the

database system will not allow you to input a new record with the same values in the

group of field names as the ones in another record already existing in the Table.

Notice that, in order to prevent duplicate records, you have to configure all the fields

in the index as without Nulls in addition to configuring the index as without duplicate

values. This is so because an index configured as without duplicate values does not

consider two (or more) Nulls as “the same value”, because indexing considers Nulls as

“unknown”, and therefore, they can be the same value or not. Therefore, if you configure

an index without duplicates but allowing Nulls, the database system will allow you to

insert new records with Null in one (or more) of the fields of the index, even if there is

already another record with the same values in the other fields in the group. Even if

you already have records having Null in the same field(s) as the new record you are

inserting, the system will allow you to insert the new record.

Therefore, if you only prevent duplicates over field values (i.e., by configuring an

index without duplicate values) this will not prevent duplicate records, because

duplicate records can happen because of having Null in some fields.

If you want to know more about how to configure indexing in MS-Access, you may

click “D.7 How do I add simple and/or composite index(es) to a Table?”.

C.9.2 How I do I prevent duplicate records in my Tables?

You can make the system prevent duplicate records by preventing duplicate values

on a group of field names, plus, preventing Nulls in each and every field name in

the group of field names. This is done by configuring the system to enforce indexing

without duplicate values over a group of field names, plus, configuring each and

every field name in the group as without Nulls (i.e., configuring it as

“Required=Yes”).

Notice that if there are no duplicate values over a group of field names, and also, there

are no Nulls in the group fields, then it is impossible to have a duplicate record (unless

there were pre-existing values).

If you configure indexing without duplicate values over a group of field names, plus,

configuring each and every field name in the group as without Nulls (i.e., as

“Required=Yes”), MS-Access will not allow you to input a new record with the same

values, or Null, in the group of field names as the ones in another record already

existing in the Table.

Some important remarks about configuring indexing without duplicate values over

one groups of field names, plus, configuring all the field names in the group as without

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 119 of 725

Nulls (i.e., as “Required=Yes”):

• You can configure indexing without duplicate values and without Nulls over

several groups of field names: each group of fields names just requires its own

specific composite index and each individual field configured without Nulls.

• Configuring indexing without duplicate values and without Nulls over one

individual field name is just a particular case of a group of field names where the

group only contains one field name.

• It is not the same to configure indexing without duplicate values and without

Nulls over a composite group of field names than configuring indexing without

duplicate values and without Nulls over each and every individual field name in

the group. Configuring indexing without duplicate values and without Nulls over

each and every individual field name in the group is a much more restrictive

condition.

To configure indexing without duplicate values and without Nulls over composite

fields (or over individual fields), you just configure indexing without duplicate values

as indicated in “C.9.1 How I do I prevent duplicate field values over a group of field

name(s) in my Tables?”, and in addition, you configure each and every Table field as

without Nulls.

Remind that to configure a Table field as without Nulls you have to open the Table in

“Design View” and click on the field you want to configure. Find the row “Required”

in the field properties, placed at the bottom of the “Table pane”, in the tab “General”.

Right-click on the rightmost side of the row and click on “Yes” from the drop-down

menu. This guarantees that MS-Access does not allow you to enter any Null into this

field (but notice that pre-existing Nulls will stay in the Table, unless you manually

remove them).

If you want to know more about how to configure your indexes, you may click:

• “D.5.1.7 What is the “Required” Table field property?”

• “D.5.1.8 What is the “Indexed” Table field property?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

If you want to know more about the interactions between indexing, Nulls and Key

fields, you may click:

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?”

C.9.3 How do I prevent duplicate records in my Query’s record-lists?

Record-lists produced by Queries, in particular during intermediate processing, may

have duplicate records. Even if all the database Tables are duplicate-free, the Query

processing may generate duplicate records.

If you want to prevent duplicates in the output record-list of a Select operation, you

only need to add the optional clause “DISTINCT”, and all duplicate records will be

removed, leaving one, and only one, record from each group of duplicate records.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 120 of 725

If you want to prevent duplicates in the output record-list of a Union operation, you

only need to use the operator “UNION”, instead of “UNION ALL”. This will remove all

duplicate records from the output record-list, leaving one, and only one, record from

each group of duplicate records. Notice this will remove duplicate records existing in

each of both input record-lists, even if they are not duplicates in respect to the other

record-list.

Notice that using “DISTINCT” or “UNION” (vs. not using “DISTINCT” or using

“UNION ALL”) will make your Queries slower because the system has to check for

duplicate records, and remove them if found, before producing the output record-list.

If you want to know more about this, you may click:

• “F.7.11 What is the “DISTINCT” clause of a Select?”

• “F.9.1 What are the Union operators?”

C.10 What are the Table Key(s) and how should I handle

them?

You may click:

• “C.10.1 What is the Primary Key of a Table?”

• “C.10.2 What is a simple Key and a composite Key?”

• “C.10.3 What are the candidate Keys of a Table?”

If you want to configure the Primary Key in MS-Access, you may click:

• “D.6 How do I configure the Primary Key field(s) of a Table?”.

C.10.1 What is the Primary Key of a Table?

The Primary Key of a Table is one, and only one, minimal group of field names used

by the system to jointly identify the type of entities represented in this Table, and also,

to jointly identify the record corresponding to each entity in the Table. The Primary

Key may be composed of one or more field names.

The group of field(s) of the Primary Key must satisfy the following four necessary

and sufficient conditions:

• No Primary Key field can contain Null.

• The combination of values of the Primary Key field(s) must be different in

each and every Table record.

• No subset of the Primary Key fields may also identify each record (entity) in

the Table. This condition is called being “minimal”.

• A Table can have one, and only one, Primary Key.

MS-Access enforces the two first conditions above by automatically configuring an

index without duplicate values and without Nulls for the Primary Key field(s). MS-

Access also enforces the fourth condition, and if you configure a second Primary Key,

the previously existing one will be cleared. However, MS-Access does not enforce the

third condition (being minimal): it is therefore possible to define a Primary Key for

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 121 of 725

any superset of the Primary Key field(s). This allows more design flexibility but may

also lead to worse database designs.

Linking with the sections on duplicates (C.7, C.9) and indexing (C.8), the Primary

Key field(s) must have an index without duplicate values and without Nulls. MS-

Access will automatically create this index when you configure the Primary Key

field(s).

The term “Primary Key” of the Table is frequently shortened to just saying the “Key”

of the Table.

Let us see one example of Primary Key, based on the following Table that lists

employees:

T_Employees

Social_Security_Num Given Name Middle Name Family Name Birth_Date

34562444 Arturo

Azcorra 09-dic-65

52674883 John William Doe 13-dic-75

64537727 Silvia

Johnson 13-feb-79

It makes all the sense to have “Social_Security_Num” as the Primary Key (i.e., the field

name that identifies each entity in the Table), while “Given_name”, “Middle_name”,

“Family_name” and “Birth_Date” are fields that provide information about each entity

in the Table. Each entity is an employee and is uniquely identified by his/her Social

Security number. His/her given name, family name and birth date are his/her attributes

and are registered in other fields in his/her specific and unique record. Notice that in

this case the group of field names that constitute the Primary Key of the Table is only

one field name.

When you design a database, you create Tables with many purposes. Some Tables will

serve the purpose of listing different types of entities (invoices, pay slips, cities, engine

parts, car models, addresses, ...) that are relevant for you. Each of these Tables contains

a listing of all entities of a given type. You can have the Table of invoices, or the Table

of engine parts, or the Table of Capital Cities. In each of these Tables, some fields serve

to identify each particular entity (e.g., a specific invoice or engine part), and the other

fields provide data over the entity (e.g., the invoice date, the invoice amount, ...). The

Primary Key field(s) are the ones used by the database system to identify the entity

itself. This is what I have just shown in the example of the Table of employee data.

If you want to know more about the interactions between indexing, Nulls and Primary

Key field(s), you may click “K.2.3 What are the interactions between Nulls, duplicates,

indexing, and Key field(s)?”.

C.10.2 What is a simple Key and a composite Key?

A Key may be composed of one or more field names. There is no conceptual

difference between a Key being one or more field names. However, for practical

purposes it is convenient to distinguish both cases, and this is why most books use a

specific term for each case:

• A “simple” Key is the one composed of only one field name.

• A “composite” Key is the one composed of more than one field name.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 122 of 725

C.10.3 What are the candidate Keys of a Table?

A candidate Key of a Table is any minimal group of field names that could be used

by the system to jointly identify the type of entities represented in this Table, and also,

to jointly identify the record corresponding to each entity in the Table. Each

candidate Key may be composed of one or more field names. The Primary Key is

therefore one of the candidate Keys of the Table, and each candidate Key if a feasible

option to be the Primary Key.

The field(s) of each candidate Key must satisfy the following three necessary and

sufficient conditions:

• No candidate Key field can contain Null.

• The combination of values of the candidate Key field(s) must be different in

each and every Table record.

• No subset of the fields may also identify each record (entity) in the Table. This

condition is called being “minimal”.

If you want to configure in MS-Access a set of field(s) as a candidate Key, you will

have to enforce the conditions above. The way to do it is by configuring an index

without duplicate values and without nulls for the field(s) you want to become a

candidate Key. MS-Access does not require you to enforce the third condition (being

minimal): it is therefore possible to define a Primary Key for any superset of the

Primary Key field(s). This allows more design flexibility but may also lead to worse

database designs.

Linking with the sections on duplicates (C.7, C.9) and indexing (C.8), you may

configure an index without duplicate values and without Nulls for the field(s) of

any candidate Key.

If you want to know more about the interactions between indexing, Nulls and Primary

Key field(s), you may click “K.2.3 What are the interactions between Nulls, duplicates,

indexing, and Key field(s)?”.

C.11 What is a Relationship?

Creating a Relationship is relating an ordered list of Table field names (the master

fields) with another ordered list of Table field names (the slave fields) such that the

values of the slave fields in any slave record must be equal to the values of the master

fields in one of the existing master records. The Table of the master fields is the

master Table and the Table of the slave fields is the slave Table.

Let us see this with an example. I can create a Relationship from the master field “City”

from the master Table “T_Subsidiary_Sites” to the slave field “Capital” from the slave

Table “T_Capital_Cities”. This means that the value of the field

“T_Capital_Cities.Capital” must take the value of the field “City” from one of the

existing records of the Table “T_Subsidiary_Sites”. If you now go over the values of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 123 of 725

following two Tables

T_Subsidiary_Sites T_Capital_Cities

City Country Capital State_Province Country

Beijing China Beijing No_data China

Bilbao Spain Brasilia No_data Brazil

Brasilia Brazil Buenos Aires No_data Argentina

Buenos Aires Argentina Madrid Madrid Spain

Sidney Australia

Washington
District of
Columbia

United
States

Madrid Spain

Sao Paulo Brazil

Stuttgart Germany

Washington
United
States

you can check that all the values of “City” in the slave records (from “T_Capital_Cities”)

satisfy the Relationship you created in respect to the values of “Capital” in the master

records (from “T_Subsidiary_Sites”).

However, if you now entered a record in the slave Table “T_Capital_Cities” with the

“Capital” value “Moskow”, then you would be violating the Relationship, because there

is no record in the master Table “T_Subsidiary_Sites” with the value “Moskow” in its

field “City”.

A Relationship is a very simple concept, but, it has surprisingly useful and complex

applications.

I will now make a few clarifications over Relationships.

If a given Relationship involves more than one field, the relation between master fields

and slave fields is defined by field pairs (i.e., each specific master field is related to

one specific slave field). For example, you can establish one Relationship between the

master Table “T_Subsidiary_Sites” and the slave Table “T_Capital_Cities” in which

“City” is the master field of “Capital” and “Country” (from “T_Subsidiary_Sites”) is

the master field of “Country” (from “T_Capital_Cities”).

Relationships are not commutative (i.e., they are directional). Notice that it is very

different to say:

Each slave field “Capital” from “T_Capital_Cities” must take a value from the

master field “City” in one existing record of “T_Subsidiary_Sites”.

from saying:

Each slave field “City” from “T_Subsidiary_Sites” must take a value from the

master field “Capital” in one existing record of “T_Capital_Cities”.

As you may see, the values of the slave field(s) in all the records from the slave Table

are a subset of the values of the master field(s) in all the records from the master

Table. This clearly shows that a Relationship is not commutative.

Notice that a given Table may be involved in many Relationships with many other

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 124 of 725

Tables, but any given Relationship is always defined between two, and only two,

Tables.

It is possible (although very unusual) to establish a Relationship between fields of the

same Table. If you do this, the master Table and the slave Table is the same Table.

It is different to establish one Relationship over two (or more) field pairs, than

establishing two (or more) different Relationships each of them over one field pair. I

will show this difference with the last example above. Notice that you just created one

Relationship between the two master fields “City” and “Country” in respect to the two

slave fields “Capital” and “Country”. This means that “Capital” and “Country” can only

take values from an existing record in the master Table “T_Subsidiary_Sites”. If this is

fulfilled, the records in “T_Capital_Cities” will be correct, because all of them will have

a correct value in the “Capital” and “Country” coming from some record of

“T_Subsidiary_Sites”. Now, if you create instead two Relationships, one Relationship

between “City” and “Capital” and another Relationship between “Country” and

“Country”, the situation is quite different. Now, the field “Capital” can take any existing

value from the field value-list “City”, and the field “Country” (from “T_Capital_Cities”)

can take any existing value from the field value-list “Country” (from

“T_Subsidiary_Sites”). This means that [Beijing, Spain] would be a valid record in

“T_Capital_Cities” because “Beijing” is a valid value (it exists in its corresponding

master field value-list “City” in “T_Subsidiary_Sites”), and “Spain” is also a valid value

(it exists in its corresponding master field value-list “Country” in “T_Subsidiary_Sites”).

However, it is pretty obvious that the record [Beijing, Spain] is wrong. You can now

see that establishing one Relationship between two field pairs, and establishing two

Relationships, each between one field pair is clearly different.

Let me summarize the characteristics of Relationships that I have presented above:

• The values of the slave fields in every slave record must be the same as the values

of the master fields in some master record.

• A Relationship can only be established from one, and only one, master Table to

one, and only one, slave Table.

• A given Table can be involved in many Relationships, some as master Table and

others as slave Table.

• Relationships are directional. This means that it is not the same to define a

Relationship from Table A (master) to Table B (slave) than to define a Relationship

from Table B (master) to Table A (slave).

• The values of the slave fields in the slave records are a subset of the values of the

master fields in the master records.

• It is very different to establish one Relationship over two (or more) field pairs, than

establishing two (or more) different Relationships each of them over one field pair.

• It is possible (although very unusual) to establish a Relationship between fields of

the same Table. In you do this, the master Table and the slave Table is the same

Table.

I finish highlighting that Relationships are a fundamental concept of (relational)

databases. Relationships make the huge difference between having a collection of

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 125 of 725

unrelated data Tables, that you could solve with several spreadsheets, and a

database where the Table records are related among themselves and jointly create a

single and coherent conceptual model of reality. In saying this, I am assuming that

referential integrity is required in all the Relationships, because this is the way to get

the advantages of Relationships.

If you want to know more about Relationships, you may click:

• “C.11.1 What is a Relationship with referential integrity?”

• “C.11.2 What are “one-to-many” and “one-to-one” Relationships?”

• “C.11.3 What is an indeterminate Relationship?”

• “C.11.4 What is a many-to-many Relationship?”

• “C.11.5 Why should I configure Relationships?”

If you want to configure Relationships in MS-Access, you may click:

• “D.9 How do I create and configure my Table Relationships?”.

C.11.1 What is a Relationship with referential integrity?

A Relationship with referential integrity is the one in which the database system (e.g.,

MS-Access) guarantees that the slave field value requirements of the Relationship are

always satisfied, including, after data updates of the master fields.

Referential integrity is therefore the automatic guarantee that the slave field value

requirements of the Relationship are always satisfied, including, after data updates of

the master fields.

You can only have Referential integrity if the following two conditions hold:

• The two fields of each and every master-slave field pair must have the same “Field
Type” and “Field Size” properties. The reason for this is pretty clear: if the two

related fields are not of the same field type and size, it cannot be guaranteed that

both fields in the pair store the same values.

• The master field(s) of the Relationship must have an associated index without

duplicate values and without Nulls. It is not enough if a subset or a superset of

the master field(s) have an associated index without duplicate values and without

Nulls: the index must be associated to exactly the master field(s). The master Table

may additionally have other indexes.

In case these two requirements are not fulfilled, when you try to create a Relationship

with referential integrity MS-Access will not do it, and it will show an error message

indicating what the problem is.

Let me try to explain the need for the second requirement above by reusing the same

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 126 of 725

two Tables from “C.11 What is a Relationship?”:

T_Subsidiary_Sites T_Capital_Cities

City Country Capital State_Province Country

Beijing China

Beijing No_data China

Bilbao Spain Brasilia No_data Brazil

Brasilia Brazil

Buenos Aires No_data Argentina

Buenos Aires Argentina

Madrid Madrid Spain

Sidney Australia

Washington
District of
Columbia

United
States

Madrid Spain

Sao Paulo Brazil

Stuttgart Germany

Washington
United
States

The arrows represent the links that MS-Access creates between each master record

and its slave record(s) to enforce referential integrity. If you now change the value of

“Stuttgart” or remove that record in the master Table “T_Subsidiary_Sites”, MS-Access

will allow you, because it does not have any slave records, and therefore doing that does

not violate referential integrity. However, if you change the value of “Buenos Aires” to

“Cordoba” in the master Table, MS-Access will either change the value of “Buenos
Aires” to “Cordoba” in all its slave records, or else, would not allow you to modify the

value, showing a message saying that it would violate referential integrity. You can

configure which of both actions MS-Access will take when you create the Relationship.

If you insert a new slave record, MS-Access will only allow you to do it if the values in

its slave field “Capital” match the value of one of the existing master records. If there is

no match, MS-Access will show you an error indicating that the field “Capital” must

take a value from the field “City” in an existing record in “T_Subsidiary_Sites”. It there

is a match, MS-Access will create a link between the newly inserted slave record, and

its corresponding master record, in order to enforce referential integrity on any future

data update.

A characteristic of Relationships with referential integrity is that its related field pairs

cannot contain a Null. The master fields cannot contain Null because they must have

an index without duplicate values and without Nulls. Since the values of the slave

fields must be the same as the ones of the master fields in one master record, they also

cannot contain Null. Even if the slave fields have not been configured as

“Required=Yes”, they cannot contain Null.

There are two types of Relationships that can have referential integrity: the one-to-

many Relationship and the one-to-one Relationship. The Relationships that cannot

have referential integrity are called indeterminate Relationships. I explain these three

types of Relationships in “C.11.2 What are “one-to-many” and “one-to-one”

Relationships?” and “C.11.3 What is an indeterminate Relationship?”.

I finish this section highlighting (again) that Relationships are a fundamental concept

of (relational) databases. Relationships make the huge difference between having a

collection of unrelated data tables, that you could solve with several spreadsheets,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 127 of 725

and a database where the Table records are related among themselves and jointly

create a single and coherent conceptual model of reality. My advice is that you

configure referential integrity in all the Relationships that allow for it.

C.11.2 What are “one-to-many” and “one-to-one” Relationships?

One-to-many and one-to-one Relationships are the ones where both fields in each

and every master-slave field pair have the same data type, and also, the master

field(s) of the Relationship have an index without duplicate values and without Nulls.

The master Table may additionally have other indexes.

Notice that this is exactly the same definition of a Relationship that can have referential

integrity that I stated in “C.11.1 What is a Relationship with referential integrity?”.

Therefore, one-to-many and one-to-one are the Relationships where you can have

referential integrity, and vice versa.

A one-to-many Relationship is the one where:

• Both fields in each and every master-slave field pair of related fields is of the

same data type

• The master field(s) have an index without duplicate values and without Nulls,

and also.

• Neither the slave field(s), nor any subset of them, have an index without duplicate

values and without Nulls.

A one-to-one Relationship is the one where:

• Both fields in each and every master-slave field pair of related fields is of the

same data type

• The master field(s) have an index without duplicate values and without Nulls,

and also.

• Either the slave field(s), or any subset of them, have an index without duplicate

values and without Nulls.

The master and/or slave Tables may additionally have other indexes, as long as the

requirements above are satisfied.

Since the first condition in both cases is the same, I will present this in hierarchical way:

• Relationships that can have referential integrity: One-to-many and One-to-one

Both fields in each and every pair of master-slave fields are of the same data type,

and also, the master field(s) have an index without duplicate values and without

Nulls.

• One-to-many Relationship

Neither the slave field(s), nor any subset of them, have an index without

duplicate values and without Nulls.

• One-to-one Relationship

Either the slave field(s), or any subset of them, have an index without

duplicate values and without Nulls.

• Indeterminate Relationship (cannot have referential integrity)

Either one (or more) master-slave field pairs have fields with a different data type,

or, the master field(s) do not have an index without duplicate values and without

Nulls.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 128 of 725

The following table presents in a matrixial way the same information that I have just

explained:

Conditions to determine

 the type of Relationship

 that you establish

Every pair of related fields has the same data type,

and,

the master field(s) have an index without

duplicate values and without Nulls?

Yes No

The slave field(s), or any

subset of them, have an

index without duplicate

values and without

Nulls?

Yes

One-to-one

Relationship

(can have

referential integrity)
Indeterminate

Relationship

(cannot have

referential integrity)
No

One-to-many

Relationship

(can have

referential integrity)

Remind that the master and/or slave Tables may additionally have other indexes, as

long as the requirements above are satisfied.

As any other Relationship, one-to-many and one-to-one have the following

characteristics:

• The values of the slave fields in every slave record must be the same as the values

of the master fields in some master record.

• A Relationship can only be established from one, and only one, master Table to

one, and only one, slave Table.

• A given Table can be involved in many Relationships, some as master Table and

others as slave Table.

• Relationships are directional. This means that it is not the same to define a

Relationship from Table A (master) to Table B (slave) than to define a Relationship

from Table B (master) to Table A (slave).

• The values of the slave fields in the slave records are a subset of the values of the

master fields in the master records.

• It is very different to establish one Relationship over two (or more) field pairs, than

establishing two (or more) different Relationships each of them over one field pair.

• It is possible (although very unusual) to establish a Relationship between fields of

the same Table. In you do this, the master Table and the slave Table is the same

Table.

In addition to these characteristics of any Relationship, one-to-many and one-to-one

Relationships share the following additional common characteristics:

• They can have referential integrity.

• The master Table does not have duplicate records.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 129 of 725

• Every slave record from the slave Table must be related to one, and only one,

master record from the master Table.

• The master Table may have whatever number of master records that are not

related to any slave record from the slave Table.

A difference between a one-to-many and a one-to-one Relationship is:

• In a one-to-many Relationship each and every record from the slave Table must

be related to one, and only one, record from the master Table.

• In a one-to-one Relationship each and every record from the slave Table must be

related to one, and only one, different record from the master Table.

Expressing this difference in other words:

• In a one-to-many Relationship each master record can have zero or more slave

records, but, in a one-to-one Relationship, it can have zero or one slave record.

Most likely you think that all of the above seems like a tongue twister, so I better show

this with an example.

I will build the example over the Tables “T_Capital_Cities” and “T_Subsidiary_Sites”

from C.11, plus the Table “T_Capital_Rainfall_Q” from D.6.5. I am copying here the

Table “T_Capital_Rainfall_Q” for your convenience:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

Let us first think of a Relationship from master Table “T_Subsidiary_Sites” to slave

Table “T_Capital_Cities”. Suppose “T_Subsidiary_Sites” lists all the cities where your

company has a subsidiary, and because of this, these cities are the only cities of interest

in your whole database. Then, it makes all the sense that the slave field “Capital” from

slave Table “T_Capital_Cities” take its values from the master field “City” in a record

from the master Table “T_Subsidiary_Sites”. By “linking” both fields you avoid typing

errors (e.g., mistyping the name of a city when inputting it in the slave Table) and

reference errors (e.g., having a Capital city where you do not have any subsidiary). Since

both “City” and “Capital” are a candidate Key (click C.10.3) in their respective Tables,

this is a one-to-one Relationship. Notice you may have Cities where you have a

subsidiary that is not a capital, but, every “Capital” in the Table “T_Capital_Cities” must

be in the Table “T_Subsidiary_Sites”. At the same time, each master record from

“T_Subsidiary_Sites” can have either zero or one slave records in the Table

“T_Capital_Cities”. This is exactly what you want, and what you get with this one-to-

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 130 of 725

one Relationship.

Let us now think of another Relationship, in this case from master Table

“T_Capital_Cities” and slave Table “T_Capital_Rainfall_Q”. From the previous example

you know that “T_Capital_Cities” lists all the Capital cities where your company has a

subsidiary. Then, it makes all the sense that each Capital city in the Table

“T_Capital_Rainfall_Q” must be listed in the Table “T_Capital_Cities”. To achieve this,

you just create a Relationship from the master field “Capital” from “T_Capital_Cities”

to the slave field “Capital” from “T_Capital_Rainfall_Q”. Since “Capital” is a candidate

Key in “T_Capital_Cities” and “Capital” is not a candidate Key in

“T_Capital_Rainfall_Q”, this is a one-to-many Relationship. Notice each master record

from “T_Capital_Cities” can have any number of slave records in the Table

“T_Capital_Rainfall_Q”. This is exactly what you want, and what you get with this one-

to-many Relationship.

I finish this section highlighting (once more!) that Relationships are a fundamental

concept of (relational) databases. Relationships make the huge difference between

having a collection of unrelated data tables, that you could solve with several

spreadsheets, and a database where the Table records are related among themselves

and jointly create a single and coherent conceptual model of reality. I am assuming

that referential integrity is required in all the Relationships.

C.11.3 What is an indeterminate Relationship?

An indeterminate Relationship is the one where either one (or more) pairs of related

fields is not of the same data type, or, the master field(s) are not a candidate Key of

the master Table. In other words, an indeterminate Relationship cannot have referential

integrity.

In “C.11.2 What are “one-to-many” and “one-to-one” Relationships?” I showed the

conditions for the three types of bilateral Table Relationships, so you can check also

the differences in respect to one-to-many and one-to-one Relationships.

MS-Access allows you to establish indeterminate Relationships, but you cannot

request referential integrity on them.

Since indeterminate Relationships cannot guarantee referential integrity, their value is

extremely limited. I advise you do not use indeterminate Relationships.

C.11.4 What is a many-to-many Relationship?

A many-to-many “Relationship” consists of two, or more, one-to-many Relationships

established each of them from one master Table to one common slave Table. The

common slave Table is called the junction Table of the many-to-many “Relationship”.

As you may see, a many-to-many “Relationship” is not an actual Relationship (it does

not comply with the definition of Relationship that I gave). However, it is called a

“Relationship” because conceptually performs a similar function to an actual

Relationship. A many-to-many “Relationship” among “n” Tables is therefore a set of

“n” one-to-many Relationships each of them between each of the “n” Tables and the

junction Table.

In a many-to-many “Relationship”, each record in each of the master Tables may be

linked with many records (even all of them!) from each of the other master Tables.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 131 of 725

Establishing a many-to-many “Relationship” involves more than two Tables, and as

I have already explained, it is not a “proper” Relationship. For these reasons, the many-

to-many “Relationship” is not shown as one of the Relationship types in the

Relationship boxes of MS-Access, although you can create them as I will explain now.

To create one many-to-many “Relationship” between “n” master Tables, you create

one specific common slave Table (the junction Table) and you then create a one-to-

many Relationship between each of the “n” master Tables and this junction Table. A

you can see, the junction Table is the common slave Table to all of the master Tables

in the many-to-many “Relationship”.

When you create the junction Table for a given many-to-many “Relationship”, you

have to include in the junction Table “n” fields (one field for each master field). Then,

you create “n” one-to-many Relationships, one from each master Table to the

junction Table over the corresponding field pairs.

In the junction Table, you may also include some additional fields on top of the “n”

mandatory slave fields. These additional fields can provide some supplementary

information you may need for each record. Each junction Table usually has a Key

composed of all its slave fields, because this is what should be unique in it.

Let me clarify all the above with an example. Imagine you have a Table

“T_Umbrella_Models” that lists the models of umbrellas that your company

manufactures. This Table could look like:

T_Umbrella_Models

Umbrella_Model

Luxurius

Transparent

Ultra Light

Very Large

Wind Resistant

Now, you would like to register in your database what models of umbrellas you are

selling in each Capital city. It is difficult to do this with a Table, because the number

of Capital cities and the number of umbrella models is variable along time and you

cannot have Tables with a variable number of fields. Also, the number of capital cities

may be very large, and it would be cumbersome to have a Table with so many fields.

The solution for this case is a many-to-many “Relationship”. You create a junction

Table called “T_Umbrellas_in_Capitals”. This junction Table has the fields “Capital”

and “Umbrella_Model”. The Key of this Table is its two fields. You now create a one-

to-many Relationship from master field “Capital” of “T_Capital_Cities” to slave field

“Capital” of “T_Umbrellas_in_Capitals” and another one-to-many Relationship from

master field “Umbrella_Model” from “T_Umbrella_Models” to slave field

“Umbrella_Model” in “T_Umbrellas_in_Capitals”. You have therefore created a many-

to-many “Relationship” between Tables “T_Capital_Cities” and

“T_Umbrella_Models”. Notice you can now introduce in this Table every possible

combinations of umbrella models sold in each Capital city. One example of the values

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 132 of 725

of “T_Umbrellas_in_Capitals” could be:

T_Umbrellas_in_Capitals

Capital Umbrella_model

Beijing Luxurius

Brasilia Transparent

Brasilia Very Large

Madrid Transparent

Madrid Ultra Light

Washington Luxurius

Washington Very Large

Washington Wind resistant

I want to highlight the following characteristics of many-to-many “Relationships” that

are different from the ones of actual Relationships:

• Many-to-many “Relationships” are not actual Relationships, but they are called

Relationships because conceptually they perform a similar function as an actual

Relationship.

• Many-to-many “Relationships” are not directional, in the sense that establishing a

“Relationship” from Table A to table B is the same as establishing it from Table B

to Table A.

• Many-to-many “Relationships” are not bilateral. Therefore, you may establish one

many-to-many “Relationship” between more than two Tables.

• The Tables related with a many-to-many “Relationship” may have a different

number of related fields, and also, the related fields can be of completely

different data types.

C.11.5 Why should I configure Relationships?

You may feel that Relationships are an unnecessary complication, but this is absolutely

not true! Relationships are something you configure only once, when you design your

database Tables, and out of that limited effort you get great benefits in terms of:

• Guarantees of data integrity and coherence.

• Automatic updates of modified master fields.

• Avoid errors arising from mistyped information.

• Faster processing of Queries.

Relationships are one of the main advantages of using a database instead of a using a

sparse collection of spreadsheets to store and exploit your valuable data. Relationships

may be a little tricky to understand at first, but you will quickly grasp the concept and

then you will see their meaning and implications crystal clear. Once you have got the

concept, Relationships are quite easy to configure in MS-Access.

You should therefore configure as many Relationships as it makes sense among your

databases Tables.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 133 of 725

PART D. DESIGNING MY DATABASES WITH MS-

ACCESS

The lifecycle of a database consists of the following three phases of which phases b)

and c) are usually repeated many times:

a) Design your database

Click “How do I design my database?” (see below).

b) Use your database

Click “How do I use my database?” (see below).

c) Evolve your database design

Click “How do I evolve my database design?” (see below).

How do I design my database?

Designing your database implies the following steps. I indicate for each step the section

where you can find guidance about it.

Create the database file and naming policy:

1. Create your database file

Click “D.1 How do I create, close and open a database file?”.

2. Design a good naming policy for the database objects/properties

Click “D.2 How do I carefully assign good names from the very beginning?”.

Create all the database Tables:

3. Create each Table and its fields

Click “D.3 How do I create and design a Table and its fields?”.

4. Configure each field’s data type

Click “D.4 How do I configure a Table field data type and size?”.

5. Configure each field’s properties, including simple indexes

Click “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”.

6. Configure the Table Primary Key field(s)

Click “D.6 How do I configure the Primary Key field(s) of a Table?”.

7. If you need a composite index(es) in the Table, configure it/them

Click “D.7 How do I add simple and/or composite index(es) to a Table?”.

8. Configure the Table properties (record validation rule, ...)

Click “D.8 How do I configure the properties of a Table?”.

Configure the Relationships and other database aspects:

9. Configure Relationships between the Tables

Click “D.9 How do I create and configure my Table Relationships?”.

10. Usually adding Forms

Click “D.10 How do I design MS-Access Forms?”.

11. Usually configuring drop-down menus

Click “D.11 How do I configure the way to enter data (e.g., a drop-down menu)

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 134 of 725

in a Table/Form field?”.

12. Possibly adding Reports

Click “D.12 How do I use MS-Access Reports?”.

13. Usually configuring concurrent access

Click “D.13 How do I share a database, having multiple concurrent users?”.

You should devote substantial time to your initial database design because each

database design change takes considerable effort and creates a risk of introducing

errors in the database data. The reason for this is that the database elements are very

interrelated. Even a seemingly minor change in a database element (e.g., changing a

field name in a Table) usually implies many modifications (e.g., adjust accordingly all

the Queries that use that Table, changing Relationships, ...). You may click “I.2 Why

should I be so careful with any change to the database design?”.

Even if you did a perfect database design when you created the database, you will be

modifying its design for sure. This may happen (for example) because you (or your

customer) want to add more functionality to the database, or because the

environment/regulation has changed (accounting, VAT, labor, ...) and this implies

changes in how the database works.

Therefore, you should carefully design your database and invest substantial effort in its

initial design. You should design to avoid unnecessary future changes (e.g., by doing

a well thought initial design) and to facilitate future changes that will be needed (e.g.,

by doing an organized and structural design, adding comments, …).

A good way to do your initial database design is doing it incrementally. You start

creating some Tables and Relationships. You paste/input some test data to check if

everything seems right. You then do some modifications to the Tables and

Relationships, and you add a couple more Tables. You paste/input some more test data

to check if everything seems right. You repeat this cycle a few times, until you consider

that the database design is sufficiently sound. You then remove all data used for testing

and input the correct initial data. The database is then operational, and you begin using

it.

How do I use my database?

Using a database consists of inputting records into the database Tables, coding

Queries to exploit the data in the database, and running the Queries to obtain the

desired summaries, statistics, reports, etc. out of your database.

When you first create the database, you usually upload to it some amount of current and

past information records. This usually implies reformatting existing information to adapt

it to the design of the database and pasting it (click “E.5.2 How do I paste data into MS-

Access?”) in blocks to the different database Tables. When doing this you have to be

careful with the consistency of the past information records that you are uploading. If

you want to know more about this, you may click “E.9 Can I get inconsistent results out

of my initial data in my database?”.

You then code some initial Queries to obtain relevant reports out of the database. One

Query may provide total expenses by category per year, another one the listing of

employees in any given year, or whatever complex information you may want to get.

The lifecycle of the database continues as you input records arising from day-to-day

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 135 of 725

activity, and you further create/modify/delete Queries as to provide the information you

want to get from the database.

You may find advice on entering information into your database by clicking:

• “Part E. Entering, modifying and deleting my database”

You may find advice on writing SQL Queries by clicking:

• “Part F. Writing SQL Queries to use my database”

How do I evolve my database design?

In theory, you do a perfect initial database design, and you never modify it. This never

happens. You will for sure modify your database design along time. Modifying the

database design may require a considerable amount of work because the database

elements are very interrelated. This means that a change in a database element (e.g.,

changing a field name in a Table) may imply many modifications (e.g., adjust

accordingly all the Queries that use that Table).

You may find advice on how carefully evolve your database design by clicking:

• “Part I. Evolving my database design”

D.1 How do I create, close and open a database file?

You may click:

• “D.1.1 How do I create a database file?”

• “D.1.2 How do I close a database file?”

• “D.1.3 How do I open an existing database file?”

D.1.1 How do I create a database file?

Before creating your first database file I advise you to set some MS-Access options:

click to read “B.1 What options should I set in MS-Access?” and then return here (you

return by simultaneously pressing the “Alt” and “” keys).

To create a database file, open MS-Access, and then you have the following ways:

• If you see the “ ” button (top left)

You click on it, and you get a file selector. Select the database file location by

clicking on the corresponding directories of the file selector. The default file name

is “Database1.accb” or something similar. Click on the default file name to select it

and edit the file name to the one you want. It is essential that you do not change the

file extension (i.e., the suffix of the file name after the period), that must remain to

be “.accdb”.

• If you see the “ ” button (top left)

You have the following two options:

o Click on “ ” and this will show the “ ” button: you now follow

the instructions in the first bullet above.

o You click on the Blank Database “ ” large icon and you get the “Blank
database” sub-window: you now follow the instructions in the next paragraph.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 136 of 725

• You click on the New “ ” button (top left) and you get the Blank Database

“ ” large icon. You click on it, and you get the “Blank database” sub-window:

you now continue in the last bullet.

If you got the “Blank database” sub-window (see bullets 2 and 3 above), click on the

“ ” icon and you get a file selector. Select the folder for your database file by clicking

on the corresponding directories of the file selector. When you are done, click on “OK”.

The default file name is shown in a box below the text “File name”: it should be

“Database1.accb” or something similar. Click on the default file name to select it and

edit the file name to the one you want. It is essential that you do not change the file

extension (i.e., the suffix of the file name after the period), that must remain to be

“.accdb”. When you are done you click on the Create “ ” button, and your new

database file has been created.

Regardless of the path you followed among the ones described above, you should now

have an open database file.

Notice that when you have an open database file, you will also see in the same folder

an additional file with the same file name but with extension “.laccdb”. This is an

auxiliary lock file that MS-Access creates to signal that the database file is open. This

auxiliary lock file will disappear when you close your database file.

D.1.2 How do I close a database file?

To close the current database file, and also, close MS-Access, click on the close “ ”

icon on the rightmost side of the top frame (the one colored in dark red) of the MS-

Access window. This will close the file and, will also close the MS-Access window.

To close the current database file, but, keeping the MS-Access window open, click on

“File” (at the top left) and then click on “Close”. This will close the file, but MS-Access

will remain open.

When you close the file (with either option above), in case there were any non-saved

objects, MS-Access will ask you if you want to save them before closing the file.

D.1.3 How do I open an existing database file?

You can open a database file in either of the following ways:

• Double-click on the database file in the Windows File Explorer.

• Open MS-Access like any other windows program. MS-Access will show at the left

part of its window a list of recently used database files. If you click on any of them,

it will be opened. If none of them is the one you want, click on the folder icon at the

bottom-left corner (labeled “Open Other Files”). This will open the “Open

File”·view of MS-Access.

In the “Open File” view, on the right side, you have a list of recently used database

files. If you click on any of them, it will be opened. If none of them is the one you

want, click on the folder icon (labeled “Browse”) at the top-left corner. This will

open the usual file-selector window from Windows, where you can navigate the

folders until you find the file you want. Once you click on the file you want, the file

will be opened in the MS-Access window.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 137 of 725

• If you have an opened MS-Access file, you can close it and open another file by

doing the following. Click on “File” on the top “Ribbon-bar”, and then click on

“Open”. This will open the “Open File”·view of MS-Access. You now follow the

procedure I have just described in the second paragraph of the previous bullet point.

Regardless of what way you follow, you will have an MS-Access window with the

database file you wanted opened in it.

When you have an open database file, you will also see in the same folder an additional

file with the same file name but with the different extension “.laccdb”. This is an

auxiliary lock file that MS-Access creates to signal that the database file is open. This

auxiliary lock file will disappear when you close your database file.

D.2 How do I carefully assign good names from the very

beginning?

You should carefully think the names of your objects/properties from the very

beginning. Notice that changing later the name of a field, Table, Query, SQL operation

or function will require substantial adjustment work over different objects across your

database. If you do not assign good initial object names, do not believe you will easily

change them later: better think them carefully from the very beginning. If you want to

know more about the work arising from changing an object name, you may click

“Part I. Evolving my database design”.

Assigning your object names based on well-thought, clear and regular naming

criterion will save you a lot of time of database maintenance and error fixes. It

definitively pays off to devote some time to decide initially your object names.

My advice on how to choose good names is the following:

• For all names, use only English letters (“a” to “z” and “A” to “Z”), digits (“0” to

“9”) and underscores (“_”), (click D.2.4).

• For all names, begin them with an English letter (click D.2.4.1).

• For all names, make them sufficiently different from keywords (click D.2.4.5).

• For Tables and Table links, begin all names with “T_” and avoid the suffix “_n”

where “n” is an integer (click D.2.4.6).

• For Queries and Tables, use hierarchically structured names (click D.2.3).

• For fields, use names that are short but clear (click D.2.1), and homogeneous

across all your Tables and Queries (click D.2.2).

• Avoid assigning the same name to different objects/properties (click D.2.6).

Notice that for field names the policy is not this one, and you should rather use

homogeneous names (see the previous bullet point).

Some advantages of following this naming practice are:

• Avoid having to enclose your names in square brackets “[]” each and every time

you use them. For example, if you use hyphens “-” in names, you must enclose

such names in square brackets “[]” each time you use them, to avoid the ambiguity

with the minus “-” operator.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 138 of 725

• Prevent compatibility errors when cutting/pasting or importing/exporting from/to

other applications.

• Easily distinguishing a Table from a Query along all your SQL code. This

distinction is important because Tables typically require using the most restrictive

“WHERE” expressions (click K.7.3.1), and they terminate the object dependency

hierarchy, when analyzing side effects (click I.2.2).

• Better maintainability of your database and SQL Query code.

You should be aware that MS-Access ignores the case of the letters in names (this is

called “case insensitive”). This means that the following names “US_Cities”, “us_cities”,

“US_cities”, “us_cities” and “US_CITIES” are all considered the same name by MS-

Access. Also be aware that MS-Access operators and functions that compare text

strings also ignore the case20 in their comparisons.

You may click:

• “D.2.1 Why should I make field names short but clear?”

• “D.2.2 Why should I use homogeneous field names across Tables and Queries?”

• “D.2.3 Why should I use structured names for Tables and Queries?”

• “D.2.4 Why should I avoid certain elements in names?”

• “D.2.5 What are the MS-Access formal rules for identifiers?”

• “D.2.6 When can I assign the same name to different objects and/or properties?”

D.2.1 Why should I make field names short but clear?

Because this will much facilitate using correctly your database, correcting database

errors, and doing database updates.

For field names in Tables and in Query results, try to be as short as possible, but no

more. Notice that you will want to visualize Tables and Query results in “Datasheet
View”, and long field names make your columns wider, reducing what you can see on

the screen. Of course, you can make the columns narrower than the field name, but in

this case, you will not see the complete field name, and therefore it does not make much

sense to have the long field name if you cannot see it. An example of too short field

name would be: “Inv_Dt” (for Invoice Date), because it is too difficult to understand (it

is not very meaningful). An example of a field name that is too long would be:

 “Date_in_which_the_invoice_was_paid”

Recall that Table fields have a “Description” property (click D.5.1.1) where you should

write what is the detailed meaning of each Table field.

For internal field names within the SQL code of a Query, you can be more verbose

and use field names as long as you consider necessary. Recall that the maximum name

length is 64 characters. The only drawback of long field names inside Query code is that

you have to type-in more characters when writing the Queries, and Query code becomes

20 The VBA editor has an option to make string comparison “case sensitive” in VBA. My advice is you

do not use this option, in order to have case sensitiveness coherence between your SQL scope and your

VBA scope.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 139 of 725

longer. Clarity is usually more important than saving keystrokes, so I suggest going to

names as long as necessary (but not more) to have a clear indication of what each field

exactly is.

Another useful tip for writing field names in Tables and Query results is putting first

(i.e., leftmost) the most specific part of the field. The reason is that if you narrow a

column to gain view capacity in your screen, the first part of the field name is still

visible. For example, it is usually better to use field names “Start_Project”,

“End_Project” than “Project_Start”, “Project_End”. The reason is that if you narrow

both columns in “Datasheet View”, in the first case you see something like “Start_Pr”

and “End_Pr”, while in the second case you see “Project_” and “Project_”, which is

obviously worse.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.2 Why should I use homogeneous field names across Tables and

Queries?

Because it will be easier to recall when writing Queries, and also, is also less error prone.

For example, if you have a field called “Person” that contains a person full name, it is

good to also call that field “Person” in all the Tables that will have that same person

identifier, instead of using different field names like “People”, “Full_name” or

“Employee”. In particular, if two fields are linked as master-slave in a Relationship

(click C.11), it is extremely convenient to use exactly the same field name in both

Tables.

For example, if you have a field with the person full name in a Table for intern data, use

“Person” better than “Intern” for this field name. The same if you have a Table of

students, use “Person” better than “Student” as field name. This will make easier and

less error prone the task of writing and maintaining the SQL code of Queries. Notice

that within the SQL code you can rename the fields, so within the Queries you can

rename “Person” to “Student” or “Intern”, although my advice is not to do it.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.3 Why should I use structured names for Tables and Queries?

Because this will make your database much easier to use. On the one hand, because it

will list related Tables and Queries together in the “Navigation Pane” (if you sort them

alphabetically). On the other hand, because the prefixes will make it easier for you to

remind the Table or Query name you wanted.

I already advised that you prefix all Table names with “T_” (click D.2) because this only

adds two characters to your Table names and brings the big advantage of clearly

distinguishing a Table from a Query along your SQL code. This distinction is important

because Tables typically require using the most restrictive “WHERE” expressions

(click K.7.3.1), and they terminate the object dependency hierarchy, when analyzing

side effects (click I.5.3).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 140 of 725

It is better to prefix Table names with “T_” than prefixing Query names with “Q_”

because usually there are far fewer Tables than Queries, and therefore you will need

more characters to structure your Query names.

As another advice, use common prefixes in the names of related Queries/Tables. In

this way, the Tables related among themselves and the Queries related among

themselves will be listed contiguously (when sorted alphabetically) in the “Navigation
Pane”. For example, if you have several Tables that contain information about projects,

you may prefix all these Table names with “Proj_”. The same about Queries: if you have

several Queries that provide information on Costs, you may prefix all the Query names

with “Cost_”.

You can also apply the principle in my second advice in a hierarchical way, with two

or more successive prefixes, in order to group in a hierarchical way the Queries related

among themselves and the Tables related among themselves. Place the most generic

prefixes first (i.e., leftmost) so objects will be ordered hierarchically in the “Navigation
Pane” (when sorted alphabetically).

As an example of how to assign structured hierarchical Query names, the names of

Query examples of this Lighting Guide start with the letter of the Part where they are

used (e.g., “A_”, “F_”, …), then they have the operation or concept that they are

illustrating, and finally they have a more specific aspect of the concept they are

illustrating and/or the sequence in which I show them.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4 Why should I avoid certain elements in names?

In this section I explain why some naming practices are a bad idea. If you want my

advice on good naming practice, you may click “D.2 How do I carefully assign good

names from the very beginning?”.

You may click:

• “D.2.4.1 Why should I avoid special characters in names?”

• “D.2.4.2 Why should I avoid “<>” as a field name?”

• “D.2.4.3 Why should I avoid non-English letters in names?”

• “D.2.4.4 Why must I avoid control characters in names?”

• “D.2.4.5 Why must I avoid using keywords as names?”

• “D.2.4.6 Why should I avoid the suffix “_n” in Table names?”

D.2.4.1 Why should I avoid special characters in names?

Because special characters (other than “_”) in names obliges to enclose names in square

brackets, can cause problems in SQL code and when importing/exporting code or data

from/to other applications. Special characters are characters other than letters (“A”, “b”,

“á”, “é”, “C”, “ö”, ...) and digits (“0” to “9”). Examples of special characters are space

“ ”, hyphen “-”, comma “,”, at-sign “@”, number-sign“#”, ampersand “&” and similar

ones.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 141 of 725

Notice that this implies that you should not use spaces in your object names. As an

exception to avoid using special characters, you should use underscore “_” in your

names (but not as the first character) as a replacement for spaces in your object names

is a good practice.

Notice that it is mandatory to enclose the name in square brackets “[]” in the following

cases:

• When invoking (but not when assigning) field names or SQL operation names

starting with “_” or with a digit (“0” to “9”).

• When invoking or assigning field names containing any special character other

than “_”.

Finally, the characters period (“.”), exclamation (“!”) and square brackets (“[” and “]”)

are completely forbidden within object names. These characters are forbidden even if

you enclose the object name in quotes and/or in square brackets. You cannot use any of

these characters in your object names.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4.2 Why should I avoid “<>” as a field name?

I already advised against using special characters (except “_”) in field names. For the

case of specifically avoiding the field name “<>”, the reason is that MS-Access uses it

to represent a Null as a “PIVOT” field name in Transform Queries. For this reason, I

strongly advise you avoid using “<>” for any of your field names, to avoid possible

confusion with “PIVOT” field names in Transform Queries.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4.3 Why should I avoid non-English letters in names?

Because in spite of MS-Access handling them perfectly right, and not requiring to

enclose such names in square brackets, using non-English letters in names can possibly

cause some problems in SQL code and when importing/exporting from/to other

applications. By non-English letters I mean vowels with different types of accents (e.g.,

“á”, “à”, “ê”, “ö”, “ø”, ...) and non-English consonants (“ç”, “ñ”, ...).

MS-Access considers that all the English and non-English letters as different. Some

examples follow. The identifiers “cases” and “çases” are not the same. The identifiers

“nues” and “ñues” are not the same. The identifiers “cases”, “cáses”, “càses”, “câses”

and “cäses” are all different.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4.4 Why must I avoid control characters in names?

Because control characters are completely forbidden in object names. These characters

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 142 of 725

are forbidden even if you enclose the object name in quotes and/or in square brackets.

You cannot use any control character in your object names.

Control characters are ASCII decimal values 000 up to and including 031. These are

non-printable characters like escape, new-line, horizontal tab and similar ones, used

to convey a special meaning on many programs.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4.5 Why must I avoid using keywords as names?

Because if the name matches exactly a keyword, it will be rejected by MS-Access, and

if it is very similar to a keyword, it will create confusion in your SQL code.

Using an MS-Access keyword (e.g., “From”, “Select”, “Integer”, “Null”, “True”,

“In”, “Text”, “Date”, ...) as a name will be usually (depending on context) rejected

by MS-Access, showing an error message. For example, all the following SQL Query

field names (highlighted in brown color) are not accepted by MS-Access.

 SELECT #1/1/2010# AS Date FROM ...

 SELECT #Text_tex# AS String FROM ...

 SELECT 78 AS Integer FROM ...

 SELECT 34 AS Join FROM ...

 SELECT 34 AS From FROM ...

If you try any of the field name assignments above, MS-Access will not allow you to

save the Query, showing the error message “The SELECT statement includes a reserved
word or an argument name that is misspelled or missing, or the punctuation is
incorrect.”

You should also avoid object names that are too similar to a keyword. Using names

that are not exactly a keyword, but very similar to a keyword (e.g., “From_”, “Null_”)

will not be rejected by MS-Access. However, using that type of names is a bad practice

because it makes your SQL more difficult to read by creating some confusion.

It is not a problem to use a keyword as part of a name, as long as the result is sufficiently

different from the keyword so as to avoid confusion) For example, “Selected_city”,

“Integer_part”, “Null_value” are valid and reasonable object names.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.4.6 Why should I avoid the suffix “_n” in Table names?

Because MS-Access adds the suffix “_1”, “_2”, “_3”, etc. to a Table name in order to

build the names of the different Table-boxes representing that Table in the

“Relationships” pane (click B.10.4.4). If you also use the suffixes “_1”, “_2”, etc. for

Table names, this creates the potential for confusion in the “Relationships” pane.

If you really need to name a series of Tables with sequential suffixes, use “_a”, “_b”,

“_c”, etc.

My overall advice for good names is that you use only English letters (“a” to “z” and

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 143 of 725

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.5 What are the MS-Access formal rules for identifiers?

This section presents the formal MS-Access rules for identifiers. On my view, these

formal rules are much more complex than what is needed on 99.9% of the cases and can

encourage you to use features that are allowed but can create you some usability or

compatibility problems.

My advice is therefore that you skip this section and read instead “D.2 How do I

carefully assign good names from the very beginning?”.

The general formal structure of an MS-Access identifier is:

 {[}Collection_name{]}{!}{[}Object_name{]}{.}[}Property_name{]}

where curly braces indicate optional parts. “Collection_name” denotes the name of a

given object collection. “Object_name” denotes the name of a given object.

“Property_name” denotes the name of a specific object property. The name-separation

characters “!” and “.” are required only if both names to its sides are present and should

be omitted otherwise.

A “Collection” is a group of database objects of the same class. Some examples of

collections are: Table, Query, Form and Report.

An “Object” is each Table, each Query, each SQL operation in your Query code, each

Form, each Report and each VBA module. Each time you create an object (with the

exception of SQL operations) you must assign it a name.

Objects have “Properties”, which describe, and provide a way to change, the object's

characteristics. For example, each field in a Table or Query object is a property of the

Table or Query.

The MS-Access rules for defining each object/property name are the following:

• Can be up to 64 characters long.

• Can include any combination of:

o English letters and “a” to “z” and “A” to “Z”)

o Digits (“0” to “9”)

o Foreign letters (e.g., “ñ”, “Ñ”, “ó”, “Ó”, “è”, “È”, “ç”, “ü”, “Ü”, etc.)

o Special characters (e.g., space “ ”, “@”, “#”, “$”, “%, underscore “_”, hyphen

“ - ”, etc.), except the following

forbidden ones: period “.”, exclamation point “!”, accent grave “`”, and square

brackets “[” and “]”.

• Cannot include control characters (ASCII decimal values from 000 up to and

including 031).

• Cannot begin with leading spaces.

• Names are case insensitive. For example, MS-Access will consider “US_CITIES”,

“us_cities”, “US_Cities” and “US_cities” as the same name.

You only have to write enough parts (Collection_name, Object_name and/or

Property_name) of an identifier to make it unique in the context you are using it.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 144 of 725

Actually, the most frequent case is that you only need to write the plain object or

property name, without square brackets.

It is mandatory to qualify a field name when it is ambiguous. Qualifying means

prefixing the field name with the object name of the SQL operation (or Table/Query) to

which it belongs and a period “.” character (as I have shown above in the general

structure for identifiers). For example, the field names “Invoice_Date”,

“Start_Date” and “End_Date” are all prefixed in the following expression by their

corresponding object names:

 Invoices.Invoice_Date BETWEEN Projects.Start_Date AND Projects.End_Date

An example of such an ambiguous situation is the output expression of a Select

operation enclosing a Join operation where the same field name exists in its two input

record-lists. This may seem a strange case, but it is actually a quite frequent case, and

you should qualify the field names in each such Select operation.

It is mandatory to enclose the name in square brackets “[]” in the following cases:

• When invoking (but not when assigning) field names or SQL operation names

that start with either “_” or with a digit (“0” to “9”).

• When invoking or assigning field names containing any special character other

than “_”.

In respect to the rules for name collisions, I present them in the following section

“D.2.6 When can I assign the same name to different objects and/or properties?”.

My overall advice for good names is that you use only English letters (“a” to “z” and

“A” to “Z”), digits (“0” to “9”) and underscores (“_”), plus other guidelines explained

in “D.2 How do I carefully assign good names from the very beginning?”.

D.2.6 When can I assign the same name to different objects and/or

properties?

My advice is you avoid as much as possible assigning the same name to different

objects and/or properties (except for field names, that should be homogeneous across

the database Tables and Queries). However, in case you want/need to do it, the MS-

Access rules are the following:

• Cannot assign the same name to two Tables in the same database file.

Can assign the same name to two Tables if they are in different database files.

• Cannot assign the same name to Queries in the same database file.

Can assign the same name to two Queries if they are in different database files.

• Cannot assign the same name to a Table and a Query in the same database file.

Can assign the same name to a Table and a Query if they are in different database

files.

• Cannot assign the same name to two SQL operations in the same SQL scope.

Can assign the same name to two SQL operations if they are in different SQL

scopes.

• Cannot assign the same name to two fields in the same record-list.

Can assign the same name to two fields if they are in different record-list,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 145 of 725

regardless of the record-list being a Table, a Query or an SQL operation.

• Cannot assign the same name to two parameters in the same “PARAMETERS”

clause.

Can assign the same name to two parameters if they are in different

“PARAMETERS” clauses. If you want to know more about parameters, you may

click F.12.

D.3 How do I create and design a Table and its fields?

Before creating any Table, I strongly advice to unset the option “Enable design changes
for tables in Datasheet view” (click B.1). This will remove the column “Click to Add”.

I consider this column very distracting. It is also risky, because it may cause the user

to inadvertently modify the Table structure.

Before creating any Tables, you should carefully think about all their fields, what

should be the Key field(s) and also what will be the Relationships between different

Tables (click “How do I design my database?”).

Designing each Table implies the following database design steps (click Part D):

3. Create the Table and its fields

Click “D.3 How do I create and design a Table and its fields?”.

4. Configure each field’s data type.

Click “D.4 How do I configure a Table field data type and size?”.

5. Configure each field’s properties, including simple indexes

Click “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”.

6. Configure the Table Primary Key field(s)

Click “D.6 How do I configure the Primary Key field(s) of a Table?”.

7. If you need a composite index(es) in the Table, configure it/them

Click “D.7 How do I add simple and/or composite index(es) to a Table?”.

8. Configure the Table properties (record validation rule, ...)

Click “D.8 How do I configure the properties of a Table?”.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.3.1 How do I create a Table?

Click “Create” from the “Ribbon-bar”, and then click on the Table Design “ ” icon

inside the Ribbon (i.e., the top wide toolbar). This will create a Table and open it in

“Design View”. When you have the Table opened in “Design View” you see at the top

of the “Table pane” a table in which each row represents a field of the Table

Once you have created the Table, you should create its fields. You may click:

• “D.3.2 How do I create my Table fields?”

You can also create a Table by clicking on the Table “ ” icon instead of on the Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 146 of 725

Design “ ” icon (as indicated above). However, my advice is that you do not create a

Table using the Table “ ” icon, because this will add a field named “Id” (with field

type “AutoNumber”), and will configure it as the Table’s Key field, which almost

always is a bad Key design.

If you want to know more about the Key fields, you may click:

• “C.10 What are the Table Key(s) and how should I handle them?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”

D.3.2 How do I create my Table fields?

Open the Table in “Design View” (click B.4.1.3).

Add fields to the Table by typing-in their name in the “Field Name” column of the

table in the top sub-pane. You also have to configure the data type of each field by

clicking on the rightmost side of the field cell in the “Data Type” column. Then click

on data type that you want from the drop-down menu. You should also write a

description of the field in the “Description (Optional)” column. If you want a more

detailed description on how to add fields, you may click “B.6.1.5 How do I add Table

fields in “Design View”?”.

For each Table field that you add, you should also define its field properties (click D.3,

D.4 and D.5), whether it is a Key field (click D.6), and possibly its associated composite

index(es) (click D.7).

I advise you always write field descriptions because it is essential to understand very

precisely the meaning of each field, and it is not as obvious as it may seem. For

example, imagine you have a contract Table with Date/Time fields “First_Day” and

“Last_Day”. It is not obvious whether “First_Day” corresponds to the first day of the

contract, or the previous day, and the same applies to the field “Last_Day”. As another

example, imagine that you have a field called “Rainfall”: it is not obvious if its units are

inches, pints per triangular foot, millimeters or other.

The order of the fields in the Table for SQL Query purposes is the order of the field

rows in Table “Design View”. The first field is the topmost one, and the last field is the

bottommost one.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.4 How do I configure a Table field data type and size?

This chapter also answers the question:

• What are the available field types in Tables?

Open the Table in “Design View” (click B.4.1.3).

Click on any of the rows that represent fields in the top sub-pane. They may be existing

fields that you are now editing, or a field you just created. In either case, MS-Access

will allow you to select the field type from a drop-down menu shown by clicking on the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 147 of 725

rightmost side of the field cell below the heading “Data Type”. I now present a list of

field types that you can configure using this drop-down menu, and for each of them you

may click the section where it is explained:

• Short Text: “D.4.1 What is the “Short Text” field type?”

• Long Text (formerly “Memo”): “D.4.2 What is the “Long Text” field type?”

• Number: “D.4.3 What are the “Number” field types?”

• Currency: “D.4.4 What is the “Currency” field type?”

• Date/Time: “D.4.5 What is the “Date/Time” field type?”

• Date/Time extended (only after 2020): “D.4.6 What is the “Date/Time extended”

field type?”

• Yes/No (similar to Boolean): “D.4.7 What is the “Yes/No” field type?”

• Calculated (not a data type): “D.4.8 What is the “Calculated” field type?”

• Large Number (only after 2016): “D.4.9 What is the “Large Number” field type?”

• AutoNumber: “D.4.10 What is the “AutoNumber” field type?”

• OLE Object: “D.4.11 What is the “OLE Object” field type?”

• Hyperlink: “D.4.12 What is the “Hyperlink” field type?”

• Attachment: “D.4.13 What is the “Attachment” field type?”

• Lookup Wizard... (not a data type): “D.4.14 What is the “Lookup Wizard...”?”

If you change the field “Type” and/or “Size” properties in a Table with existing records,

when saving the Table design MS-Access will check the values existing in the Table in

respect to the new value of the “Type” and/or “Size” properties (click I.4.4.1).

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.4.1 What is the “Short Text” field type?

The Short Text field type stores a text string with a configurable maximum length up

to a maximum value of 255 characters.

Each Short Text field value is stored/represented with a variable number of bytes,

depending on the number of characters of the text string.

The Short Text field type is equivalent to the VBA String data type (click G.2).

I recommend you use the Short Text field type for text information you may need to

store in the database (person names, company names, product names, comments,

concept in invoices, ….).

The default maximum string length is 255 characters. You may modify the maximum

string length of each individual Short Text field by changing the value of the property

“Field Size”. You can find the “Field Size” property at the bottom of the “Table pane”,

in the “General” tab. I recommend you keep the default string length of 255 in all fields

with Short Text data type unless you have a clear and strong reason to change it. Notice

that if you have fields with different lengths, and you produce values from/to these

fields, you may find that MS-Access is truncating the length of some values to the one

of shorter fields.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 148 of 725

Notice that you may select as an MS-Access option the default length for Short Text
fields (click B.1).

D.4.2 What is the “Long Text” field type?

Stores formatted text longer than 255 characters.

Each value is stored/represented using a variable number of bytes, depending on the

length and other characteristics of the text.).

The Long Text field type is partly equivalent to the VBA String data type

(click “G.2 How do I manage VBA data types and Table field types-sizes?”).

You cannot configure a drop-down menu on fields of this type. This field type is called

“Memo” in MS-Access versions older than 2013.

D.4.3 What are the “Number” field types?

The Number field type stores numbers with different characteristics. The Number field

type is refined into finer-grain field types to store different types of numbers. You may

select the fine-grain data type by changing the value of the property “Field Size” that

you can find in field properties, placed at the bottom sub-pane of the “Table pane”, in

the tab “General”. Clicking on the rightmost side of the said “Field Size” row will show

a drop-down menu with the following options:

• Number-Field Size = Byte
Click “D.4.3.1 What is the “Number-Byte” field type-size?”.

• Number-Field Size = Integer
Click “D.4.3.2 What is the “Number-Integer” field type-size?”.

• Number-Field Size = Long Integer
Click “D.4.3.3 What is the “Number-Long Integer” field type-size?”.

• Number-Field Size= Single
Click “D.4.3.4 What is the “Number-Single” field type-size?”.

• Number-Field Size= Double
Click “D.4.3.5 What is the “Number-Double” field type-size?”.

• Number-Field Size= Replication ID
Click “D.4.3.6 What is the “Number-Replication ID” field type-size?”.

• Number-Field Size= Decimal
Click “D.4.3.7 What is the “Number-Decimal” field type-size?”.

In the following subsections I explain each of the cases above:

D.4.3.1 What is the “Number-Byte” field type-size?

The Number field type with Byte field size stores positive integer numbers,

 from: 0

 to: 255

both included. Precision is 3 significant digits.

Each value is stored/represented as an unsigned binary integer using 1 byte (8 bits).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 149 of 725

The Number-Byte field type-size is equivalent to the VBA Byte data type (click G.2.1).

Unless you really need this for technical reasons, or you really need to save storage

space, my advice is you do not use “Field Size=Byte” and use instead “Field Size=Long
Integer”.

D.4.3.2 What is the “Number-Integer” field type-size?

The Number field type with Integer field size stores integer numbers,

 from: -32,768 (- (215))

 to: 32,767 (215-1)

both included. Precision is 5 significant digits.

Each value is stored/represented as a signed binary integer using 2 bytes (16 bits).

The Number-Integer field type-size is equivalent to the VBA Integer data type

(click G.2.1).

Unless you really need to save storage for a very good reason, my advice is you do not

use “Field Size=Integer” and use instead “Field Size=Long Integer”.

D.4.3.3 What is the “Number-Long Integer” field type-size?

The Number field type with Long Integer field size stores integer numbers:

 from: - 2,147,483,648 (-(231))

 to: 2,147,483,647 (231-1)

both included. Precision is 10 significant digits.

Each value is stored/represented as a binary signed integer number using 4 bytes (32

bits).

The Number-Long Integer field type is equivalent to the VBA Long data type

(click G.2.1).

My advice is you use “Field Size=Long Integer” for all your integer fields.

D.4.3.4 What is the “Number-Single” field type-size?

The Number field type with Single field size stores fractional numbers in floating-

point format, approximately,

 from: ±1.17*10-38

 to: ±3.40*1038

Precision is 6 to 9 significant digits.

Each value is stored/represented as a binary signed floating-point number using 2 bytes

(16 bits).

The Number-Single field type is equivalent to the VBA Single data type (click G.2.1).

Unless you really need to save storage for a very good reason, my advice is you do not

use this “Field Size=Single” and use instead “Field Size=Double”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 150 of 725

D.4.3.5 What is the “Number-Double” field type-size?

The Number field type with Double field size stores fractional numbers in floating-

point format, approximately,

 from: ±9.881*10-324

 to: ±1.797*10308

Precision is 15 to 17 significant digits.

Each value is stored/represented as a binary signed floating-point number using 4 bytes

(32 bits).

The Number-Double field type-size is equivalent to the VBA Double data type

(click G.2.1).

My advice is you use “Field Size=Double” for fractional numbers, and also, for

currency values when in case you want to have a drop-down menu.

D.4.3.6 What is the “Number-Replication ID” field type-size?

The Number field type with “Replication ID” field size stores internal pointers to

internal MS-Access objects.

My advice is you do not use “Field Size=Replication ID” unless you are a top expert in

MS-Access.

D.4.3.7 What is the “Number-Decimal” field type-size?

My advice is you do not use “Field Size=Decimal” because it may create several

problems, errors and Query crashes. If you want to know more about why to avoid

Decimal, you may click “K.8 Why should I avoid using Decimal data types?”.

D.4.4 What is the “Currency” field type?

The Currency field type stores fractional numbers in fixed-point format,

 from: -922,337,203,685,477.5808 (-(263) /104)

 to: 922,337,203,685,477.5807 ((263-1)/104)

both included. Precision is 19 significant digits, having four decimals.

Each value is stored/represented as a binary signed fixed-point number using 8 bytes

(64 bits).

The Currency field type is equivalent to the VBA Currency data type (click G.2.1).

Its great advantage is that it does not produce any binary/decimal conversion

rounding-errors. Its disadvantage is that only has four decimals, which makes it

unsuitable for fractional numbers. Also, this field type does not allow to configure drop-

down menus.

My advice is, use this field type only if you need to avoid binary/decimal conversion

rounding errors. Otherwise, use the Number-Double field type-size for your fractional

numbers.

If you want to know more about rounding errors caused by converting to/from

binary/decimal, you may click “G.9.2 What is decimal/binary conversion?” and

“G.9.3 What are decimal/binary conversion rounding errors?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 151 of 725

D.4.5 What is the “Date/Time” field type?

The Date/Time field type stores a date-part and a time-part:

• Date-part ranges from 1-January-100 to 31-December-9999.

• Time-part ranges from 00:00:00 to 23:59:59.

Each Date/Time value is stored/represented as a binary signed floating-point number

using 8 bytes (64 bits).

The Date/Time field type is equivalent to the VBA Date data type (click G.2.1).

This field type always stores both date and time. Even if you enter a zero-time value

or a zero-date value in the field, it will store a date-part and a time-part.

Although a Date/Time field always stores a date-part and a time-part, you can

configure its “Format” property to show only the date-part, show only the time-part

or show both the date-part and the time-part of the value. This can mislead you to

think that it is possible to store only date or only time, which is not the case.

My advice is, use this field type for date and/or time values.

Each Date/Time value is stored/represented internally by the system as a fractional

number (in particular, as a double precision floating-point number). The integer part

of the fractional number represents the date and the decimal part of the fractional

number represents the time. Each integer unit in the fractional number represents one

day. Since one unit is one day, equivalent to 24 hours, it follows that the fractional value

“1/24” is one hour, decimal value “1/(24*60)” is one minute and fractional value

“1/(24*60*60)” is 1 second.

Notice that Number-Double values and Double values are also stored/represented

internally as a double precision floating-point number. This is why Date/Time or Date

values can be combined with Number-Double or Double values in most operators,

functions and expressions. If you want to know more about this, you may click

“G.2.1 What VBA data types vs. Table field types-sizes are equivalent?”.

Dates represented within a factional number always advance forward: this means that

if number X is 6 integer units larger than number Y, it follows that number X represents

a date that is six days more than number Y. However, time advances forward when the

fractional number is larger or equal than “0”, but it advances backwards when the

fractional number is less than or equal to “-1”. If you want to do non-integer arithmetic

operations over negative Date/Time or Date values, make sure you understand very

well how this works.

Because of the way a Date/Time or Date value is represented as a fractional number,

there are no Date/Time nor Date values between “-1” and “0”. Also, adding “.25” to

a Date/Time or Date with numeric value greater than or equal to “0” will always

increase its time in six hours. However, adding “-.25” (i.e., subtracting “.25”) to a

numeric Date/Time or Date value less than or equal to “-1” will increase its time in six

hours as long as this operation does not change the integer part of the value!! In

case the integer part changes, then the result will not be the initial Date/Time or Date

value plus six hours!!

In numeric values, dates range from -657,434 to 2,958,465. This is equivalent to the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 152 of 725

date range from 1-January-100 to 31-December-9999. Numeric value 0 is 30-
December-1899.

In numeric values, time ranges from +/-.0 to +/-.999988. This is equivalent to the time

range from 00:00:00 to 23:59:59.

The numeric value “0” is therefore interpreted as the Date/Time or Date value:

30-December-1989 0:00:00

Since the integer part is interpreted as full days, the numeric value “23” is 23 days more

than the value “0” above. Therefore, numeric value “23” is interpreted as the Date/Time

or Date value:

21-January-1990 0:00:00

Likewise, the numeric value “-38” is 38 days less than the value “0” above.

Consequently, numeric value “-38” is interpreted as the Date/Time or Date value:

22-November-1989 0:00:00

Because numeric value “1/24” is one hour, the numeric value “17.25”, is interpreted as

the Date/Time or Date value:

16-January-1990 6:00:00

Notice in the explanation above that time works as an unsigned value both for positive

and for negative numeric values. Therefore, numeric value “-2.25” is interpreted as

“- 2” days plus “.25*24” time. Therefore, numeric value “-2.25” is interpreted as the

Date/Time or Date value:

28-December-1989 6:00:00

As a final remark, notice that Yes/No (and Boolean) values and Date/Time (and Date)

values are internally represented as numeric values. For this reason, you can (carefully)

combine Yes/No (and Boolean) values, Date/Time (and Date) values and numeric

values in your expressions. For example, adding the integer number “1” to a Date/Time

value will add one day to the Date/Time value.

D.4.6 What is the “Date/Time extended” field type?

The Date/Time extended field type stores a date-part and a time-part:

• Date-part ranges from 1-January-1 to 31-December-9999.

• Time-part ranges from 00:00:00 to 23:59:59.9999999.

Each Date/Time value is stored/represented as an encoded string of 42 bytes (336 bits).

The Date/Time extended field type does not have any equivalent VBA Date data type.

This field type always stores both date and time. Even if you enter a zero-time value

or a zero-date value in the field, it will store a date-part and a time-part.

The advantages of “Date/Time extended” over “Date/Time” are that it can store the

additional years from year “1” to year “99” and that it has time precision down to one

nanosecond.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 153 of 725

The disadvantages of “Date/Time extended” over “Date/Time” are:

• It does not have an equivalent VBA data type.

• It does not have an equivalent Excel data type (so you will have difficulties when

pasting into Excel).

• It requires over five times more storage space (from 8 bytes to 42 bytes).

• It requires more processing time when operating over it.

I think the disadvantages are very considerable, so my advice is you avoid using it.

D.4.7 What is the “Yes/No” field type?

The Yes/No field type stores either True/Yes/On or ticked or False/No/Off or

unticked.

Each Yes/No value is stored/represented as a Number-Integer field type. Therefore,

each Yes/No value is stored/represented as a binary signed integer number using 2 bytes

(16 bits) of storage space. The value True/Yes/On or ticked is stored/represented as the

numeric value “-1”. The value False/No/Off or unticked is stored/represented as the

numeric value “0”. You may find it strange to use 2 bytes (16 bits) of storage space to

represent only two possible values, but this is the way it works.

The Yes/No field type is equivalent to the VBA Boolean data type (click G.2.1).

My advice is, use this field type for Boolean/binary information.

Notice that Yes/No values and Date/Time values are internally represented as Number
values. For this reason, you can (carefully) combine all of them in expressions.

When using a numeric value as a Yes/No value (in a field or in an expression), the

numeric value “0” is interpreted as False/No/Off or unticked, and any other numeric

value is interpreted as True/Yes/On or ticked. Therefore, numeric values “-1”,

“- 5,000”, “-4.567”, “1”, “37.3455” are all interpreted as True/Yes/On or ticked.

If you want to know more about the internal representation of Number values you may

click “D.4.3 What are the “Number” field types?”.

D.4.8 What is the “Calculated” field type?

This is not a field type. This is rather an expression that allows to calculate the value

of this field, typically involving the values of other fields in the record. You have to

type-in the expression you want to use to calculate this field in the property

“Expression”, in the field properties placed at the bottom sub-pane of the “Table pane”,

in the tab “General”.

The actual field type of the calculated value is configured in the property “Result
Type”. Available options for “Result Type” are:

• Double

• Integer

• Long Integer

• Single

• Replication ID

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 154 of 725

• Decimal

• Short Text

• Date/Time

• Long Text

• Currency

• Currency: MS-Access 365 shows Currency twice and does not show Large
Number. I have reported this as a likely MS-Access bug.

• Yes/No

The field type of the calculated field will be the one corresponding to the value of the

“Result Type” property, that you can configure among the ones in the list above.

The value of a calculated field is not stored in the record: it is calculated, from the

other field values, each and every time you use the record. Using this type of fields has

some subtle disadvantages. Before you decide to use a Calculated field, I recommend

you click “K.2.6 What is the difference between a Calculated field and automatically

introducing a value using a Form?” where I explain calculated fields vs. using Forms.

If you are familiar with the expression syntax in Table “Design View” (recall that MS-

Access has three different expression syntax, click G.1), you may directly type-in the

expression in the property “Expression”, in the field properties, placed at the bottom of

the “Table pane”, in the tab “General”. If you are not familiar with the syntax of these

expressions, you click on the icon with three dots “ ” at the right of this row, and MS-

Access will open a dialogue-box to help you write the expression you want.

In the expression of a Calculated field you can use constants, built-in operators, built-in

VBA functions and all this Table’s field names. However, you cannot use user-defined

VBA functions, nor Subqueries. If you want to know more about the rules to write

expressions in Table “Design View”, you may click “G.1 What are the main differences

between the three expression scopes?”.

D.4.9 What is the “Large Number” field type?

The Large Number field type stores integer numbers,

 from: -9,223,372,036,854,775,808 (-2^63)

 to: 9,223,372,036,854,775,807 (2^63-1)

both included. Precision is 19 significant digits.

Each Large Number value is stored/represented as a binary integer number using 8 bytes

(64 bits).

The Large Number field type is partly equivalent to the VBA LongLong data type

(click G.2.2).

This field type is not compatible with MS-Access 2016 and earlier versions, and may

create problems when exporting/importing data, and with other operations (e.g., VBA

data types on 32bit Office versions). My advice is you do not use “Field Type=Large
Number” unless you really need to manage integer numbers larger than can be stored

by Long Integer field size of the Number field type.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 155 of 725

D.4.10 What is the “AutoNumber” field type?

The AutoNumber field type stores a Long Integer value, with the very special

characteristic that MS-Access automatically assigns a different value to each record

you insert in the Table. It therefore guarantees no record duplicates.

It may seem useful to add to your Table one AutoNumber field and configure it as the

Table’s Key field. Actually, this is what MS-Access does if you create a Table clicking

on the Table “ ” icon instead of on the Table Design “ ” icon (click D.3.1). However,

using one AutoNumber field as the Key field removes all the semantics from the Table’s

Key field and is a poor design. Therefore, my advice is that you do not use the
AutoNumber field type unless you really want the system to assign different values

for you (e.g., when creating members entries in a club, to assign the member number),

and you only use it as the Key field when there is no other Key with better semantics

for it.

If you want to know more about the Key fields, you may click:

• “C.10 What are the Table Key(s) and how should I handle them?”

• “D.6 How do I configure the Primary Key field(s) of a Table?”.

The AutoNumber field type is equivalent to the VBA Long data type (click G.2.1).

D.4.11 What is the “OLE Object” field type?

The OLE Object field type stores one OLE21 object. If you double-click on the field,

MS-Access will open the OLE object using the default application to manage it.

Storing one OLE object in a field is very useful to immediately access a document

associated with a record (e.g., the actual contract document corresponding to a contract

record), but you risk your database file becoming very large, because the OLE objects

are stored inside the MS-Access file.

If you delete the field content, you actually delete the OLE object, and it is completely

gone (no paper trash recovery). If you just deleted the OLE object by mistake, you can

recover it by clicking on the undo “ ” icon or pressing “Ctrl-z” (i.e., press the “Ctrl”

key, and without releasing it, press the “z” key). If you formerly deleted the OLE

object by mistake, and you want to recover it, you have to recover it from the backup

of your database file.

Two useful alternatives to storing an OLE Object in a field are:

• Storing an OLE Object containing a windows shortcut to a file containing the

actual OLE Object that you wanted to store. Notice that you have to manually

create each specific windows shortcut.

• Storing a web hyperlink (click D.4.12) to a file containing the actual OLE

Object that you wanted to store.

With either alternative above, your database file will not grow with the number of stored

OLE Objects, but if you move the files containing the corresponding OLE Objects, the

shortcuts/hyperlinks in the database are not automatically updated. You have to

21 OLE stands for “Object Linking and Embedding”. If you want to know more, you may check:

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding

https://en.wikipedia.org/wiki/Object_Linking_and_Embedding

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 156 of 725

manually update the shortcuts/hyperlinks or rather you will not be able to directly

access the OLE Objects from the corresponding fields.

The main difference between the OLE Object field type and the Attachment
(click D.4.13) field type is that OLE Object can store only one OLE Object while

Attachment can store several files.

The characteristics of the OLE Object field type are equivalent to the ones of the VBA

Object data type (click G.2.1).

D.4.12 What is the “Hyperlink” field type?

The Hyperlink field type stores one web hyperlink. If you click inside the field, MS-

Access will automatically open the hyperlink in the web navigator. Notice that if you

click inside the field when the mouse has become a white cross, this selects the field

(click B.5.2) instead of opening the hyperlink in the web navigator.

Storing one hyperlink in a field is very useful to immediately access a document/object

associated with a record (e.g., the actual contract document corresponding to a contract

record), and this does not add significant size to your database file because the actual

document/object is stored elsewhere, and not in the database file. However, you have a

risk of data incoherence if the actual document/object is moved, so the hyperlink stored

in the field does not work.

If you want to select the hyperlink (instead of opening the hyperlink in the navigator),

for example to delete or edit the hyperlink, you can do it in the following ways:

• Selecting the field by clicking inside the field when the mouse is near its border,

once the mouse pointer has become a white cross (click B.5.2).

• Right-click inside the field and then press the “Esc” key.

If you delete the field content, you only delete the stored hyperlink, and the actual

object pointed by hyperlink remains unaltered. If you just deleted the stored hyperlink

by mistake, you can recover it by clicking on the undo “ ” icon or pressing “Ctrl-z”

(i.e., press the “Ctrl” key, and without releasing it, press the “z” key). If you formerly

deleted the stored hyperlink by mistake, and you want to recover it, you have to recover

it from the backup of your database file.

The characteristics of the Hyperlink field type are equivalent to the ones of the VBA

String data type (click G.2.1).

D.4.13 What is the “Attachment” field type?

The Attachment field type stores one or more, files of any type. If you double-click

on the field, MS-Access will show a dialogue-box listing the files contained in the field.

If you double-click on any of the file names, MS-Access will open the file using the

default application associated to the file extension.

Storing one or more files in a field is very useful to immediately access the documents

associated with a record (e.g., the different registration documents corresponding to a

house record), but you risk your database file becoming very large, because all the

attached files are stored inside the MS-Access file.

If you delete the field content, you actually delete all the attached files, and they are

completely gone (no paper trash recovery). If you just deleted the attached files by

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 157 of 725

mistake, you can recover them by clicking on the undo “ ” icon or pressing “Ctrl-z”

(i.e., press the “Ctrl” key, and without releasing it, press the “z” key). If you formerly

deleted the attached files by mistake, and you want to recover them, you have to recover

them from the backup of your database file.

Two useful alternatives to attaching files in a field are:

• Storing an OLE Object (click D.4.11) containing a windows shortcut to the

actual file. Notice that you have to manually create each specific windows

shortcut.

• Storing a web hyperlink to the actual file (click D.4.12).

With either alternative above, your database file will not grow with the number of stored

files, but if you move the actual files, the shortcuts/hyperlinks in the database are not

automatically updated. You have to manually update the shortcuts/hyperlinks or

rather you will not be able to directly access the file from the corresponding fields.

The main difference between the Attachment field type and the OLE Object
(click D.4.11) field type is that Attachment can store several files while OLE Object
can store only one OLE Object.

D.4.14 What is the “Lookup Wizard...”?

This is not a field type. This is rather an assistant function that MS-Access provides to

help you set up drop-down menus in fields, intended to simplify entering data into them.

My advice is do not use this assistant. Rather, I recommend using directly the

“Lookup” tab in the bottom pane of the “Table pane” in “Design View”. You may check

how to use the “Lookup” pane in “D.11 How do I configure the way to enter data (e.g.,

a drop-down menu) in a Table/Form field?”.

D.5 How do I configure a Table field validation rule, indexing,

and other properties?

Open the Table in “Design View” (click B.4.1.3).

At the top part of the “Table pane” you see the Table fields, one row for each field.

When you click on the row of a field, it is selected, and you will see in the bottom part

of the “Table pane” the properties of this field, in two tabs: “General” and “Lookup”.

Selecting the “General” tab you see the relevant properties of the field that MS-Access

allows you to configure. Each property is displayed as one row inside the “General”

tab. The field properties depend on the data type of the field. There are some common

properties to all data types, and some specific properties of each data type.

You may click:

• “D.5.1 What common Table field properties should I set?”

• “D.5.2 What data-type specific Table field properties should I set?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 158 of 725

D.5.1 What common Table field properties should I set?

I will explain, one by one, what I consider the most relevant field properties that are

common to most data types, which are:

• Description
Click “D.5.1.1 What is the “Description” Table field property?”.

• Format
Click “D.5.1.2 What is the “Format” Table field property?”.

• Caption
Click “D.5.1.3 What is the “Caption” Table field property?”.

• Default Value
Click “D.5.1.4 What is the “Default Value” Table field property?”.

• (field) Validation Rule
Click “D.5.1.5 What is the field “Validation Rule” Table field property?”.

• (field) Validation Text
Click “D.5.1.6 What is the field “Validation Text” Table field property?”.

• Required
Click “D.5.1.7 What is the “Required” Table field property?”.

• Indexed
Click “D.5.1.8 What is the “Indexed” Table field property?”.

• Text Align
Click “D.5.1.9 What is the “Text Align” Table field property?”.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.5.1.1 What is the “Description” Table field property?

This allows you to explain in some detail what is the meaning of each field. The field

description is shown in the bottom frame of MS-Access when you select the Table field.

This is very useful to show the user a detailed description of the field’s meaning.

To write the field description you should click on the box placed on the row of the field,

and under the column labeled “Description (Optional)”. After having clicked there, you

type-in the field description you want.

When you begin creating Table fields, you think the field name is enough to clearly

explain the meaning of the field. However, when you advance with the design and with

the usage of your database, you realize that the meaning of each field has to be explained

with substantial detail. You should therefore write a field description in most of your

fields.

D.5.1.2 What is the “Format” Table field property?

This allows you to configure the format in which the value will be shown in the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 159 of 725

“Datasheet View” of the Table. Available predefined formats from the drop-down

menu of the “Format” property (click on the “ ” icon at the rightmost side of this

property row) are quite self-explanatory. Important to point-out that you can configure

a predefined format (by typing it in), even if it is not shown in the drop-down menu.

If you want to know more about predefined formats, you may click:

• “H.6.1 How do I configure predefined column formatting in a Table/Query/Form?”

If you want to configure custom formatting, you may click:

• “H.6.2 How do I configure custom column formatting in a Table/Query/Form?”

D.5.1.3 What is the “Caption” Table field property?

This is the text label displayed at the top of this column in “Datasheet View”. If this is

blank, MS-Access will display the field name as the text label of the column.

This feature is extremely useful in case you want to change the column label(s) of the

Table, without having to modify the Queries. For example, if you want to translate all

the database column labels to another language, you can do it in this way while keeping

the internal field names of Tables and Queries in your own language.

D.5.1.4 What is the “Default Value” Table field property?

This is the default value for this field. This value will appear already typed-in in the

last row of each Table (the record with an asterisk “*” to its left, which is used to type-

in new records). This is quite useful to avoid typing the most usual value for the field.

The default value is indicated by writing an expression. For example, a very frequent

default value for fields of type Date/Time is the VBA function “Date()” that returns

today’s date.

If you are familiar with the expression syntax in Table “Design View” (recall that MS-

Access has three different expression syntax, click G.1), you may directly type-in the

expression in the property “Expression”, in the field properties, placed at the bottom of

the “Table pane”, in the tab “General”. If you are not familiar with the syntax of these

expressions, you click on the icon with three dots “ ” at the right of this row, and MS-

Access will open a dialogue-box to help you write the expression you want.

In the expression of the default value you can use constants, built-in operators, and

built-in VBA functions. However, you cannot use any field name, nor user-defined

VBA functions, nor Subqueries. If you want to know more about the rules to write

expressions in Table “Design View”, you may click “G.1 What are the main differences

between the three expression scopes?”.

D.5.1.5 What is the field “Validation Rule” Table field property?

It is a Boolean expression that must not return False for any new value for this field.

If the Boolean expression returns Null, the field validation rule is considered correct.

A field validation rule can for example require that a number is greater than or equal to

zero, or less than ten thousand, or more complex requirements using built-in functions.

A couple examples of simple expressions that you could use as field validation rules

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 160 of 725

are:

 [field_name] > 0

 ([field_name] > 0) AND ([field_name] < 10000)

Notice that Null in “field_name” satisfies the two field validation rules above.

Configuring a field validation rule prevents both introducing new records violating the

field validation rule and changing this field’s value in an existing record such that the

value violates the field validation rule. However, if the Table already contains records

that violate this field validation rule, the records will stay in the Table after you

configured the field validation rule. Notice that you can edit other fields of an existing

record that violates this field validation rule, and the resulting edited record that still

violates this field validation rule will remain in the Table.

This is very important, because if you see a field validation rule, you should remind

that the field can contain values that violate it in records existing in the Table before

the field validation rule was configured.

If you configure a field validation rule in a Table with existing records, when saving the

Table design MS-Access will ask if it should check if all the values existing in the Table

comply with the field validation rule (click L.2.1).

Be well aware that if the Boolean expression (in the field validation rule) returns Null,

the field validation rule is correct, and the value is accepted in the field. The rationale

for this is that Null can only appear in “optional” fields, this is, fields with optional

values that are configured as “Required=No”. At the same time, if you have an optional

field containing Null, this most likely causes the Boolean expression (in the field

validation rule) to return Null. In this case, you usually want the field value to be

accepted, because you accept Null in optional fields.

If you want to check for records with field values that violate the field validation rule

in records already existing in the Table before you configured the field validation rule,

you remove the field validation rule, then configure the field validation rule again, and

save the Table design (click B.4.1.6). You then click on “Yes” upon the question of

testing all existing data (click L.2.1).

If you want to change field values that violate the field validation rule already existing

in the Table before you configured the field validation rule, you may click “E.7 How

do I bulk-change my Table/Form’s data?”.

Field validation rules are extremely useful to avoid errors in your database, so I

strongly recommend you use them for every field where there are known mandatory

restrictions in its values.

How do I write the Boolean expression in the field validation rule?

If you are familiar with the expression syntax in Table “Design View” (recall that MS-

Access has three different expression syntax, click G.1), you may directly type-in the

expression in the property “Expression”, in the field properties, placed at the bottom of

the “Table pane”, in the tab “General”. If you are not familiar with the syntax of these

expressions, you click on the icon with three dots “ ” at the right of this row, and MS-

Access will open a dialogue-box to help you write the expression you want.

In the Boolean expression of a field validation rule you can use constants, built-in

operators, built-in VBA functions and the field’s name. However, you cannot use any

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 161 of 725

other field names of the Table, nor user-defined VBA functions, nor Subqueries. If you

want to know more about the rules to write expressions in Table “Design View” you

may click “G.1 What are the main differences between the three expression scopes?”.

Two examples of frequently used field validation rules are enforcing that a Date/Time

value has zero-date (this is, the date is December 30th 1899, equivalent to integer part

equal zero), as if it had no date information or enforcing that it has the time 0:00:00

(fractional part zero) as if it had no time information. These validation rules are:

• Rule for zero-date: Fix([field_name]) = 0

• Rule for zero-time: Fix([field_name]) = [field_name]

D.5.1.6 What is the field “Validation Text” Table field property?

This is the text that MS-Access will show you when you type-in a data value that returns

False in the expression that you wrote in the “Validation Rule”. If you leave this box

blank, MS-Access will show a generic message indicating that the value does not fulfil

the validation expression and showing the validation expression. Seeing the validation

expression is quite self-explanatory in some cases, but for non-expert users or in case

you have a non-obvious validation rule, using this field will be very useful to explain

what the value restrictions in this field are. My advice is you always use this property.

To use it, just type-in the validation text you want MS-Access to show.

D.5.1.7 What is the “Required” Table field property?

If you configure a Table field as “Required=Yes”, MS-Access will not allow you to

introduce any new Null in this field.

Configuring “Required=Yes” prevents both introducing new records having Null in this

field and changing this field to Null in an existing record. However, if the Table already

contains records with Null in this field, the records with Nulls will stay in the Table

after you configured “Required=Yes”. Notice that you edit other fields of an existing

record having Null in this field, and the resulting edited record with Null in this field

will remain in the Table.

This is very important, because if you see a field configured as “Required=Yes”, you

should remind that the field can contain Nulls in records existing in the Table before

the field was configured as “Required=Yes”.

If you configure a field as “Required=Yes” in a Table with existing records, when saving

the Table design MS-Access will ask if it should check if all the values existing in the

Table comply with “Required=Yes” (click L.2.1).

Allowing Nulls in Table fields is very undesirable for several reasons (click C.6, 0,

K.1.3 and K.5). My advice is to restrict very much the fields that you configure as

“Required=No”, and invest a little design effort to have all, or almost all, your fields

configured as “Required=Yes”.

If you want to check for records with Nulls in a field, you configure the field as

“Required=No”, then configure it as “Required=Yes”, and save the Table design

(click B.4.1.6). You then click on “Yes” upon the question of testing all existing data

(click L.2.1).

If you want to remove Nulls in a field in records already existing in the Table before

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 162 of 725

you configured the field as “Required=Yes”, you may click “E.7 How do I bulk-change

my Table/Form’s data?”.

D.5.1.8 What is the “Indexed” Table field property?

Indexing is really valuable in your database (click “C.8 What is indexing?”), so you

should set it as much as it makes sense (quite frequently). If you click on the rightmost

side of the “Indexed” row, you will get a drop-down menu where you may choose the

values:

• “No”

• “Yes (Duplicates OK)”

• “Yes (No duplicates)”

If you are sure that this field must not have duplicate values, configure “Indexed=Yes
(No duplicates)”.

If you are sure that this field can have duplicates and will not be used in any “WHERE”,

“ON” or “GROUP BY” expressions, configure “Indexed=No”.

If you are not sure about the two conditions I just indicated, configure “Indexed=Yes
(Duplicates OK)”.

If you configure a field as “Indexed=Yes (No duplicates)” in a Table with existing

records, when saving the Table design MS-Access will check if all the values existing

in the Table are duplicate-free in this field. If there is any duplicate, MS-Access will not

allow you to configure “Indexed=Yes (No duplicates)” (click L.2.6). Remind that for

this purpose, having several Null is not considered as duplicate values (click C.8.3.2).

D.5.1.9 What is the “Text Align” Table field property?

This allows you to select the alignment with which MS-Access will show the values of

this field in “Datasheet View”. Click on the drop-down menu “ ” icon at the rightmost

side of this row, and you can then select one of the options. The default option is

“General” in which numbers and dates are right justified while text is left justified.

D.5.2 What data-type specific Table field properties should I set?

In addition to the common field properties (click D.5.1), you may see some other Table

field properties that are specific to some data types. I will explain the following ones

because I think they are quite important (you may click on the one you want):

• “D.5.2.1 What is the “Field Size” Table field property?”

• “D.5.2.2 What is the “Allow Zero Length” Table field property?”

• “D.5.2.3 What is the “Decimal Places” Table field property?”

• “D.5.2.4 What is the “Input Mask” Table field property?”

• “D.5.2.5 What is the “Result Type” Table field property?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 163 of 725

D.5.2.1 What is the “Field Size” Table field property?

This property is available for field types: Short Text, Number and AutoNumber.

Its functionality depends on the field type, as follows:

• In a Short Text field
The “Field Size” property is the maximum number of characters that this Table field

can contain. My advice is you always configure it to the default maximum length of

255. You may click D.4.1.

• In a Number field
The “Field Size” property is a refinement of the data type of the field, as I have

explained in “D.4.3 What are the “Number” field types?”.

• In an AutoNumber field
The “Field Size” property can take the values “Long Integer” or “Replication ID”.

D.5.2.2 What is the “Allow Zero Length” Table field property?

This property is only available for field types: Short Text and Long Text.

If you configure “Allow Zero Length=No”, MS-Access will require that you input at

least one non-blank character in this field. If you configure it to “Yes”, MS-Access will

allow you to input text strings of zero characters (remind that a text string with zero

characters is different from a Null!!!).

My advice is you always set this property to “No”. The reason is the zero-length string

is not as bad as Null, but it still has a significant risk of causing errors because it can

be mistaken with Nulls and with invisible strings (click L.7.8). In case you want to know

more about these problems, you may click “L.7 How do I fix errors with Short Text or

String fields?”.

If you configure a field as “Allow Zero Length=No” in a Table with existing records,

when saving the Table design MS-Access will ask if it should check if all the values

existing in the Table field comply with “Allow Zero Length=No” (click L.2.1).

However, even if you answer “Yes”, MS-Access will not check it! This may be an MS-

Access bug.

D.5.2.3 What is the “Decimal Places” Table field property?

This property is only available for field types: Number, Currency and Large Number

This is the number of decimal digits that will be shown in “Datasheet View”. Notice

that this is just a visualization issue, because the actual value will be stored in the field

with as many decimals allowed by the underlying data type (simple or double precision).

D.5.2.4 What is the “Input Mask” Table field property?

This property is only available for field types: Short Text and Date/Time.

This allows you to restrict the values typed-in into this field to the ones that satisfy a

certain format. MS-Access offers some built-in input masks that you can select, and

also, it allows you to define your own input masks.

For Date/Time fields MS-Access offers some built-in input masks to enter zero-time or

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 164 of 725

zero-date.

For Short Text fields MS-Access offers some built-in input masks.

On my view, an input mask is not very useful, because it only restricts what you can

type-in, but it does not restrict the actual values that the field can contain. If you paste

values, the values will not be checked by the input mask. Therefore, the input mask just

introduces restrictions in the way you can type-in your values but it does not protect

you from erroneous values, because you can still paste them into the fields.

My advice is that you avoid using the “Input Mask” property and configure instead the

field “Validation Rule” property (e.g., to enforce zero-time or zero-date values). Check

my explanation about the field “Validation Rule” property in “D.5.1.5 What is the field

“Validation Rule” Table field property?”.

D.5.2.5 What is the “Result Type” Table field property?

This property is only available for field type Calculated.

This allows you to configure, in a combined way, the field type and the field size of this

field. If you want to know more about the Calculated field type, you may click

“D.4.8 What is the “Calculated” field type?”.

Notice that depending on the “Result Type” that you configure, MS-Access will show

different properties for this field, both in the “General” and in the “Lookup” tabs.

D.6 How do I configure the Primary Key field(s) of a Table?

You may click:

• “D.6.1 How do I configure a Primary Key with only one field?”

• “D.6.2 How do I configure a Primary Key with several fields?”

• “D.6.3 How do I change the Primary Key of a Table?”

• “D.6.4 What checks are done on Key fields when saving my Table design?”

• “D.6.5 How do I identify the Primary Key field(s) of a Table?”

• “D.6.6 Why should I define the Primary Key field(s) in Tables?”

D.6.1 How do I configure a Primary Key with only one field?

Open the Table in “Design View” (click B.4.1.3).

You configure only one field as the Primary Key of the Table (this is called a “simple”

Primary Key), in either of the following ways:

• Right-click anywhere on the field row and click on “Primary Key” from the pop-up

menu.

• Click anywhere on the field row and click on the Primary Key “ ” icon from the

“Table Tools / Design” contextual Ribbon.

Regardless of how you did it, you should now see a key “ ” icon just to the left of the

field row: this indicates it has been configured as the Table’s (simple) Primary Key.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 165 of 725

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

In case the Table already has one or more records, when you try to save the Table

design, MS-Access will check that the values of the Primary Key field in all the Table

records have no duplicate values and also that the Primary Key field contains no Nulls.

If you want to know more about the possible results of this value check, you may click

“D.6.4 What checks are done on Key fields when saving my Table design?”.

You can also configure the Primary Key using the “Indexes” dialog box (click D.7.2).

D.6.2 How do I configure a Primary Key with several fields?

Open the Table in “Design View” (click B.4.1.3).

Select the field rows (click B.6.1.4) you want to become the Primary Key.

Click on the Primary Key “ ” icon from the “Table Tools / Design” contextual Ribbon.

You should now see a key “ ” icon just to the left of each field row: this indicates that

all of them have been jointly configured as the Table’s (composite) Primary Key.

If you configure a composite Primary Key, I advise you also configure “Indexed=Yes
(With duplicates)” in each and every field of a composite Primary Key. This will

improve the performance of your Queries and other operations over the database.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

In case the Table already has one or more records, when you try to save the Table,

MS-Access will check that the values of the Primary Key fields in all the Table records

have no combined duplicate values and also that the Primary Key fields contain no

Nulls. If you want to know more about the possible results of this value check, you may

click “D.6.4 What checks are done on Key fields when saving my Table design?”.

You can also configure the Primary Key using the “Indexes” dialog box (click D.7.2).

D.6.3 How do I change the Primary Key of a Table?

Open the Table in “Design View” (click B.4.1.3).

You replace the current Primary Key by a new one by just configuring the new

Primary Key fields that you want: click D.6.1 for one field (simple Primary Key)

and D.6.2 for several fields (composite Primary Key). Configuring the new Primary

Key field(s) will also clear the old Primary Key fields.

If you rather want to clear the Primary Key fields, and leave this Table without a

Primary Key, you can do it in either of the following ways:

• Right-click anywhere on any of the field rows of the current Primary Key and click

on “Primary Key” from the pop-up menu.

• Click anywhere on the field row of any of the field rows of the current Primary

Key and click on the Primary Key “ ” icon from the “Table Tools / Design”

contextual Ribbon.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 166 of 725

Regardless of how you did it, all the key “ ” icons that were placed on the left side of

the field rows of the former Primary Key fields show now be gone, and no field should

have such a key icon.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

In case the Table already has one or more records, when you try to save the Table,

MS-Access will check that the values of the Primary Key fields in all the Table records

have no combined duplicate values and also that the Primary Key fields contain no

Nulls. If you want to know more about the possible results of this value check, you may

click “D.6.4 What checks are done on Key fields when saving my Table design?”.

You can also configure the Primary Key using the “Indexes” dialog box (click D.7.2).

D.6.4 What checks are done on Key fields when saving my Table

design?

If you configure the Table Primary Key field(s), and the Table already has one or more

records, when you try to save the Table, MS-Access will check that the values of the

Key field(s) in all the Table records have no (combined) duplicate values and also that

the Key field(s) contain no Nulls.

• If the check is not passed because any of the Key field(s) contains one or more Null,

MS-Access will not save the Table and will show the error message:

“Index or primary key cannot contain a Null value.”

If you want more information on this, you may click “L.2.7 How do I fix “…primary
key cannot contain a Null…” when saving my Table design?”.

• If the check is not passed because there are one (or more) records with duplicate

values in the Key field(s), MS-Access will not save the Table and will show the

error message:

“The changes you requested to the table were not successful because they would
create duplicate values in the index, primary key, or relationship. Change the data
in the field or fields that contain duplicate data, remove the index, or redefine the
index to permit duplicate entries and try again.”

If you want more information on this, you may click “L.2.6 How do I fix “Key/Index
with duplicate values” when saving my Table design?”.

• If the check is passed, the Table is saved with the Key fields you wanted properly

configured.

If you get other warning and/or error messages when saving your Table design, you

may click “L.2 How do I fix errors with my Table/Form design?”.

D.6.5 How do I identify the Primary Key field(s) of a Table?

You first identify the candidate Key(s) of the Table (click C.10.3).

In case there is only one candidate Key it is clear that it must be the Primary Key of

the Table. However, if a Table happens to have more than one candidate Key, you

should carefully decide which one is the Primary Key of the Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 167 of 725

Let me show you this with an example. Imagine you have a Table of capital cities with

only two fields “Capital” and “Country”. You want all records to have their values of

“Capital” and “Country”, so you configure both as “Required=Yes” (i.e., as being

without Nulls). Since there can be no duplicate values neither on “Capital”, nor on

“Country”, to avoid mistakes you have configured each of both fields as indexed

without duplicate values. The Table could look like:

T_Capitals

Capital Country

Beijing China

Brasilia Brazil

Buenos Aires Argentina

Madrid Spain

Washington United States

You probably have already noticed that both fields “Capital” and “Country” are a

simple candidate Key for this Table. The decision of which of both fields is the Table

Key is subtle, but relevant. You have to decide if this is a Table of countries, with an

additional field to indicate the capital of the country, or rather, this is a Table of capital

cities, with an additional field to indicate the country of each capital city. Without

further information about the database where this Table is included it is not possible to

know what of both options is correct. Let us therefore imagine that you also have in the

Table a field “Inhabitants”. The decision is now pretty clear: if the field “Inhabitants”

contains the city inhabitants, then “Capital” should be the Key field. However, if

“Inhabitants” contains the country inhabitants, then “Country” should be the Key field.

Let me present you one more example. Imagine that you have a Table of quarterly rain

measurements in capital cities, as the example Table from chapter A.5:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

Each record in this Table represents an entity which is one quarterly measurement of

rainfall in one capital city. As I have indicated, the Key field(s) are the ones that

“identify” each entity and each unique record in the Table. Therefore, the Key fields

cannot have duplicate values in every current or future record in the Table. The field

“Capital” is not the Key, because you can have several records with the same “Capital”

value. The same happens for all the other fields in the Table: none of them has unique

values across the whole Table, so you do not have any simple candidate Key.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 168 of 725

However, if you think about it, what should be unique is the combined value of

“Capital”, “Cal_Year” and “Quart”. This is what identifies each valid measurement

record in this Table. Each of these unique records will have the corresponding value in

the field “Quart_Rainfall”, which represents the amount of rain that the capital in the

record got in that quarter from that year. Therefore, each entity (a quarterly rainfall

measurement in a Capital) is identified by the composite values of “Capital”, “Cal_Year”

and “Quart”, because these three fields identify one and only one measurement, and

therefore, identify one and only one record. The fourth field “Quart_rainfall” is

providing one attribute to this entity. The attribute is the value of the rainfall in that

specific quarter, in that specific capital city. Therefore, this Table has a composite Key,

and the Primary Key fields you should configure are “Capital”, “Cal_Year” and

“Quart”.

As a final remark on identifying the Key fields, remind that Key fields cannot be

empty, this is, none of the Key fields can contain a Null. If you try to define Key

field(s) that have a Null in one (or more) records, MS-Access will not allow you, and

will give you an informative message. If you have that problem, the solution is quite

simple: you first replace all the currently Null elements in all the Key field(s) with a

correct value, and then MS-Access will allow you to select them as the Key field(s).

D.6.6 Why should I define the Primary Key field(s) in Tables?

Defining the Primary Key field(s) of your Tables allows the system to uniquely identify

each record contained in the Table, prevents duplicate records and it is a best practice

in database design.

In the most frequent case where you have only one candidate Key, defining the

primary Key field(s) of the Table is trivial, because you just need to configure the only

set of candidate Key field(s) as the primary Key field(s). If you define one field, or

one group of fields, as the primary Key field(s), MS-Access will automatically

configure an index without duplicate values and without Nulls. Therefore, you do not

need to configure first an index over them, and then configure them as the Primary

Key fields: just configure them as the Primary Key and the intext is automatically

configured.

In the very few cases where you have more than one candidate Key, you only need to

think which one should be the Primary Key. This small extra effort really pays off.

Actually, the usual way to configure this in MS-Access if by configuring first the

Primary Key field(s), and then, optionally configuring one (or more) index(es) with or

without duplicate values with or without Nulls.

D.7 How do I add simple and/or composite index(es) to a

Table?

You may click:

• “D.7.1 How do I add simple indexes to a Table?”

• “D.7.2 How do I add composite (and simple) indexes to a Table?”

• “D.7.3 How do I reconfigure the indexes of a Table?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 169 of 725

D.7.1 How do I add simple indexes to a Table?

To configure simple indexes, you can do it when configuring each Table field:

click D.5.1.8 to configure its “Indexing” property. If you want the simple index to be

without Nulls, click D.5.1.7 to configure “Required=Yes”.

You can also configure simple indexes using the “Indexes” tool, that is used to

configure composite indexes. If you want to do this, you may click “D.7.2 How do I

add composite (and simple) indexes to a Table?” .

D.7.2 How do I add composite (and simple) indexes to a Table?

Open the Table in “Design View” (click B.4.1.3).

Click on “Design” from the “Ribbon-bar” (below the “Table Tools” contextual label)

and then click on the Indexes “ ” icon. This opens a dialog box called “Indexes” that

shows all the indexes in the Table and allows to create new indexes and/or to configure

existing ones.

If you had configured indexing on some individual fields (click D.5.1.8) and/or a simple

or composite Primary Key (D.6), the corresponding indexes will be shown in the

“Indexes” dialog box (if you want to manage them, you may click D.7.3).

To add a new index, find a blank row, and on the cell in the column “Index Name”

write an index name that does not already exist in the “Indexes” dialog box. The index

names are not used externally, and they are only used within the “Indexes” dialog box

to tell apart the different indexes defined in this Table.

Then click on the rightmost side of the cell to its right (under the column “Field Name”)

and click on a Table field from the drop-down menu that will be shown. You have now

configured an index with one field (a simple index). If you want a composite index,

you have to configure additional field(s) in this index. You do this by clicking on the

rightmost side of the cell below this one (also under the column “Field Name”) and click

on another Table field from the drop-down menu that will be shown. Do the same

process with as many fields you want to add fields to this composite index (up to a

maximum of 10 fields). If you want, you may configure the “Sort Order” of each field,

although my advice is to leave always the default “Ascending” value.

Notice that the fields that make a composite index are ordered, and the order you choose

has an impact on the performance of the index. If you want to improve performance, put

first the fields with less duplicate values and last the fields with more duplicate values.

Notice also that you can add to an index the same field several times, although this is

not very useful.

Once you have defined the field(s) in your new index, click on the row that contains the

index name, and this will show its three properties in the bottom part of the “Indexes”

dialog box. The three properties shown are:

• “Primary”
If you set “Primary=Yes”, then you are configuring these index’s field(s) as the

actual Primary Key field(s) of the Table. If you set “Primary=No”, then this index’s

fields are not the Primary Key field(s) of the Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 170 of 725

• “Unique”
If you set “Unique=Yes”, this index does not allow duplicate values. If you set

“Unique=No”, this index allows duplicate values. Remind that preventing duplicate

values does not imply preventing duplicate records. For the latter requirement you

also need to configure all the fields in the index as “Required=Yes” (click D.5.1.7).

• “Ignore Nulls”
If you set “Ignore Nulls=Yes”, any record having Null in an index field will not be

included in this index. If you set “Ignore Nulls=No”, all the Table records will be

included in this index. If all the fields in the index are configured as “Required=Yes”

(i.e., all of them are without Nulls), the value of “Ignore Nulls” is irrelevant, because

the fields cannot contain Null. If this index has one or more fields configured as

“Required=No”, my advice is you set “Ignore Nulls=Yes” in case you expect lots of

Null (say more than 30%) in one or more of the fields configured with

“Required=No”.

Notice it is very different to configure an index to ignore records that contain Null

in any of the index fields, than configuring all the fields in the index to be without

Nulls (i.e., configure “Required=Yes”). If you want to know more about this, you

may click “C.8.4 What indexes can I configure in a given Table?”

You can create as many indexes as you need (subject to the maximum capacity of MS-

Access).

Once you are done configuring your index(es), close the “Indexes” dialog box by

clicking on the close “X” icon on its top-right corner.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. If you get warning and/or error messages when saving your Table design, you

may click “L.2 How do I fix errors with my Table/Form design?”. You may finally close

the Table (click B.4.1.7) or change it to “Datasheet View” (click B.4.1.4).

D.7.3 How do I reconfigure the indexes of a Table?

Open the “Indexes” dialog box (click B.6.2.1).

You delete an index by deleting all its index field rows (click B.6.2.3). Notice that if

you do not delete all of them, you will get a different result:

• If you deleted the first index field row of the index, then the non-deleted index field

rows will become part of the index that is placed right above this one.

• If you did not delete the first index field row of the index, then this index is not

deleted, and you just deleted some of its fields.

Both results above are obviously bad if they were not intentional, so make sure you

delete exactly all the index field rows of the index you want to delete, no more, no less.

You delete fields from an index by deleting the corresponding index field rows

(click B.6.2.3). In case the field you want to delete is the one on the first index field row

of the index, then you cannot delete it because this would delete the index itself. In

this case, you reconfigure the first index field row with the data of one of the index

fields that you do not want to delete (i.e., you are duplicating this field), and then you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 171 of 725

delete that index field row instead of the first one.

You change the order of the fields from an index by moving the index field rows

(click B.6.2.3) as corresponds.

You add a field to an index, by inserting an index field row (click B.6.2.3) in the

corresponding place within the index field rows, and then configuring it (click D.7.2).

Notice that you can add to an index the same field several times, although this is not

very useful.

You reconfigure an index field row, or the index itself, by modifying their

corresponding properties (click D.7.2).

Once you are done reconfiguring your index(es), close the “Indexes” dialog box by

clicking on the close “X” icon on its top-right corner.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.8 How do I configure the properties of a Table?

Unhide the “Property Sheet” of the Table (click B.7.1).

The following screenshot shows the “Property Sheet” of a Table, placed on the right

side of the “Table pane”:

You can see that the “Property Sheet” of the Table only has one tab called “General”,

and this tab contains a number of rows, with one property in each row. I will explain

with more detail the following properties, that you may click:

• “D.8.1 How do I configure a record validation rule?”

• “D.8.2 How do I configure the record validation text?”

• “D.8.3 How do I configure the “Subdatasheet Name” property?How do I configure

the “Subdatasheet Name” property?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 172 of 725

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.8.1 How do I configure a record validation rule?

A record validation rule is a Boolean expression that must not return False for the

values of any new record. If the Boolean expression returns Null, the record validation

rule is considered correct.

A record validation rule can for example require that one field is greater than or equal

to another field, or that the sum of two fields is less than some given constant. An

example of a simple expression that you could use as a record validation rule is:

 [Begin] <= [End]

this record validation rule would enforce that the content of field “Begin” is less than or

equal to the content of field “End” in any newly inserted record in the Table. Notice

that Null in “Begin” and/or “End” satisfies this record validation rule.

Another example of record validation rule is:

 ([Total] >= [Item_1]) AND ([Total] >= [Item_2])

this record validation rule would enforce that the content of field “Total” is greater than

or equal to the content of field “Item_1”, and also, that the content of field “Total” is

greater than or equal to the content of field “Item_2” in any newly inserted record in

the Table. Notice that Null in one (or more) of the fields satisfies this record validation

rule.

Configuring a record validation rule prevents both introducing new records violating

the field validation rule and changing the values of the fields (involved in the record

validation rule) in an existing record such that their values violate the record validation

rule. However, if the Table already contains records that violate the record validation

rule, the records will stay in the Table after you configured the record validation rule.

Notice that you can edit other fields (i.e., fields not included in the Boolean expression)

of an existing record that violates the record validation rule, and the resulting edited

record that still violates the record validation rule will remain in the Table.

This is very important, because if you see a record validation rule, you should remind

that the Table can contain records that violate it if they existed in the Table before

the record validation rule was configured.

When you configure a record validation rule in a Table with existing records, you will

be asked if MS-Access should check if all the records existing in the Table comply with

the record validation rule (click L.2.1).

Be well aware that if the Boolean expression (in the record validation rule) returns Null,

the record validation rule is correct, and the record is accepted in the Table. The

rationale for this is that Null can only appear in “optional” fields, this is, fields with

optional values that are configured as “Required=No”. At the same time, if you have

optional fields containing Null, this most likely causes the Boolean expression (in the

record validation rule) to return Null. In this case, you usually want the record to be

accepted, because you accept Null in optional fields. In any case, you can design the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 173 of 725

Boolean expression to return False upon any combination of Null in the fields, as you

want.

If you want to check for records that violate the record validation rule for records

already existing in the Table before you configured the record validation rule, you

remove the record validation rule, then configure the record validation rule again, and

save the Table design (click B.4.1.6). You then click on “Yes” upon the question of

testing all existing data (click L.2.1).

If you want to change field values in records that violate the record validation rule

already existing in the Table before you configured the record validation rule, you may

click “E.7 How do I bulk-change my Table/Form’s data?”.

Record validation rules are extremely useful to avoid errors in your database, so I

strongly recommend you use them for every Table where there are known mandatory

restrictions in its related field values.

How do I define the Boolean expression in the record validation rule?

If you are familiar with the syntax of expressions in Table “Design View” (recall that

MS-Access has three different expression syntax, click G.1), you may directly type-in

the expression in the box to the right of “Validation Rule”. If you are not familiar with

the syntax of these expressions, you click on the icon with three dots “ ” at the right

of this row, and MS-Access will open a dialogue-box to help you write the expression

you want.

In the Boolean expression of a record validation rule you can use constants, built-in

operators, built-in VBA functions and all the record’s field names. However, you

cannot use user-defined VBA functions, nor Subqueries. If you want to know more

about the rules to write expressions in Table “Design View” you may click “G.1 What

are the main differences between the three expression scopes?”.

Record validation rules are extremely useful to avoid errors in your database, so I

strongly recommend you use them for every Table where there are known mandatory

restrictions in relation to its combined field values.

D.8.2 How do I configure the record validation text?

This is the text that MS-Access will show you when you type-in a record that returns

False in the expression you wrote in the record “Validation Rule” from the Table’s

“Property Sheet”. If you leave this box blank, MS-Access will show a generic message

indicating that the value does not fulfil the validation expression and showing the

validation expression. Seeing the validation expression is quite self-explanatory in most

cases, but in case you have a non-obvious validation expression, using this field will be

very useful to explain what the joint value restrictions in the fields of this Table are. If

you want to use this property, just type-in the validation Text you want MS-Access to

show.

D.8.3 How do I configure the “Subdatasheet Name” property?

A “Subdatasheet” is a datasheet (similar to an MS-Access object in “Datasheet
View”) linked to records from another datasheet. This linking between datasheets may

be repeated hierarchically up to a maximum of eight levels. MS-Access allows you to

configure a subdatasheet in any Table, Form or Query results (all in “Datasheet

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 174 of 725

View”).

When a Table has an associated subdatasheet, a plus “ ” icon will be displayed on the

left side of each record. If you click on one of the plus “ ” icons, it will change to a

minus “ ” icon, and the subdatasheet corresponding to that record will be unhidden.

If you click on a minus “ ” icon, it will change to a plus “ ” icon, and the subdatasheet

corresponding to that record will be hidden. You can also unhide or hide the

subdatasheets corresponding to all the Table records by successively clicking on

“Home”, on the more “ ” icon, on “Subdatasheet” from the pop-up menu, and

finally on either “Expand All” or “Collapse All” (respectively) from the secondary pop-

up menu.

For the case of a Table involved in a Relationship, MS-Access automatically configures

the slave Table as a subdatasheet of the master Table. If a Table is a master Table in

several Relationships, the first time that you click on one of its plus “ ” icons MS-

Access will ask you which of its slave Tables you want to configure as the

subdatasheet.

You may add, modify or remove subdatasheets (including the ones automatically

configured by MS-Access for the case of a Table Relationship) by configuring the Table

properties, as follows:

Open the Table in “Design View” (click B.4.1.3) or change its view-type to “Design
View” (click B.4.1.4).

Unhide the “Property Sheet” of the Table (click B.7.1).

You can then do the configuration(s) that you want:

• To remove the subdatasheet:

Change the “Subdatasheet Name” property to “[None]”.

• To keep the default subdatasheets:

Leave the “Subdatasheet Name” property with its default value of “[Auto]”. If you

had changed the default value, then change it back to “[Auto]”.

• To add or modify subdatasheets:

Configure the “Subdatasheet Name” property, as well as the related “Link Child
Fields” and “Link Master Fields” properties.

I personally consider that subdatasheets have more disadvantages (risk of confusion

by the user) than advantages (powerful data visualization tool). For this reason, I feel

more inclined to remove all subdatasheets.

D.9 How do I create and configure my Table Relationships?

You may click:

• “D.9.1 How do I create a new Relationship?”

• “D.9.2 How do I configure a Relationship?”

• “D.9.3 What is the effect of “Enforce Referential Integrity”?”

• “D.9.4 What is the effect of “Cascade Update Related Fields”?”

• “D.9.5 What is the effect of “Cascade Delete Related Records”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 175 of 725

• “D.9.6 What Relationships should I configure?”

D.9.1 How do I create a new Relationship?

You may click:

• “D.9.1.1 How do I create a new Relationship in the most frequent case?”

• “D.9.1.2 How do I create a new Relationship in less frequent cases?”

• “L.3 How do I fix errors in my Relationship configuration?”

D.9.1.1 How do I create a new Relationship in the most frequent case?

Open the “Relationships” pane (click B.10.1). The first time that you open it, the

“Relationships” pane will be blank (with gray background).

Unhide both the master and the slave Table-boxes (click B.10.4.4) between which you

want to establish the Relationship. This is mandatory because you can only create a

Relationship between Table-boxes that are visible in the “Relationships” pane.

You can now create a new Relationship in either of the following ways:

• Drag-and-drop a master field name from the master Table-box to its slave field in

the slave Table-box. Doing this will create the Relationship and open an “Edit
Relationships” box. You now configure (click D.9.2) the just created Relationship

using the “Edit Relationships” box.

• Show any “Edit Relationships” box (click B.10.3) and click on its “Create New..”

button. You can do this from any “Edit Relationships” box, even if it is a blank

one. Doing this will show a “Create New” dialog box, as the one depicted in the

following screenshot:

Select the master and slave Table-box names by clicking on the drop-down menu

“ ” icon placed on the rightmost side of each of the cells below the labels “Left
Table Name” and “Right Table Name” (respectively). Remind that these drop-down

menus will only show the names of unhidden Table-boxes. After you have

configured the master and slave Table-boxes, you configure the first master-slave

field pair of the Relationship. It is configured by clicking on the drop-down menu

“ ” icon placed on the rightmost side of each of the cells below the labels “Left
Column Name” (master field) and “Left Column Name” (slave field). Each drop-

down menu will only show fields from the corresponding master or slave Table-

box that you have previously selected. Once you are done, click on the “OK” button.

Doing this will create the Relationship and open an “Edit Relationships” box.

Be aware that once you click on the “OK” button, the configuration you might had

performed in the original “Edit Relationships” box (where you pressed the “Create

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 176 of 725

New..” button) will be lost.

Regardless of how you created the Relationship, you will end up with an “Edit
Relationships” box, in which the values of the master Table-box and one master field

(left column) plus the slave Table-box and one slave field (right column) are already

filled-in. You should use this “Edit Relationships” box to complete the configuration

(click D.9.2) of your newly created Relationship.

I finish this subsection highlighting that it is very different to create one Relationship

linking two (or more) field pairs, from creating two (or more) Relationships, each of

them relating one field pair.

In case you encountered some problems (but not an error), you may click:

• “D.9.1.2 How do I create a new Relationship in less frequent cases?”

If you got an error, you may click:

• “L.3 How do I fix errors in my Relationship configuration?”

D.9.1.2 How do I create a new Relationship in less frequent cases?

This subsection covers the following somehow unusual cases of creating a new

Relationship:

• Creating an additional Relationship between two Table-boxes already having an

existing one

• Creating a Relationship using a blank “Edit Relationships” box

Creating an additional Relationship between two Table-boxes already having an

existing one

If you attempt to create a new Relationship between two Table-boxes that already have

an existing Relationship, MS-Access will show a dialog box asking if you want to edit

the already existing Relationship. If you click “No”, a new Relationship is created, as

you wanted. If you rather click “Yes”, you will view the properties of the already

existing Relationship (click B.10.3), and if you change anything, you will be modifying

the existing Relationship. You can also cancel the operation by clicking “Cancel”.

If you created a new Relationship, MS-Access will add a new Table-box representing

the master Table and depict the newly created Relationship between the new master

Table-box and the existing slave Table-box. MS-Access does this to avoid having

more than one Relationship between the same pair of Table-boxes. If you had more

than one Relationship between the same pair of Table-boxes it would be unclear if it

was one Relationship with several field pairs (each depicted as a connecting line), or

several Relationships each with a subset of all the field pairs (each field pair depicted

as a connecting line).

Creating a Relationship using a blank “Edit Relationships” box

If you double-click on the empty background of the “Relationships” pane, or on a field

name, this will open a blank “Edit Relationships” box. You can use this blank “Edit
Relationships” box to either edit an existing Relationship (by modifying the values of

its cells), or to create a new Relationship by clicking on its “Create New” button.

However, you cannot use this blank “Edit Relationships” box to create a new

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 177 of 725

Relationships by directly modifying it: if you attempt to do this, you will be mistakenly

editing an existing Relationship.

Getting an error

If you got an error, you may click:

• “L.3 How do I fix errors in my Relationship configuration?”

D.9.2 How do I configure a Relationship?

You configure a Relationship with its “Edit Relationships” box.

If the “Edit Relationships” box is from a newly created Relationship (click D.9.1), the

top-right button will be “Create”. If it is rather from an already existing Relationship

(click B.10.5), the top-right button will be “OK”. Aside from this difference, the way to

configure a newly created or an already existing Relationship is exactly the same.

The following screenshot shows an “Edit Relationships” box for a newly created

Relationship (top-right button is “Create”):

You can now configure the values of all the cells and checkboxes of the “Edit
Relationship” box, as I now explain:

• Column of cells below “Table/Query:” (on the left side)

This column of cells has at the top cell (right below the label “Table/Query:”, with

gray background) the name of the master Table-box in the Relationship. Below the

master Table-box name it shows cells for the master fields. Each master field is

related to the slave field placed to its right.

The two master-slave cells on the row right below the Table-box names show the

first master-slave field pair that you indicated when creating this Relationship. You

can link additional master-slave field pairs in this Relationship by clicking on the

rightmost side of each field cell and clicking on the field name you want to relate

from the drop-down menu. You can also change the first master-slave field pair

values using the corresponding drop-down menus. If you want to use more field-

pairs than can be displayed in the available space, use the scrollbar on the right.

Remind that to have referential integrity (click D.9.3), both fields in each and every

master-slave field pair must have the same “Field Type” and also the same “Field
Size”. Additionally, the master field(s) must have an associated index without

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 178 of 725

duplicate values and without Nulls.

Notice that you must select one field name on the “Table/Query:” column for each

selected field on the “Related Table/Query:” column (and vice versa): MS-Access

will not allow you to select a field name in only one of the columns, because it is

meaningless to have a field related with nothing.

• “Related Table/Query:” column of boxes (on the right side)

This column of cells shows at the top cell (right below the label “Related
Table/Query:”, with gray background) the name of the slave Table-box in the

Relationship. Below the slave Table-box name it shows cells for the slave fields.

Each slave field is related to the master field placed to its left.

The two master-slave cells on the row right below the Table-box names show the

first master-slave field pair that you indicated when creating this Relationship. . You

can link additional master-slave field pairs in this Relationship by clicking on the

rightmost side of each field cell and clicking on the field name you want to relate

from the drop-down menu. You can also change the first master-slave field pair

values using the corresponding drop-down menus. If you want to use more field-

pairs than can be displayed in the available space, use the scrollbar on the right.

Remind that to have referential integrity (click D.9.3), both fields in each and every

master-slave field pair must have the same “Field Type” and also the same “Field
Size”. Additionally, the master field(s) must have an associated index without

duplicate values and without Nulls.

Notice that you must select one field name on the “Table/Query:” column for each

selected field on the “Related Table/Query:” column (and vice versa): MS-Access

will not allow you to select a field name in only one of the columns, because it is

meaningless to have a field related with nothing.

• “Enforce Referential Integrity” checkbox

If you tick this checkbox, the system will enforce referential integrity (click

“C.11.1 What is a Relationship with referential integrity?”) in this Relationship.

I strongly advise you always tick “Enforce Referential Integrity”: otherwise the

Relationship’s usefulness is extremely limited (“D.9.3 What is the effect of “Enforce
Referential Integrity”?”). Remind that to have referential integrity, both fields in

each and every pair of master-slave fields must be of the same field type and

also of the same field size. Additionally, the master field(s) must have an associated

index without duplicate values and without Nulls.

• “Cascade Update Related Fields” checkbox

If you tick this checkbox, the system will automatically update the values of all

corresponding slave field(s) in all slave records when you change the value of the

master field(s) in a given master record. This means, for example, that if a street

name is changed in the master Table of street names, the new street name will

appear automatically in the corresponding field of all records linked to this one

throughout the database. As you may see, this is extremely convenient. Notice you

can only check this checkbox if you have already set “Enforce Referential
Integrity”.

I strongly recommend you always set “Cascade Update Related Fields”, unless you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 179 of 725

have a very sound reason not to do it.

If you want to know more about this, you may click “D.9.4 What is the effect of

“Cascade Update Related Fields”?”.

• “Cascade Delete Related Records” checkbox

If you tick this checkbox, the system will automatically delete all orphaned

records. This means, for example, that if a house record is removed from the

addresses master Table, the system will automatically delete all the records that

were linked to this address from all the Tables in the database.

If you do not tick this checkbox, the system will not allow you to remove a record

until you have previously removed all the records that point to it.

Ticking this checkbox may seem convenient, but it is extremely risky. I strongly

advise you never set “Cascade Delete Related Records”. It may take a little more

manual work if you want to remove a record from a master Table, but it is much

safer than losing your valuable data (i.e., the orphaned records) by mistake.

If you want to know more about this, you may click “D.9.5 What is the effect of

“Cascade Delete Related Records”?”.

• “Relationship Type” cell

This cell shows the type of this Relationship. The Relationship type can be one-to-

many, one-to-one or indeterminate. MS-Access fills-in this cell with the correct

Relationship type, based on the characteristics of the fields you have linked in the

“Table/Query” and “Related Table/Query” boxes. The value of this cell is defined

as follows:

o If the master field(s) are a candidate Key, the slave fields are not a candidate

Key, and the two field types of every master-slave field pair are the same, then

the Relationship is one-to-many.

o If the master field(s) are a candidate Key, the slave fields are also a candidate

Key, and the two field types of every master-slave field pair are the same, then

the Relationship is one-to-one.

o In any other case, the Relationship is indeterminate.

Notice that MS-Access will change the value of the “Relationship Type” cell as you

change the fields you are linking in the “Table/Query” and “Related Table/Query”

cells (see at the top of this bullet list).

• “Create” or “OK” button

This button closes the “Edit Relationships” box, saving changes. If the “Edit
Relationships” box was of a new Relationship, the button will show “Create”: if

you click it the Relationship will be created. If the “Edit Relationships” box was of

an existing Relationship, the button will show “OK”: if you click it the changes you

did to the Relationship will be saved.

• “Cancel” button

This button closes the “Edit Relationships” box, discarding all the changes that you

did.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 180 of 725

• “Join Type..” button

This button allows to select the default join type in Queries defined with the

graphical interface of MS-Access. My advice is you ignore this button.

• “Create New..” button

Clicking it shows the “Create New” box to create a new Relationship

(click D.9.1.1). Notice that once you click the “OK” button in the “Create New” box,

the configuration you did in the “Edit Relationships” box (where you just clicked

the “Create New..” button) will be lost.

Remind that when you check both “Enforce Referential Integrity” and “Cascade
Update Related Fields”, the values of the slave fields in each record in the slave Table

will correspond to the values of the corresponding master fields in its corresponding

record from the master Table. To say it in other words, the linked fields from the slave

Table cannot have their own values, and rather, can only have the values of one record

from the master Table.

Once you are done with the configuration of your new Relationship, click on the

“Create” or “OK” button and the Relationship has been configured.

If you got an error, you may click:

• “L.3 How do I fix errors in my Relationship configuration?”

D.9.3 What is the effect of “Enforce Referential Integrity”?

Setting “Enforce Referential Integrity” in a Relationship makes MS-Access

automatically guarantee that the slave field value requirements that define the

Relationship are always satisfied.

I definitively advise you to always tick “Enforce Referential Integrity” in every

Relationship that you create. Recall from “C.11.1 What is a Relationship with

referential integrity?” that in order to have Referential Integrity, the Relationship must

fulfil two conditions:

1. Both fields of each master-slave field pair have the same field type and the same

field size.

2. The master field(s) has/have an index without duplicate values and without

Nulls.

The second condition is equivalent to say that the master fields are a candidate Key

(click C.10.3) of the Table. Remind that if the master fields are the Table’s Primary

Key field(s), they always have an index without duplicate values and without Nulls.

If, and only if, you tick “Enforce Referential Integrity” in a Relationship, MS-Access

will allow you to also tick “Cascade Update Related Fields” and/or tick “Cascade
Update Related Fields”.

D.9.4 What is the effect of “Cascade Update Related Fields”?

Ticking “Cascade Update Related Fields” makes MS-Access automatically update the

value of the slave field(s), in all the slave records, to the new value of the master

field(s) in their corresponding master record, each time that the value of the master

field(s) has been modified in a given master record.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 181 of 725

If in a Relationship you tick “Enforce Referential Integrity”, but you do not set

“Cascade Update Related Fields”, MS-Access will not automatically update the

change of value of a master field from a master record on its slave field(s) from all its

slave records. You can then have inconsistent data in respect to the Relationships that

you configured.

I strongly advise you always tick “Cascade Update Related Fields”.

Notice that when you change the value of a master field, this will automatically update

the values of all its slave fields in all its slave record, and each updated slave record

will be subject to field error checks and record error checks (click L.4.3.4).

D.9.5 What is the effect of “Cascade Delete Related Records”?

Ticking “Cascade Delete Related Records” makes MS-Access automatically delete

all slave records when you delete their master record.

If in a Relationship you set “Enforce Referential Integrity” but you do not set “Cascade
Delete Related Records”, MS-Access will not allow you to delete any master record

that has one or more slave records. If you try to delete such a master record, MS-

Access will not do it, and will show an informative message indicating that there are

slave records dependent on this one.

Setting “Cascade Delete Related Records” may seem convenient, but it is extremely

risky. I strongly advise you do not set “Cascade Delete Related Records”.

D.9.6 What Relationships should I configure?

You configure a one-to-many Relationship when you have one (or more) master

Tables in your database, each of which lists “all the” entities of a given class that exist

in this database. The class of entities in each of the master Tables could be for example

countries, persons, products, cities, cars, addresses, etc. You also have in your

database other Tables where you want to include in their fields references to countries,

persons, products, etc. Then, you should establish several one-to-many Relationships,

each of them from a given master Table, to each of the other slave Tables that include

in their fields a reference to the entities listed in their corresponding master Table.

The one-to-many Relationship is the most frequent type of Relationship.

The one-to-one Relationship is used typically when you have an entity class (e.g.,

project, order, etc.) that has a number of fields that only apply to some entity cases,

and you do not want the main entity Table with so many optional fields. Then you have

the main entity Table (the master Table) with the mandatory fields that apply to every

entity, and also, you list the optional type-specific fields in one (or more) slave Tables.

In this case, you establish several one-to-one Relationships: each Relationship is

established from the master Table to each of the slave Tables.

A many-to-many “Relationship” is created when you need to record in your database

how two (or more) entities relate among themselves. Then you create a many-to-many

Relationship between the master Tables of the entities you want to relate among

themselves.

When creating one-to-one or one-to-many Relationships or many-to-many

“Relationships”, recall my advice to always configure “Enforce Referential Integrity”

and “Cascade Update Related Fields” options, and never configure “Cascade Delete

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 182 of 725

Related Records”. The two first options are very useful and safe, while the third one

may be useful, but it is extremely risky.

If you want to know more about the concepts behind Relationships, you may click

“C.11 What is a Relationship?”.

D.10 How do I design MS-Access Forms?

You may click:

• “D.10.1 What are MS-Access Forms?”

• “D.10.2 How do I create an MS-Access Form?”

• “D.10.3 How do I add/delete/update a field of a Form?”

• “D.10.4 How do I configure VBA action code associated to Form Events?”

D.10.1 What are MS-Access Forms?

MS-Access Forms are objects that allow to enter data in very flexible way into one or

more Tables. Forms can also be used to present data from one or more Tables and

Queries, but this can also be done by Queries. Forms therefore are very useful for

entering data. Forms are very powerful and can be configured to perform different

actions (assign values, invoke user-defined VBA subroutines, ...) upon different Form

events (field update, record update, mouse over a field, Form closed, ...).

In its simplest shape, a Form is like a cover you put over one Table, where you can

automatically do more things. The Table where the Form’s data is taken from is called

its record-source Table. Some examples of things you can do with Forms are:

• Calculate the values of one, or more, auxiliary Tables every time that you modify

the data of the Table associated to the Form.

• Compute the default value of a Table field, depending on the values of other fields

in the same record and using user-defined functions.

• Compute the default value of a field using auxiliary Queries.

In a more complex shape, a Form may take data from several related Tables and from

your database Queries.

D.10.2 How do I create an MS-Access Form?

To create a Form over one Table, click on “Create” from the “Ribbon-bar”, and then on

the Form Wizard “ ” icon, placed in the top right corner of the “Forms” Ribbon group.

In the “Form Wizard” click on the drop-down menu “ ” icon and click on the Table

you want the Form to be based on. Then click on the add fields “ ” icon and all the

Table’s field will be selected into the Form. Click on “Next” and click on “Datasheet”.

You can now type-in the name you want for this Form in the text box at the top of the

Wizard window. Then click on “Finish” and the form will be created.

Each Form is placed as an object in the “Navigation Pane” (click B.4), under the

collection “Forms” with its corresponding name. You can open, copy, paste, rename or

delete a Form, just like you can do with any other object in the “Navigation Pane”.

When a Form is created from a Table, the form inherits all the configuration of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 183 of 725

Table. All the formatting, and all the drop-down menus of the Table are inherited by the

Form. However, once the Form has been created, the Form and the Table can be

independently modified of each other, and each will keep its own configuration. For

example, if you add or modify a field drop-down menu in the Table, this change will

not be automatically propagated to the Form(s) based on that Table.

To create a Form over several Tables/Queries, click on the “Create” Ribbon, and then

on the Form Wizard “ ” icon, placed in the top right corner of the “Forms” Ribbon

group. In the “Form Wizard” dialog box click on the drop-down menu “ ” icon and

click on the first Table/Query you want the Form to be based on. Then double-click on

each field from the Table/Query that you want to incorporate to the Form. When you

are done with the fields of this Table/Query, you select another Table/Query using the

drop-down menu at the top of the Wizard. You do this for as many Table/Queries you

want. When you are done incorporating fields from your Table/Queries, click on

“Next”. You then click on “Datasheet”. You can now type-in the name you want for

this Form in the text box at the top of the Wizard window. Then click on “Finish” and

the Form will be created.

D.10.3 How do I add/delete/update a field of a Form?

You may click:

• “D.10.3.1 How do I add a field to a Form?”

• “D.10.3.2 How do I delete a field from a Form?”

• “D.10.3.3 How do I update a field of a Form?”

D.10.3.1 How do I add a field to a Form?

Open the Form in “Datasheet View” (click B.4.1.3).

Click on “Datasheet” from the “Ribbon-bar” (below the “Form Tools” contextual

label). Then click on the Add Existing Fields “ ” icon from the “Tools” Ribbon group.

This will open the “Field List” sub-pane at the right side of the “Form pane”. There you

will see the fields of the associated Table. To add a field, just drag-and-drop it. This is,

press the left mouse button over the field name from the “Field List” sub-pane, and

without releasing the mouse button, you move the mouse to the place in the Form where

you want this field inserted. MS-Access will you a vertical pink line indicating where

the field will be inserted, that will change place when you change the mouse location.

Once you see the pink line where you want the field inserted, you release the mouse

button.

Once you are done with your Form configuration, save (click B.4.1.6) your Form

design. You may then use the Form in “Datasheet View” or close the Form

(click B.4.1.7).

D.10.3.2 How do I delete a field from a Form?

Open the Form in “Datasheet View” (click B.4.1.3).

You can delete a Form field in either of the following ways:

• Right-click on the field header and click on “Delete” from the pop-up menu.

• Select a field, or a range of fields (click B.6.1.4). You then either:

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 184 of 725

o Press the “Supr” key.

o Right-click on the field header of any of the selected fields, and click on

“Delete” from the pop-up menu.

Regardless of the way you do it, you will get a confirmation window. If you confirm the

deletion, the Form field(s) will be deleted.

Once you are done with your Form configuration, save (click B.4.1.6) your Form

design. You may then use the Form in “Datasheet View” or close the Form

(click B.4.1.7).

D.10.3.3 How do I update a field of a Form?

Open the Form in “Datasheet View” (click B.4.1.3).

If you want to update the configuration of a Form field in order to match the current

configuration of its associated Table field (e.g., a drop-down menu that you configured

in the Table), you just delete the field (click D.10.3.2) and then add it back

(click D.10.3.1). Notice that all the configuration you had possibly done on this Form’s

field will be lost and the field will have the configuration inherited from the

corresponding Table field that you have just added.

Once you are done with your Form configuration, save (click B.4.1.6) your Form

design. You may then use the Form in “Datasheet View” or close the Form

(click B.4.1.7).

D.10.4 How do I configure VBA action code associated to Form

Events?

If you had not previously done this, you configure this Form to have an associated VBA

Module. If you want to know how to do this, you may click:

• “D.10.4.1 How do I configure a Form to have an associated VBA Module?”

You then click on the subsection you want:

• “D.10.4.2 How do I enter/edit the VBA subroutine associated to a Form Event?”

• “D.10.4.3 How does my VBA code modify field values in the Form record being

edited?”

• “D.10.4.4 Why should I write options in the VBA Modules of my Forms?”

• “D.10.4.5 How do I close the VBA editor?”

D.10.4.1 How do I configure a Form to have an associated VBA Module?

Open the Form in “Design View” (click B.4.1.3).

Show the Form’s “Property Sheet” (click B.8.1).

You now click on the drop-down menu “ ” icon of the “Property Sheet” and click on

“Form” from the drop-down menu. Then click on the “Other” tab, locate the property

“Has Module” and on the cell to the right of “Has Module” you configure “Yes” (either

typing-in or using the drop-down menu). Notice you cannot configure this property

from “Datasheet View” and you must do it from “Design View”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 185 of 725

You only need to do this once for each Form. After it is configured, the Form will keep

its associated VBA Module and you can change its VBA code as I will show right now.

Once you are done with your Form configuration, save (click B.4.1.6) your Form

design. You may then close the Form (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

D.10.4.2 How do I enter/edit the VBA subroutine associated to a Form

Event?

If not already done, configure the Form to have an associated VBA Module

(click D.10.4.1).

Open the Form in “Datasheet View” (click B.4.1.3).

Show the Form’s “Property Sheet” (click B.8.1).

You now click on the drop-down menu “ ” icon and click on the Form element to

whose Events you want to associate some VBA code. The Form elements you can select

from the drop-down menu to configure its Events are the following:

• Form: the Form as a whole.

• “Column_name”: the column (field) of the Form (the one named “Column_name”).

• FormFooter: the footer section of the Form.

• FormHeader: the header section of the Form.

• Detail: the detail section of the Form.

• The Label elements do not have any associated Event.

Now click on the “Events” tab, and you will see all the Events (“On Click”, “Before
Update”, “After Update”, “On Got Focus”, “On Dbl Click” and many others), one in

each row, that are associated to the Form element you selected. If an Event already has

an VBA Subroutine associated to it, you will see the text “[Event Procedure]” on the

cell to the right of the Event name.

To enter/edit the VBA subroutine associated to one of these Events, click on the

rightmost end of the Event row. In case the row was selected, you should click on the

icon with three dots “ ” that you see on its rightmost end. If this Event already had

some associated VBA code, the VBA editor window will open, showing the VBA code

of the Event. If this Event did not have yet any associated VBA code, a dialogue-box

will be shown, where you should double-click on “Code Builder”, and this will open the

VBA editor window.

The VBA code associated to each Event is enclosed in a VBA private subroutine (i.e.,

a procedure, which is similar to a function with no arguments) written in the VBA

module associated to the Form. The name of the VBA subroutine is the name of the

element followed by underscore and the name of the Event. For example, the subroutine

associated to the Event “Close” in the element “Form” is named “Form_Close()”, the

one of the Event “AfterUpdate” in a column named “CalYear” is named

“CalYear_AfterUpdate()”, and the one of the Event “Click” in the Form header is

named “FormHeader_Click()”.

All the VBA Event subroutines of the Form will be in the VBA Module associated to

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 186 of 725

the Form. Therefore, when the VBA editor window is shown, you will see not only the

subroutine you just clicked (the one associated to the Event where you clicked on its

rightmost side), but actually you will see all the VBA subroutines that you have

defined up to now in this Form. Not only you see all the subroutines, but you can edit

all the ones that you want and/or enter any number of new subroutines that you want.

I now show you two very simple examples of Event subroutines. The first one is the

subroutine associated to the Event “Close” in the element “Form”:

 Private Sub Form_Close()

 Dim Ignore_result As String

 Ignore_result = Generate_Auxiliary_Table_for_Cities()

 End Sub

This subroutine is invoked by MS-Access every time that you close the Form. As you

may see, the subroutine invokes the function:

 “Generate_Auxiliary_Table_for_Cities()”

which could for example update the content of an auxiliary Table, that depends on the

Table associated to this Form.

The second example is the subroutine associated to the Event “AfterUpdate” of a Form

column named “CalYear”.

 Private Sub CalYear_AfterUpdate()

 Me.First_day_of_year = DateSerial(Me.CalYear, 1, 1)

 Me.Last_day_of_year = DateSerial(Me.CalYear, 12, 31)

 End Sub

This subroutine is invoked by MS-Access every time that you update the value of a

cell/field in the column/field_name “CalYear”. As you may see, the subroutine

automatically introduces the date of the first day, and the last day, of the year “CalYear”

in the fields “First_day_of_year” and “Last_day_of_year” of this record.

In case you want to know more about how to modify the values of the fields of the Form

record being edited, you may check the next section D.10.4.3.

If you want to know more about how to write VBA code, you may click “K.9 How do I

write my user-defined VBA functions and database Subroutines?”.

Once you are done writing your VBA code, you should save/close the VBA editor, as I

explain in “D.10.4.5 How do I close the VBA editor?”.

D.10.4.3 How does my VBA code modify field values in the Form record

being edited?

One quite frequent application of Forms is to provide default values that depend on the

values of other fields and/or that are computed from Queries. Notice that neither of

these functions can be achieved with a plain Table.

In order to enter values into a Form record, MS-Access provides the built-in “Me” data

structure. The “Me” VBA data structure has one field for each of the fields in the Form.

The names of the fields of the “Me” structure are the same ones as the Form fields. The

values of the “Me” structure fields are the same as the ones of the fields of the record

being edited (regardless of it being a new record or an existing record).

Therefore, the “Me” built-in structure allows that in your VBA code you can access the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 187 of 725

current values of the fields of the record being edited, and also, that you can modify

the values of the fields of the record being edited. To show an example, let me bring

back the Table of quarterly rainfall measurements in capital cities you created in A.5:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

In this Table, you could create a function to enter a default value for the field

“Quart_Rainfall” that depends on the value of the field “Capital”. The function could

look like:

 Private Sub Capital_AfterUpdate()

 If Me.Capital = "Washington"

 Then Me.Quart_Rainfall = 4

 Else Me.Quart_Rainfall = 10

 End If

 End Sub

This subroutine will be invoked each time you edit the value of field “Capital”. The

effect of invoking it will be to enter the value “4” in field “Quart_Rainfall” if the value

of “Capital” is “Washington” and will enter the value “10” otherwise.

D.10.4.4 Why should I write options in the VBA Modules of my Forms?

Because it you will achieve a faster code and a coherent handling of text strings.

I advise you write the following two options at the top of each VBA Module associated

to a Form:

 Option Compare Database

 Option Explicit

The option “Compare Database” will make string comparison be based on the same

ordering of your MS-Access database. This is extremely useful to avoid puzzling results

arising from handling two different ordering criteria for Strings.

The option “Explicit” obliges you to write a variable declaration of all the variables

you use in your VBA code. This may sound like more work, but it is much, much, safer

and it is certainly worth the extra work. It has an added advantage that your VBA code

will run faster.

Below these two options you may write one after another all your VBA Event

subroutines.

D.10.4.5 How do I close the VBA editor?

When you are done writing your VBA Event subroutines, I advise you to compile your

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 188 of 725

VBA module by clicking on “Debug” (placed at the top of the VBA editor window) and

then clicking on “Compile Database1” from the pop-up menu. If you get compilation

errors, debug your code.

Once the compilation returns no errors, close the VBA editor window by clicking on the

close icon “X” on its top-right corner. Notice that closing the VBA editor will

automatically save all your VBA code changes.

D.11 How do I configure the way to enter data (e.g., a drop-

down menu) in a Table/Form field?

I explain in this chapter the procedure to set up and configure different ways of entering

data into your Table/form fields. However, I do not provide in this chapter advice on

how to make the most of drop-down menus. If you want to know more about good

practices on drop-down menu configuration, you may click “K.1.8 What are good

practices in configuring my drop-down menus?”.

You can configure the following ways to enter data in a Table/Form field:

• Typing-in the values

Set “Display Control” as “Text Box”: see further below.

• Selecting values from a drop-down menu

Set “Display Control” as “Combo Box” (or alternatively as “List Box”, but I do

not recommend it): see further below.

• Selecting values with a checkbox (only for Yes/No fields)

Set “Display Control” as “Check Box”: see further below.

• Selecting values with a date-picker (only for Date/Time fields)

See further below.

The specific data entering mechanism(s) that you can configure for each Table/Form

field depend(s) on its field type, as follows:

• Number, Large Number or Short Text fields

Can have type-in (default) and a drop-down menu. You may click:

o “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

o “D.11.4 How do I configure a drop-down menu or a date-picker to enter data in

a Form field?”

o “D.11.5 What options can I set in a “Combo Box” Table/Form drop-down

menu?”

• Date/Time fields

Can have type-in (default) and a date-picker, but not a drop-down menu (nor

“Lookup” options). You may click:

o “D.11.2 How do I configure a date-picker to enter a date in a Table field?”

o “D.11.4 How do I configure a drop-down menu or a date-picker to enter data in

a Form field?”

Even though MS-Access does not provide a direct way to configure a drop-down

menu in a Date/Time field, if you really want to do it, there is a trick that I describe

in “K.1.9 How do I configure a drop-down menu in a Date/Time field?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 189 of 725

• Yes/No fields

Can have checkbox (default) or type-in. They can also have a drop-down menu,

but I consider it is better to use a checkbox instead. You may click:

o “D.11.3 How do I configure type-in or checkbox to enter data in a Table/Form

field?”

• Long Text, Currency, Calculated, AutoNumber, OLE Object, Hyperlink or

Attachment fields

Can only have type-in (cannot have a drop-down menu, nor “Lookup” options).

There is one exception listed in the next bullet point.

• Calculated fields with “Result Type = Yes/No”

Can have a checkbox (as an alternative to the default “Text Box”). Since the field

value is calculated (i.e., it is not entered), the “Check Box” in this case is just a way

to show the value, and not a way to enter it.

Notice that you do not enter values in AutoNumber fields, and therefore, they do not

have any configuration for entering data into them (their “Lookup” tab is blank).

Notice from the sections referenced above that drop-down menus and date-pickers are

configured differently in Tables and Forms.

If you configured a drop-down menu, and you want to go back to type-in only, you may

click:

• “D.11.3 How do I configure type-in or checkbox to enter data in a Table/Form

field?”

D.11.1 How do I configure a drop-down menu to enter data in a Table

field?

You can only configure a drop-down menu in a field with field type Number, Large
Number or Short Text. Notice Yes/No fields can also have a drop-down menu, but I

consider it is better to use a checkbox instead.

Open the Table in “Design View” (click B.4.1.3). Click on the field row of the field that

you want to have a drop-down menu, and then click on the “Lookup” tab in the bottom

sub-pane.

To configure a drop-down menu, you have to configure the “Lookup” properties:

“Display Control”, “Row Source Type” and “Row Source” as follows.

Click on the rightmost side of the first row (named “Display Control”) of the bottom

sub-pane and click on “Combo Box” from the drop-down menu. Notice that clicking on

“List Box” will also configure a drop-down menu, but with less configuration options

than “Combo Box”. My advice is therefore you always use “Combo Box” for your drop-

down menus.

In case you decide to select “List Box”, you should be aware that in a Table it will allow

you to input a value other than the ones in the list (e.g., typing it in, or editing the value

selected from the list), but in a Form it will not allow you to input a value other than the

ones in the list.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 190 of 725

If you configured “Combo Box”, this will show a number of property rows in the bottom

“Lookup” sub-pane, below the first row named “Display Control”. These property rows

are shown in the following screenshot:

Click on the rightmost side of the property row labeled “Row Source Type” and the

drop-down menu will show you the following three options (for each of them I indicate

the corresponding explanatory subsection):

• “Table/Query”

Click “D.11.1.1 How do I configure a Table drop-down menu that takes its

values from a Table/Query?”.

• “Value List”

Click “D.11.1.2 How do I configure a Table drop-down menu that takes its

values from a Value List?”.

• “Field List”

Click “D.11.1.3 How do I configure a Table drop-down menu that takes its

values from a Field List?”.

Configuring drop-down menus in Table’s fields does not affect stored data and has no

side effects.

D.11.1.1 How do I configure a Table drop-down menu that takes its values

from a Table/Query?

If you set “Row Source Type” as “Table/Query”, the values shown in the drop-down

menu are the values of the first field of all the records of a Table name, Query name,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 191 of 725

or SQL operation. The specific Table name, Query name, or SQL operation is the

one that you type-in in the property row “Row Source”. The SQL operation can be a

Select operation, a Union operation or a Transform operation.

If you write a Table name as “Row Source”, the order of values in the drop-down

menu will be the one of the first field of that Table. If the first field is indexed, it will be

the order of the index that you configured. If the first field is not indexed, it will be the

order of records as they were introduced in that Table. The ordering options that you

may configure for the “Row Source” Table in its “Datasheet View” does not affect the

order of values in the menu.

If you write a Query name or SQL operation as “Row Source”, the order of values in

the drop-down menu will be the one of the output record-list of the Query or SQL

operation.

A quite frequent case is writing a Select operation in the “Row Source” property. The

great advantages of using a Select operation are:

• You can select the field name you want from all the ones in the Table name or

Query name, and you are therefore not restricted to using only the first field name.

• You can use the “ORDER BY” clause to define the exact order you want for the

values in the drop-down menu (click F.7.12).

• You can use the “DISTINCT” clause (click F.7.11) to suppress duplicate values, in

case they exist. Duplicate values are in principle undesirable in a drop-down menu.

An extremely useful approach is to produce drop-down menus with a Select operation

over an auxiliary Table. The auxiliary Table allows you to modify the values when you

want, and they will be automatically updated for all the drop-down menus over that

Table. The auxiliary Table may have, in addition to the field with the drop-down menu

values, a field with a descriptive text, a field with comments, a field to order the

values over it, or any other auxiliary fields that you may need.

If you want to configure different options in a “Combo Box”, you may click:

• “D.11.5 What options can I set in a “Combo Box” Table/Form drop-down menu?”

If you want to know some good practices in configuring your drop-down menu, you

may click:

• “K.1.8 What are good practices in configuring my drop-down menus?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.11.1.2 How do I configure a Table drop-down menu that takes its values

from a Value List?

If you set “Row Source Type” as “Value List”, the values shown in the drop-down menu

are a list of values you type-in in the property row “Row Source”.

The order of values in the drop-down menu will be the same as the order of values that

you have typed-in into “Row Source”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 192 of 725

You have to separate the values in the list with a semicolon “;” character. If the values

are text strings, enclose each text string in double quotes. A couple examples of value

lists that can be typed-in into “Row Source” are:

• Number value list: 0 ; 0.5 ; 1 ; 1.5

• Short Text value list: "Q1" ; "Q2" ; "Q3" ; "Q4"

Use a “Value List” when the list of values is reasonably short and you do not expect the

list to change along the lifetime of the database (e.g., to enter identifiers for quarters). If

the value list is long (e.g., 40 values) or it will change along the database lifetime

(product identifiers, that come and go), it is better to use the “Table/Query” value as

“Row Source Type”.

If you want to configure different options in a “Combo Box”, you may click:

• “D.11.5 What options can I set in a “Combo Box” Table/Form drop-down menu?”

If you want to know some good practices in configuring your drop-down menu, you

may click:

• “K.1.8 What are good practices in configuring my drop-down menus?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.11.1.3 How do I configure a Table drop-down menu that takes its values

from a Field List?

If you set “Row Source Type” as “Field List”, the values shown in the drop-down menu

are the field names of a Table name or Query name. The specific Table name, or

Query name is the one that you type-in in the property row “Row Source”.

The order of values in the drop-down menu will be the same as the field order in the

Table (in “Design View”) or in the Query (in “SQL View”).

If you click on an option from the drop-down menu, its value will be entered in the field

as if it were typed-in. This means that if the field type is Short Text, the value will be a

text string. If the field type is Number or Large Number and the option from the menu

(i.e., the field name) looks like a number value (e.g., 1 or 24), it will be correctly entered

into the field.

Using “Field List” as “Row Source Type” is particularly useful when using a Transform

Query as the “Row Source”, because the field names of a Transform Query are actually

values that have been turned into field names.

If you want to configure different options in a “Combo Box”, you may click:

• “D.11.5 What options can I set in a “Combo Box” Table/Form drop-down menu?”

If you want to know some good practices in configuring your drop-down menu, you

may click:

• “K.1.8 What are good practices in configuring my drop-down menus?”

Once you are done with your Table configuration, save (click B.4.1.6) your Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 193 of 725

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.11.2 How do I configure a date-picker to enter a date in a Table field?

You can only configure a date-picker in a field with field type Date/Time.

Right-click on the Table name in the “Navigation Pane” and click on “Design View”

from the pop-up menu.

Click on the row of the field you want to have a date-picker. In the “General” tab (in

the bottom sup-pane) locate the row named “Show Date Picker”. Click on the rightmost

side of that row and click on “For dates” from the drop-down menu.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Table

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

I do not find myself a date-picker very useful, and on my view it is better to configure a

default Date/Time value (e.g., with the function “Date()” to insert today’s date with

zero-time), that you can edit in the field to change it to some other value you want.

Although MS-Access does not allow to configure a drop-down menu in a Date/Time

field, if you really need it, there is a trick that I explain in “K.1.9 How do I configure a

drop-down menu in a Date/Time field?”.

D.11.3 How do I configure type-in or checkbox to enter data in a

Table/Form field?

This depends on the field type, as follows.

For all field types except Yes/No and Date/Time

For these field types, type-in is the default way to enter data. Even if you configured a

drop-down menu (on some field types only), you can still type-in your values.

If what you want is to have only type-in (i.e., remove the drop-down menu), you have

to follow the same procedure as when setting the drop-down menu, but setting “Display
Control” as “Text Box”. To do this, you may click:

• “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

• “D.11.4 How do I configure a drop-down menu or a date-picker to enter data in a

Form field?”

For a Yes/No field type

For a Yes/No field type, checkbox is the default way to enter data. If you want to

change it to type-in, you have to follow the same procedure as when setting a drop-

down menu, but setting “Display Control” as “Text Box”. To do this, you may click:

• “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

• “D.11.4 How do I configure a drop-down menu or a date-picker to enter data in a

Form field?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 194 of 725

For a Date/Time field type

For a Date/Time field type, type-in is the default way to enter data. Even if you

configured a date-picker, you can still type-in your values.

If what you want is to have only type-in (i.e., remove the date-picker), you have to

follow the same procedure as when setting it, but clearing the corresponding option. To

do this, you may click:

• “D.11.2 How do I configure a date-picker to enter a date in a Table field?”

• “D.11.4 How do I configure a drop-down menu or a date-picker to enter data in a

Form field?”

D.11.4 How do I configure a drop-down menu or a date-picker to enter

data in a Form field?

When creating a Form from a record-source Table, each and every Form field will

inherit the drop-down menu or the date-picker of its corresponding record-source Table

field. However, if you later do any change (create, delete, modify) on a field drop-down

menu in a record-source Table of the Form, the change you did will not propagate

automatically to the Form. If you want the change you did to propagate to the Form, you

can either manually introduce the same change in the Form or delete the Form and create

it again from the record-source Table, so it inherits all its drop-down menus and date-

pickers. Remind my advice of using a default value for dates (e.g., today’s date with

function “Date()”) instead of using a date-picker.

A drop-down menu is configured differently in Forms depending on whether it is an

existing drop-down menu or a new one. You may click on:

• “D.11.4.1 How do I configure a new drop-down menu directly in a Form field?”

• “D.11.4.2 How do I configure an existing drop-down menu in a Form field?”

• “D.11.4.3 How do I configure a new date-picker directly in a Form field?”

D.11.4.1 How do I configure a new drop-down menu directly in a Form

field?

You can only configure a drop-down menu in a field with field type Number, Large
Number or Short Text. Notice that Yes/No fields can also have a drop-down menu, but

I consider it is better to use a checkbox instead.

If what you want is to change the configuration of an existing drop-down menu in a

Form field, you should read “D.11.4.2 How do I configure an existing drop-down menu

in a Form field?”.

Otherwise, open the Form in “Design View (click B.4.1.3).

You will see the different fields of the form, each enclosed in a box with a thin gray

border. Right-click on the field (anywhere within the enclosing box) that you want to

modify and a pop-up menu will appear. Place the mouse over “Change To”, placed at

the top of the pop-up menu, and a secondary pop-up menu will be displayed. The next

screenshot shows the main and the secondary pop-up menus that you should see (note

that the image has been cut and does not show all the options you will see in the main

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 195 of 725

pop-up menu):

On the secondary pop-up menu, click on the “Display Control” that you want for this

Form field. You can choose between “List Box” and “Combo Box”. My advice is you

always select “Combo Box” because it is more flexible and has more configuration

options than “List Box”.

Once you have selected the “Display Control” you want, it is required that you configure

the “Row Source Type” and “Row Source” properties of this drop-down menu. You

may also configure other additional properties. Click on D.11.4.2 to find the different

properties to be configured.

Setting a drop-down menu on Form fields does not affect stored data and has no side

effects.

Notice that if instead of right-click you click on a field, the border of the box will change

from thin gray to a thick yellow, and no pop-up menu will appear. This is not a problem,

and you can right-click over the field that is highlighted with yellow border, and the

same pop-up menu shown in the screenshot at the beginning of this subsection will

appear. The following screenshot shows the field “Num_Byte” highlighted with a

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 196 of 725

yellow border.

If you want to know how to configure different options in a “Combo Box”, you may

click “D.11.5 What options can I set in a “Combo Box” Table/Form drop-down menu?”.

If you want to know some good practices in configuring your drop-down menu, you

may click “K.1.8 What are good practices in configuring my drop-down menus?”.

Once you are done with your Form configuration, save (click B.4.1.6) your Form. You

may then close the Form (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Form

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.11.4.2 How do I configure an existing drop-down menu in a Form field?

If what you want is to configure a new drop-down menu in a Form field, you should

read “D.11.4.1 How do I configure a new drop-down menu directly in a Form field?”.

Otherwise, you may continue reading here.

Regardless of the drop-down menu having been inherited from a record-source Table or

having been set directly in the Form (as I explained in D.11.4.1), you can configure the

drop-down menu by setting proper values for its properties.

If you want to change the type of “Display Control”, this is, you want to change between

“Text Box”, “List Box” and “Combo Box”, you have to do it as if you were creating a

new drop-down menu: this is explained in “D.11.4.1 How do I configure a new drop-

down menu directly in a Form field?”.

In case you decide to select “List Box”, you should be aware that in a Table it will allow

you to input a value other than the ones in the list (e.g., typing it in, or editing the value

selected from the list), but in a Form it will not allow you to input a value other than the

ones in the list.

If you did not want to change the type of “Display Control” (or after having done it),

you can configure the properties of the pop-up menu. You first unhide the “Property
Sheet” in “Design View” (click B.8.1).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 197 of 725

If you want to know all the available configuration properties and the effect of each of

them you may click “D.11.5 What options can I set in a “Combo Box” Table/Form

drop-down menu?”.

Some of the properties you need to configure are placed under the “Data” tab, and others

are placed under the “Format” tab, as follows:

Drop-down menu configuration properties under the “Data” tab:

• “Row Source Type” property (mandatory)

• “Row Source” property (mandatory)

• “Bound Column” property

• “Limit to List” property

• “Allow Value List Edits” property

• “Allow Multiple Values” property

• “List Items Edit Form” property

• “Show Only Row Source Values” property

Drop-down menu configuration properties under the “Format” tab:

• “Column Count” property

• “Column Heads” property

• “Column Width” property

• “List Rows” property

• “List Width” property

Remind that you can toggle between property default order and alphabetical order by

clicking on the A-Z “ ” icon placed at the top right corner of the “Property Sheet”.

Remind also that you can see all the properties under the “All” tab.

Once you are done with your Form configuration, save (click B.4.1.6) your Form. You

may then close the Form (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Form

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

Configuring a drop-down menu on Form fields does not affect stored data and has no

side effects.

If you want to know some good practices in configuring your drop-down menu, you

may click “K.1.8 What are good practices in configuring my drop-down menus?”.

D.11.4.3 How do I configure a new date-picker directly in a Form field?

You can only configure a date-picker in a field with field type Date/Time.

Unhide the Form “Property Sheet” in “Design View” (click B.8.1).

The “Property Sheet” shows at its top an element box with a drop-down menu to select

the Form element for which you want to show its properties. Select the name of the

field where you want to configure a date-picker.

To configure a date-picker, click on the “Format” tab (or the “All” tab) and find the

“Show Date Picker” property. Remind that you can order properties alphabetically

clicking on the A-Z “ ” icon (top-right corner).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 198 of 725

You click on the rightmost side of the cell placed to the right of the “Show Date
Picker” property and click on “For dates” from the pop-up menu.

Once you are done with your Form configuration, save (click B.4.1.6) your Form. You

may then close the Form (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4). If you get warning and/or error messages when saving your Form

design, you may click “L.2 How do I fix errors with my Table/Form design?”.

D.11.5 What options can I set in a “Combo Box” Table/Form drop-

down menu?

You may click:

• “D.11.5.1 What are useful options in a “Combo Box” Table/Form drop-down

menu?”

• “D.11.5.2 What are the interactions between slave fields, “Limit to List” property

and the field validation rule?”

D.11.5.1 What are useful options in a “Combo Box” Table/Form drop-down

menu?

We have already seen the “Combo Box” properties “Row Source Type” and “Row
Source” (click D.11.1 or D.11.4). The other properties of “Combo Box” are used less

frequently, yet some of them are quite useful, so I will now explain each of them:

• “Bound Column” property

Combo Box column that contains value that control is set to. This is related to

internal management of MS-Access. My advice is you always leave the default value

of “1”.

• “Column Count” property

The number of Table/Query columns shown in the drop-down menu. Showing a

second column can be very useful if the values are not meaningful. For example, if

you want a drop-down of product codes, it may be very useful to show a second

column in which the product name is shown.

• “Column Heads” property

Selecting “Yes” will show the Table/Query field name(s) as the heading of each

column of the drop-down menu.

• “Column Width” property

When you show more than one column from the drop-down menu, this allows to

configure each column’s width. Column widths are indicated as a list of width

values separated with semicolon. Each width value is a number followed by the

length units. You may type-in one double quote character “"” to indicate that the

units are inches, or you may type in “cm” to indicate that the units are centimeters.

Regardless of what length units you type-in (" or cm) MS-Access will rewrite them

(doing the correct computation) to the units of the language version (inches for

English version and centimeters for international versions).

If you put in the list less values than the number of columns, absent values will be

interpreted as zero, and the corresponding columns will not be shown. An example

of a column width expression for three columns is: “0.8" ; 1.4" ; 1.1"”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 199 of 725

• “List Rows” property

The number of value rows shown in the drop-down menu. If there are more values

than shown rows, the drop-down menu will have a scrollbar on its right side.

• “List Width” property

Width of the complete drop-down menu indicated as one number followed by the

length units. You may type-in one double quote character “"”to indicate the units

are inches, or you may type in “cm” to indicate the units are centimeters. Regardless

of what length units you type-in (" or cm) MS-Access will rewrite them (doing the

correct computation) to the units of the language version (inches for English version

and centimeters for international versions).

If the value of “List Width” is larger than the sum of the values of the “Column
Width” property (see above), the width of the rightmost columns will be truncated

to adjust. If the value of “List Width” is smaller than the sum, the width or the

rightmost column will be made wider to adjust to the total “List Width”.

• “Limit to List” property

Setting it to “Yes” will prevent you from modifying the value you selected from the

drop-down menu. Setting it to “No” will allow you to edit the value you selected

from the drop-down menu and change it to a value not included in the menu. When

the drop-down menu shows all the possible values for this field (e.g., list of calendar

months), my advice is to configure this as “Yes”. However, if the drop-down menu

only shows some of the possible values, you should configure this as “No”.

Notice that even if you set this property to “Yes”, you will be able to paste records

with values other than the ones in the list! If you really want to limit the values that

the field can contain, you will have to configure it as a slave field (click D.9) and/or

write a suitable field validation rule (click D.5.1.5).

Recall that the properties listed in this section correspond to the “Display Control”

value of “Combo Box”. In case you decided to select “List Box”, this property (and

others) will not be available. Selecting “List Box” in a Table will allow you to input

a value other than the ones in the list (e.g., typing it in, or editing the value selected

from the list), but selecting it in a Form it will not allow you to input a value other

than the ones in the list.

• “Allow Multiple Values” property

Setting it to “Yes” allows you to store a list of values (instead of the usual single

value) in this field. Also, it will allow you to select as many values as you want

from the drop-down menu. Each row from the drop-down menu will have a

checkbox to its left. You can tick as many checkboxes as you want. When you are

done, click on “OK” (at the bottom of the drop-down menu) and a list of all the

selected values will be stored in the field. If you want to cancel entering this list of

values, click on “Cancel” instead of on “OK”.

Be aware that the data type of every element of the list must match the field type

configured for this field. Also be aware that in a value list you cannot have duplicate

values.

If you configure “Allow Multiple Values=Yes” MS-Access will not allow you to

type-in values in this field, nor to edit the list of values you selected from the drop-

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 200 of 725

down menu. This MS-Access behavior is equivalent to the one when you set “Limit
to List=Yes”.

If you want to know more about storing a lists of values in a field, you may click

“K.2.8 How do I store a list of values, instead of a single value, in a Table field?”.

• “Allow Value List Edits” property

Setting it to “Yes” allows you to modify the values of the drop-down menu itself

by using the Form indicated in the property “List Items Edit Form”.

• “List Items Edit Form” property

This is the Form that you will use to edit the values in the drop-down menu itself, in

case you configured “Allow Value List Edits=Yes”.

• “Show Only Row Source Values” property

In case you have set “Allow Multiple Values=Yes”, setting this property to “Yes”

will show only the values that match the current row source.

You should also be aware about some interactions between slave fields, the property

“Limit to List” and the field validation rule (I present this in the next subsection).

Once you are done with all your Table/Form configuration, save (click B.4.1.6) your

Table/Form configuration. You may then close the Table/Form (click B.4.1.7) or change

it to “Datasheet View” (click B.4.1.4). If you get warning and/or error messages when

saving your Table/Form design, you may click “L.2 How do I fix errors with my

Table/Form design?”.

D.11.5.2 What are the interactions between slave fields, “Limit to List”

property and the field validation rule?

If you configure the drop-down menu of a slave field from the list of values of its master

field, configuring it as “Limit to List=Yes” is somehow redundant, because MS-Access

will anyway not allow you to enter a value that is not in the master field. However, I

still think it is worth configuring “Limit to List” to “Yes” because the effort is negligible,

and in this way, you will get the error warning right when you enter the value in this

field, instead of when you have entered all the values in your new record.

If you configure “Limit to List=Yes”, you may think it is unnecessary to add a validation

rule that checks that the field values are correct (e.g., that conform to the values in the

list). However, you should know that when you paste over a rectangle of fields (or you

paste as new records), MS-Access will not check if the pasted values exist in the drop-

down menu. Therefore, you can paste values that do not exist in the drop-down menu.

It is therefore convenient that you configure a field validation rule to check (when

possible, which is not always the case) that the value exists in the drop-down menu. If

you want to know more about field validation rules, you may click “D.5.1.5 What is the

field “Validation Rule” Table field property?”.

D.12 How do I use MS-Access Reports?

MS-Access Reports are objects that allow presenting data in very flexible way from

one or more Tables or Queries.

To create a Report over several Tables/Queries, click on the “Create” Ribbon, and then

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 201 of 725

on the Report Wizard “ ” icon, placed in the top right corner of the “Reports” Ribbon

group. In the “Report Wizard” dialog box click on the drop-down menu “ ” icon and

click on the first Table/Query you want the Report to be based on. Then double-click on

each field from the Table/Query that you want to incorporate to the Report. When you

are done with the fields of this Table/Query, you select another Table/Query using the

drop-down menu at the top of the Wizard. You do this for as many Table/Queries you

want. When you are done incorporating fields from your Table/Queries, click on

“Next”. You then click on “Datasheet”. You can now type-in the name you want for

this Report in the text box at the top of the Wizard window. Then click on “Finish” and

the Report will be created.

D.13 How do I share a database, having multiple concurrent

users?

You share a database setting the option “Default open mode” to “Shared” and placing

the database file in a network drive that all the users can access.

To configure the sharing option, click on the sequence “FileOptionsClient
SettingsAdvancedDefault open mode” and set the option to “Shared”. If you

rather set it to “Exclusive”, then the MS-Access file is configured to be opened by only

one user and cannot be shared. The default setting is “Shared”, but you can check its

value if you want.

If an MS-Access database file is configured as “Shared” and placed in a network drive,

several users can simultaneously open the file and work over the database in parallel.

Concurrent users can invoke Queries, modify records, and do any operation they may

need over the database. In case the network connection from one user to the network

drive is poor, then this user will experience poor performance in the Queries and other

operations he/she performs over the database, but the other ones will have good

performance.

What I have described here is only the basics of sharing an MS-Access database. If you

want more advanced design advice, you may click:

• “K.3 How do I structure and optimize a distributed database?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 202 of 725

PART E. ENTERING, MODIFYING AND DELETING MY

DATABASE DATA

You can change Table records by entering, modifying or deleting them.

You can enter, modify and delete Table records from the Table in “Datasheet View”

(click B.5) or from a Form (in “Datasheet View”, click B.5) derived from a Table. The

way to change Table records from a Table or Form is almost the same: you may see the

few differences clicking E.4.

You can also enter, modify and delete Table records from a Query result in

“Datasheet View” (click B.5), but this is considered a bad practice and should be

prevented. If you want to know how to prevent this, you may click “K.4.4 Why should

I disable changing Table data from Query results?”. Since changing records from a

Query result in “Datasheet View” is a bad practice, I am not mentioning this feature

along this Lightning Guide, and I have only addressed it in the said section K.4.4.

You can enter new Table records in the following ways:

• Editing one new record:

Click “E.1 How do I edit one new or existing record?”.

• Pasting as new records:

Click “E.5.2.3 How do I paste as new records?”.

Click “E.7.2 How do I bulk-change my data with an external application?”.

• Inserting records with an SQL Query:

Click “F.13.2 What is an Insert operation and how do I write it?”.

You can modify existing Table records in the following ways:

• Editing one existing record:

Click “E.1 How do I edit one new or existing record?”.

• Pasting values over fields of existing records:

Click “E.5.2.2 How do I paste over a rectangle of fields?”.

Click “E.7.2How do I bulk-change my data with an external application?”.

• Updating existing records with an SQL Query:

Click “F.13.3 What is an Update operation and how do I write it?”.

• Searching and replacing existing records:

Click “E.7.1 How do I bulk-modify my data using the “Find/Replace” tool?”.

• Cascade updating slave fields in slave records in Relationships with referential

integrity:

Click “D.9.4 What is the effect of “Cascade Update Related Fields”?”.

You can delete existing Table records in the following ways:

• Interactively deleting existing records:

Click “E.3 How do I interactively delete existing records?”.

• Deleting existing records with an SQL Query:

Click “F.13.1 What is a Delete operation and how do I write it?”.

• Cascade deleting slave records in Relationships with referential integrity:

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 203 of 725

Click “D.9.5What is the effect of “Cascade Delete Related Records”?”.

You may also click directly on:

• “E.1 How do I edit one new or existing record?”

• “E.2 How do I edit the field’s values of the record under edition?”

• “E.3 How do I interactively delete existing records?”

• “E.4 What is different about entering, modifying or deleting records from a Table

or a Form?”

• “E.5 How do I copy/cut and paste data between MS-Access and other applications?”

• “E.6 What checks are done when saving a field value, or entering or modifying a

record?”

• “E.7 How do I bulk-change my Table/Form’s data?”

• “E.9 Can I get inconsistent results out of my initial data in my database?”

• “E.10 Why should I use “Compact and Repair Database”?”

E.1 How do I edit one new or existing record?

Open the Table/Form in “Datasheet View” (click B.4.1.3).

If you want to edit one new record, go to the new-record row (click E.1.1) and start

to edit (see below) one (or more) of the field values of the new-record row. Right then,

the new-record row becomes a new record under edition (marked with the editing

“ ” icon on its left) and the new-record row appears right below the new record

under edition.

If you want to edit one existing record, find the record that you want to edit

(click B.5.5) and start to edit (see below) one (or more) of its field values. Right then,

the record becomes an existing record under edition, marked with the editing “ ”

icon on its left.

You start to edit (as required above) one (or more) of the field values in either of the

following ways:

• Select one field’s value (click B.5.3), within the new-record row or within an

existing record, and type-in a first character (or press either the “Delete” or

“Supr” keys). Notice that when you select a field’s value the value shown may

change (click E.2.3).

• Choose a field value with its drop-down menu, date-picker, or checkbox, within the

new-record row or within an existing record. This will also select the field’s value.

• Successfully paste (click E.5.2.2) value(s) over one (or more) field(s), within the

new-record row or within an existing record. This will also select the field’s value

of the leftmost field over which you pasted.

Regardless of the way you start to edit, the new-record row or the existing record

becomes at that moment the record under edition, marked with the editing “ ” icon

on its left. You may now edit (click E.2) the field values of the new or existing record

under edition.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 204 of 725

Once you are done editing its field values, you enter (click E.1.2) the record under

edition.

For the case of editing one new record, if one (or more) field(s) have a “Default Value”

in the Table design (click D.5.1.4), you will see the corresponding default value shown

for each such field in the new-record row. Also, if one (or more) field(s) have an event

value in the Form design (click D.10.4), you will see the corresponding event value

shown for each such field in the new-record row.

Notice MS-Access locks the record under edition, to prevent that more than one

concurrent user can edit it at the same time (click K.3.14).

Once you have finished editing new or existing records, you may close the Table/Form

(click B.4.1.7).

You may also click:

• “E.1.1 How do I go to the new-record row?”

• “E.1.2 How do I enter the record under edition?”

E.1.1 How do I go to the new-record row?

Open the Table/Form in “Datasheet View” (click B.4.1.3).

The new-record row is the downmost22 row of the Table/Form in “Datasheet View”,

and it has a small cell with an asterisk “ ” icon on its leftmost side (see slightly below

how to go to it). You go to the new-record row in either of the following ways:

• Click on the new-record “ ” icon from the navigation-bar (at the very bottom of

the “Table/Form pane”). This will take you to the new-record row and will also

select the field’s value of its leftmost field.

• Right-click on any of the small gray cells on the left side of the “Table/Form pane”

and click on “New Record” from the pop-up menu. This will take you to the new-

record row and will also select the field’s value of its leftmost field.

• Click on “Home” from the Ribbon-bar. Click on the Go to “ ” icon from the

Ribbon and then click on “New” from the pop-up menu. This will take you to the

new-record row and will also select the field’s value of its leftmost field.

• Click on “Home” from the Ribbon-bar. Click on the Go to “ ” icon from the

Ribbon and then click on “Last” from the pop-up menu. This will take you to the

end of the Table/Form where you will see the new-record row.

• Click on the last-record “|” icon from the navigation-bar (at the very bottom of the

“Table/Form pane”). This will take you to the end of the Table/Form where you will

see the new-record row.

• Scroll down in the Table/Form until you see the new-record row (if the Table/Form

is large this may be tedious).

For the case of the first three bullets right above, you will be in the new-record row

and you will also have selected the field’s value of its leftmost field. For the case of

22 Except if you are using an aggregation row in the Table/Form, in which case the “new-record row” is

right above the aggregation row (which is the very last row).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 205 of 725

the last three bullets right above, you will not be in the new-record row: you will just

be seeing it. In either case you will most likely want to edit a new record: click

“E.1 How do I edit one new or existing record?”.

Notice that if one (or more) field(s) have a “Default Value” in the Table definition

(click D.5.1.4), you will see the corresponding default value shown for each such field

in the new-record row. Notice that if one (or more) field(s) have an event value in the

Form definition (click D.10.4), you will see the corresponding event value shown for

each such field in the new-record row.

E.1.2 How do I enter the record under edition?

You indicate that the record under edition should be entered into the Table in either

of the following ways:

• Selecting a field’s value (click B.5.3) in another record.

• Selecting one (or more) fields (click B.5.2).

If you were editing a field value, when you do either of both actions, you will also

indicate MS-Access that the field value under edition should be saved. In this case, MS-

Access will first attempt to save the field value (click E.2) before attempting to enter

the record.

Else, (if you were not editing a field value or you were, but all its field value error

checks have been correct), MS-Access will perform several record error checks over

the record (click E.6.2), with the following results:

• If one (or more) of these error checks is wrong

MS-Access will show an error box indicating the cause of the error, and the record

under edition will remain selected (i.e., the record or fields that you had clicked on

will not be selected).

Click on “OK” to remove the error message. Then, you fix the error depending on

which error message you got (click L.4.3). You may rather cancel the editing of the

record by pressing the “Esc” key. If you cancel, you have two cases:

• For a new record under edition: the record itself is lost, and a field in the new-

record row remains selected.

• For an existing record under edition: all the edited field values are lost, the

existing record remains unmodified in the Table, and a field of the record under

edition remains selected.

Notice that MS-Access will not allow you do anything else in this Table until you

either correct the error(s) or cancel the editing of the record.

• If all the record error checks are correct (or you already corrected all reported

errors)

The record is entered, and the other record (or fields) that you had selected to

indicate that the record under edition should be entered will now be selected.

Either if you cancelled the editing, or the record was successfully entered, the record

is now not under edition. You can see this because the editing “ ” icon that was

shown in the narrow column to the left of the record under edition is not there

anymore.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 206 of 725

If this is a master Table in one (or more) Relationship(s) (click C.11) with referential

integrity (and “Cascade Update Related Fields” set, click D.9.4), the new values in this

record’s master fields will be automatically updated in the corresponding slave fields

of all its slave records.

E.2 How do I edit the field’s values of the record under

edition?

You edit the field values of the record under edition in either of the following ways.

• Typing-in the field value

Select one field’s value (click B.5.3) and edit the value typing-in with the keyboard

(click “E.2.2 How do I type-in a value in a field?”). Notice that when you select a

field’s value the value shown may change (click E.2.3).

• Choosing the field value

Choose the field value with its drop-down menu, date-picker, or checkbox : click

“E.2.1 How do I choose a field value?”. This only applies if the field has been one

configured one of them. Notice that you can first choose a value and then edit it by

typing-in (if the field configuration allows for this, click K.1.8.3).

If the field has a drop-down menu, it is usually much better to choose the field value

using the menu instead of typing-in a value: a drop-down menu is faster, and you avoid

typing errors.

Once you are done editing the field value, you indicate that it has to be saved in either

of the following ways:

• Selecting another field’s value of the record under edition (click B.5.3)

This simultaneously indicates MS-Access to save the currently edited field value,

and that you continue editing the record under edition.

• Attempting to enter the record under edition (click E.1.2).

This simultaneously indicates MS-Access to save the currently edited field value,

and that you want to enter the record under edition into the Table.

Regardless of the way you do it, MS-Access will perform several field value error

checks (click E.6.1), with the following results:

• If one (or more) of these error checks is wrong

MS-Access will show an error box indicating the cause of the error, and the field’s

value of the field under edition will remain selected (i.e., the other field where you

had clicked will not be selected).

Click on “OK” to remove the error message. Then, you fix the error depending on

which error message you got (click L.4.2). You may rather cancel the editing of the

field value by pressing the “Esc” key. If you cancel, the field value will remain as

before you started to edit it, and you will remain in the currently edited field (i.e.,

you are not moved to another field).

Notice that MS-Access will not allow you do anything else in this Table until you

either correct the error(s) or cancel the editing of the field value.

• If all the field error checks are correct (or you already corrected all reported

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 207 of 725

errors)

The field value is saved, and the other field that you had selected to indicate that the

currently edited field value should be saved will now be selected.

When editing the field’s values of a new record under edition it is quite convenient to

start editing the field’s value of its leftmost field, and then continue editing the other

field’s values one by one left to right. A practical way to do this (as indicated above)

is by pressing the “Enter” or the “Tab” key. Pressing either key will simultaneously

attempt to save the current field’s value (in case you were editing it) and select the next

field’s value on the right.

For the case of Calculated fields, be aware that their values cannot be edited (and it is

not actually stored): its value is calculated from the other field values of each record,

each time that the Calculated field is used.

Finally, be aware that MS-Access may change the value you edited in the field and

store a different one. I am not referring to changing the way the value is shown, but to

actually changing the stored value. For example, for Short Text fields MS-Access will

remove any trailing space characters that you had edited. Another example, for

Integer and Long Integer fields MS-Access will do round-half to even (click J.11.20)

on any fractional number that you edit into the field. If you want to know more about

why and how MS-Access may change the values you edit into a field, you may click

“L.4.2 How do I fix error messages when saving a field value?”. If you want to know

more about rounding problems, you may click “J.11.20 How do I fix a Query making

rounding errors?”.

Notice further that even if the stored value is the one you edited into the field, MS-

Access may show a different one. The reason is that the value will be shown according

to the “Format” property of this field (click H.6).

You may click:

• “E.2.1 How do I choose a field value?”

• “E.2.2 How do I type-in a value in a field?”

• “E.2.3 Why is a value shown in a different way when the Table/Query/Form field’s

value has been selected?”

E.2.1 How do I choose a field value?

Open the Table/Form in “Datasheet View” (click B.4.1.3).

You can choose a field value within one record in either of the following ways:

• Using its drop-down menu (in case the field has it)

Click on the rightmost side of the field (cell) and click on the value you want among

the options shown in the drop-down menu. If the drop-down menu has more options

than can be shown, you can scroll the values with the menu’s scrollbar until you find

the one you want, and then click on it. Notice that the drop-down menu “ ” icon

is only shown if the field’s value has been selected. However, even if the “ ” icon

is not shown, if you click on the rightmost side of the field/cell, the drop-down

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 208 of 725

menu will appear.

• Using its date-picker (in case the field has it)

Select the field’s value (click B.5.3) and the date-picker “ ” icon will be shown to

the right of the field. If you click on the icon, a pop-up date-picker (a calendar) will

appear, where you can choose a date by clicking on the day you want. You can

change the month that is shown by clicking on the previous “ ” icon or next “ ”

icon at the top of the date-picker. A date-picker can only be configured in Date/Time

fields.

• Using its checkbox (in case the field has it)

You can change the field’s value by clicking on the checkbox. If the field’s value is

True/Yes/On or ticked a ticked checkbox “ ”is shown. Otherwise, an unticked

checkbox “ ” is shown. Notice that if the field has a checkbox you cannot type-in

the value, and you can only choose it using the checkbox. A checkbox can only be

configured in Yes/No fields.

E.2.2 How do I type-in a value in a field?

Select the field’s value (click B.5.3). When you select the field’s value, the value

shown may change (click E.2.3).

In case the field is Null or contains either the zero-length string or an invisible string

(click L.7.8) the field will be blank.

Otherwise, you will see the string representing the field value. If the string is larger than

what fits in the field size, you will only see part of the string. You may see part (or all)

of the string in white font over black background: this indicates that this part of the

string is selected. You may also see the type-in cursor, shown as a vertical bar “|”

(blinking for a while) inside the field.

You may now edit the string representing the field value using the keyboard and the

mouse, as you would do with a conventional text editor:

• Select part of the string doing double click or click-and-drag (the selected part will

be in white font over black background).

• Delete string characters where the type-in cursor “|” is placed pressing the “Del”

or “Supr” keys.

• Add characters to the string where the type-in cursor “|” is placed by typing them

in.

• Overwrite the selected part of the string that is selected by pressing any character

key.

• Delete the selected part of the string by pressing any character key.

• Move the type-in cursor “|” along the string by pressing the left-arrow “” key or

the right-arrow “” key, or clicking with the mouse in the corresponding place of

the string.

• Cut or copy the selected part of the string.

• Paste as text a string previously copied (or cut) elsewhere (click E.5.2.1).

The format of values that you type-in a field are almost the same as the constants you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 209 of 725

write for expressions (click G.4). The main difference is that when writing constants

the Strings must be enclosed in quotes and Date/Time constants must be enclosed

between “#” characters. However, when typing-in a value, strings are typed-in without

quotes and Date/Time values are typed-in without “#” characters.

Typing-in a value has some peculiarities depending on the value’s data/field type. You

may click:

• “E.2.2.1 How do I type-in a value in a Yes/No field?”

• “E.2.2.2 How do I type-in a value in a Short Text field?”

• “E.2.2.3 How do I type-in a value in a Number, Currency or Large Number field?”

• “E.2.2.4 How do I type-in a value in a Date/Time field?”

• “E.2.2.5 How do I type-in a zero-time value in a Date/Time field?”

• “E.2.2.6 How do I type-in a zero-date value in a Date/Time field?”

• “E.2.2.7 What happens if the field “Format” property does not match the field

type?”

E.2.2.1 How do I type-in a value in a Yes/No field?

To store “-1” (which represents True/Yes/On), you type-in either “Yes”, “True”, “On”

(case insensitive) or any number other than “0”. To store “0” (which represents

False/No/Off), you type-in either “No”, “False”, “Off” (case insensitive) or the

number “0”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

E.2.2.2 How do I type-in a value in a Short Text field?

You just type-in the text string you want to store. Remind the following relevant

questions:

• MS-Access will remove all trailing invisible characters (e.g., blanks) that you type-

in

• If you want to enter a line-feed (which I strongly advice not to do) into the string,

you can do it by pressing “Ctrl-Enter” (i.e., press the “Ctrl” key, and without

releasing it, press the “Enter” key).

E.2.2.3 How do I type-in a value in a Number, Currency or Large Number
field?

Type-in a positive or negative number in decimal notation or in scientific notation. You

cannot type-in a character for separation of thousands.

Some examples of number values you can type-in are: 230, 4.0346, 730, -325.234,

235.67E26, .258E-15 and -12.87E+25.

E.2.2.4 How do I type-in a value in a Date/Time field?

Typing-in a Date/Time value is much trickier than any of the other values. To start with,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 210 of 725

it is very important to point out that a Date/Time field always stores both a date (the

date-part) and a time (the time-part). Even if you type-in a zero-time value (i.e.,

typing-in only a date) or a zero-date value (i.e., typing-in only a time), the stored value

always contains both date and time. If you type-in a zero-time value, it will be stored

with the time-part 0:00:00. If you type-in a zero-date value, it will be stored with the

default date-part 30-december-1899. Even though the value is always stored with both

a date-part and a time-part, you can configure the “Format” property to show both date

and time, to show only the date-part or to show only the time-part (click H.6).

You type-in a Date/Time value by typing-in either:

• A zero-time value (click E.2.2.5)

For example: typing-in “3-jan-2014”, “3-1-2015” or “3-jan”.

• A zero-date value (click E.2.2.6)

For example: typing-in “13:24:35” or “13:36”.

• Both a zero-time value and a zero-date value, in either order, and separated

by one (or more) blank characters.

For example: typing-in “3-jan-2014 13:24:35” or “13:24:35 3-jan-2014”.

MS-Access allows you to type-in a zero-time value and a zero-date value in many

ways. If you want to know how, you may click:

• “E.2.2.5 How do I type-in a zero-time value in a Date/Time field?”

• “E.2.2.6 How do I type-in a zero-date value in a Date/Time field?”

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

E.2.2.5 How do I type-in a zero-time value in a Date/Time field?

You can type-in a zero-time value as day, month and year separated by either “/”, “-”

or “,”. My advice is you always type-in zero-time values as day, month name prefix and

four-digit year, to avoid ambiguity and confusion. However, for completeness’ sake, I

will now detail all the different ways in which you can write a zero-time value.

You can also type-in a zero-time value as day and month, in which case the year will

be the current year.

You can also type-in a zero-time value as month and year, in which case the day will

be 1.

You cannot type-in a zero-time value as day and year.

You can type-in the month as a month number or as any prefix of the month name

down to a minimum of three characters. You can type the month name prefix in any

case (it is case insensitive).

You can type-in the year as four digits, three digits or two digits. If you type-in the year

as three or four digits, then that is the year. If you type-in the year as two digits, they

are interpreted as the last two digits of the year. If the two-digit year is less than or equal

to 49, the first two digits of the year are “20”. If the two-digit year is greater than or

equal to 50, the first two digits of the year will be “19”.

You can type-in the day, month and year almost in any order, and MS-Access will

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 211 of 725

correctly interpret each of them, as long as there is no ambiguity. For example, if you

type a four-digit year, a day number greater than 12 and a month number, regardless of

the order, it is clear which is which. Also, if you type-in a four-digit year, a month name

and a day, there is no ambiguity. When there is ambiguity, MS-Access will apply the

following rules:

• Both numbers less than or equal to 12

The first number is interpreted as month number and the second as day number.

The year will be the current year.

Some examples are “2-3” (interpreted as Feb-3-current_year) and “3-2”

(interpreted as Mar-2-current_year).

• One number less than or equal to xx, the other number less than or equal

to 12

where xx is the number of days of the month corresponding to the other number.

The number less than or equal to xx is interpreted as day number, the other

number as month number. The year will be the current year.

Some examples are “2-25” or “25-2”, both interpreted as Feb-25-current_year.

• One number greater than xx, the other number less than or equal to 12

where xx is the number of days of the month corresponding to the other number.

The number greater than xx is interpreted as the last two digits of the year, and

the other number as the month number. The day is “1”.

Some examples are “4-34” and “34-4”, both interpreted as Apr-1-2034). Other

examples are “4-50” and “50-4”, both interpreted as Apr-1-1950.

My advice is avoid entering ambiguous date values to prevent unintended errors.

Because MS-Access accepts the “,” as separator of date elements, notice there is a slight

risk of mistakenly entering a number in a Date/Time field in countries where “,” is also

used for decimal separation.

Notice that in non-English versions of MS-Access the translated complete month names

will also be accepted, in addition to the English month name prefix (down to the first

three letters). If you are using a foreign-language version of MS-Access, you may click

“L.8.12 How do I fix foreign-language issues of MS-Access?”.

To clarify all the rules above, I am including below some additional examples.

• Month (number or name prefix), day number and year number (with two or four

digits), separated by either “/”, “-” or “,”. If you use only two digits for the year,

the two first year digits are interpreted as “20”.

Some examples are: 3/30/2017, 12/31/87, 3-30-2017, 12-31-87,

march/30/2017, December/31/87, mar-30-2017, dec-31-87,

MARCH/30/2017 and Decem,31,87

• Year number with four digits, month (number or name prefix) and day number,

separated by “/” or by “-” or by “,”.

Some examples are: 2017-12-30, 2017/12/30, 2017-dec-3, 2017,MARCH,3 and

2017/April/3

• Month (number or name prefix) and day number separated by either “/”, “-” or

“,”. The year stored will be the current year.

Some examples are: 3/30, 12/3, 3-30, 12-31, march/30, December/31, mar-

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 212 of 725

30, dec-31, MARCH/3 and Decem,31

• Day number and month name prefix separated by either “/”, “-” or “,”. The year

stored will be the current year.

Some examples are: 30/march, 31/DECEM, 3-30-april and 31,February.

• Day number higher than 12 and month number separated by either “/”, “-” or

“,”. The year stored will be the current year.

Some examples are: 30/3, 31/12, 13-10 and 31,6.

• Year number with four digits and month (number or name prefix), separated by

“/” or by “-” or by “,”. The day stored will be 1. Some examples are: 2017-12,

2017/12, 2017-dec, 2017,MARCH and 2017/April

• Month (number or name prefix) and year number with four digits), separated

by “/” or by “-” or by “,”. The day stored will be 1.

Some examples are: 12-2017, 12/2017, dec-2017, MARCH/2017 and

April/2017

Remind once again that you may type-in a zero-time value, but the Date/Time field

always stores date and time. If you enter a zero-time value, the time that it will be

stored is 0:00:00, which corresponds to internal fractional value zero.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

E.2.2.6 How do I type-in a zero-date value in a Date/Time field?

You can type-in a zero-date value as hour, minutes and seconds separated by either

“:” or “.”. You can also type-in a zero-date value as hour and minutes (stored seconds

will be zero). The order must be hour first followed by minutes, and optionally followed

by seconds. Hour must be between 0 and 23 (both included). Minutes and seconds must

be between 0 and 59 (both included). Notice the time 24:00:00 does not exist.

You can optionally append the string “am” or “pm” (case insensitive), separated by zero

or more blanks. Adding the string “PM” to a zero-date value with an hour between 0 to

11 (both included) is equivalent to adding 12 to the hour value. Adding the string “PM”

to a zero-date value with an hour greater than or equal to 12 has no effect.

You can also type-in a zero-date value as only hour (e.g., a value between 0 and 23) as

long as you append the string “am” or “pm” (case insensitive), separated by zero or

more blanks.

Examples of zero-date values are: 11:59, 23am, 23.59.46, 23.59.46 AM, 3:59pm and

3:59:46 PM

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

E.2.2.7 What happens if the field “Format” property does not match the field

type?

The values that can be correctly entered and stored in a field depend on the field type,

and not on the field formatting. If the “Format” property does not match the field type,

you will enter and store the values according to the field type, but the values will be

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 213 of 725

shown (even in the editing formatting) according to the “Format” property.

I illustrate this with some examples:

• If you format a Number field as a date, as a time or as a date and a time, this

will change the way the value is shown, but it will not change the fact that you

can only introduce number values in this field.

• If you format a Date/Time field as zero-time, this will change the way the value

is shown, but it will not change the fact that the field always stores a date-part

and a time-part, and you can therefore introduce date and time values in this

field.

• If you format a Number field as On/Off, this will change the way the value is

shown, but you will still be able to store any number other than “0” and “-1”,

which you cannot do in a Yes/No field.

E.2.3 Why is a value shown in a different way when the

Table/Query/Form field’s value has been selected?

First of all, it is important to point out that the actual stored value does not change at

all, it is just being shown in a different way.

When you see a field value in a Table/Query/Form in “Datasheet View” the value is

shown with a formatting according to the “Format” property. However, if you select

the field’s value (e.g., by clicking within the field, click B.5.3), MS-Access will show

you the value with the editing formatting, according to the internal rules of MS-

Access. The formatting of the “Format” property and the editing formatting may be

different, and therefore, you notice that when you select a field value, the value that is

shown may change. Even though Query output fields resulting from an expression

cannot be edited, when you select a Query’s field value (e.g., you click on one field),

the value will be shown with editing formatting and not with the formatting of the

“Format” property.

The possible differences between formatting of the “Format” property and the editing

formatting depend on the field-type, the field value and on the value of the “Format”

property. You may click on the following subsections to check a number of relevant

cases:

• “E.2.3.1 How is the formatting of a Number or Currency field changed when I select

its field’s value?”

• “E.2.3.2 How is the formatting of a Yes/No field changed when I select its field’s

value?”

• “E.2.3.3 How is the formatting of a Date/Time field changed when I select its field’s

value?”

E.2.3.1 How is the formatting of a Number or Currency field changed when I

select its field’s value?

When you select a field’s value (e.g., by clicking within the field, click B.5.3), the

actual stored value does not change at all, it is just being shown in a different way.

Some cases of differences between the “Format” property formatting and the editing

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 214 of 725

formatting in Number or Currency fields are the following:

• A number field will be shown with the number of decimal digits indicated in its

“Decimal Places” property. When you select the field’s value (e.g., by clicking

within the field, click B.5.3) the value shown will display all the decimal digits.

• A number field may be shown as “Yes”, “True” or “On” because its “Format”

property has been configured as Yes/No formatting. When you select the field’s

value (e.g., by clicking within the field, click B.5.3) the value shown changes to the

number actually stored in the field.

• A number field may be shown as “25/03/1900 6:00:00” because its “Format”

property has been configured as “General Date”. When you select the field’s value

(e.g., by clicking within the field, click B.5.3) the value shown changes to the

number actually stored in the field.

E.2.3.2 How is the formatting of a Yes/No field changed when I select its

field’s value?

The actual stored value does not change at all, it is just being shown in a different way.

• If the value shown is True/Yes/On, when you select the field’s value “-1” will be

shown.

• If the value shown is False/No/Off, when you select the field’s value “0” will be

shown.

E.2.3.3 How is the formatting of a Date/Time field changed when I select its

field’s value?

The actual stored value does not change at all, it is just being shown in a different

way.

Remind that a Date/Time format is stored internally same as Double floating-point

number, where the integer part stores the date and the fractional part stores the time.

Integer zero represents the date 30-dic-1899. Fractional zero represents the time

00:00:00.

Some cases of differences between the “Format” property formatting and the editing

formatting in a Date/Time field are the following:

• If the stored date-part is not 30-dic-1899 and the stored time-part is not 00:00:00,

the editing formatting will be date and time, regardless of the value of the

“Format” property. If the “Format” property is some form of date and time, the

editing formatting will be the same. If the “Format” property is zero-time or zero-

date, the editing formatting be: mm/dd/yyyy hh:nn:ss, all in numbers with 24 hour

format.

• If the stored date-part is 30-dic-1899 and the stored time-part is not 00:00:00, the

editing formatting will be zero-date, regardless of the value of the “Format”

property.

• If the stored date-part is not 30-dic-1899 and the stored time-part is 00:00:00, the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 215 of 725

editing formatting depends on the “Format” property as follows:

o If the “Format” property is some form of date and time, the editing formatting

will also be date and time.

o If the “Format” property is some form of zero-time or of zero-date, the editing

formatting will be: mm/dd/yyyy all in numbers.

• In the particular case where the stored date-part is 30-dic-1899 and the stored time-

part is 00:00:00, the editing formatting depends on the “Format” property as

follows:

o If the “Format” property is some form of date and time or of zero-date the

editing formatting will zero-date.

o If the “Format” property is some form of zero-time the editing formatting will

also be zero-time.

E.3 How do I interactively delete existing records?

Open the Table/Form in “Datasheet View” (click B.4.1.3).

Find the record that you want to delete (click B.5.5) and delete it in either of the

following ways:

• Right-click on the small gray cell on the left side of the record you want to delete

and click on “Delete Record” from the pop-up menu.

• Select the range of records you want to delete by doing either click-and-drag or

Shift+select (click B.5.2). You then either:

o Press the “Supr” key.

o Right-click anywhere in the range of selected records and click on “Delete
Record” from the pop-up menu.

Regardless of the way you deleted the record(s), MS-Access will show a warning

confirmation asking you to confirm (Yes or No) the delete operation.

If MS-Access does not allow you to delete the record, you may click L.4.5. It may also

be possible that the source file (where this Table is located) is read-only.

Once you have finished deleting records, you may close the Table/Form (click B.4.1.7).

E.4 What is different about entering, modifying or deleting

records from a Table or a Form?

Entering, modifying or deleting Table records from a Form in “Datasheet View”

(click B.5) is almost the same as doing it from the Table itself in “Datasheet View”

(click B.5). The only differences are the following:

• When you are typing-in a string in a Short Text field, and you press the “Enter”

key, MS-Access allows you to enter multi-line text!!!! (in a Table, pressing the

“Enter” key jumps to the next field). Tab does move you to the next field. Notice

that there is an option/property to change this behavior to the same behavior as in

Tables.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 216 of 725

• Forms usually include subroutines (bound to Events, click D.10.4) that

automatically edit a value into one (or more) fields. The value(s) is(are) calculated

by the subroutines taking as input the value(s) of other field(s). Therefore, when you

save the value of one field, its Event subroutine may cause that the values of one

(or more) other fields automatically appear or change.

E.5 How do I copy/cut and paste data between MS-Access and

other applications?

You can copy/cut data from many other programs and paste it into an MS-Access

Table/Form. You can also copy/cut data from a MS-Access Table or Query result and

paste it into many other programs, an also in MS-Access.

You will be doing a lot of copy/cut and paste from other programs when you create a

database, because you will want to populate the database Tables with initial data you

already had from other programs. Copy/cut and paste is not restricted to the first time

you upload data into MS-Access. It will be quite frequent that you want to upload new

data doing copy/cut and paste from external programs (e.g., from Excel). It will also be

quite frequent to copy/cut data from MS-Access and paste it into other programs (Excel,

Word,...) for processing or reporting.

You may click:

• “E.5.1 How do I copy/cut data from an MS-Access Table, Form or Query result?”

• “E.5.2 How do I paste data into MS-Access?”

• “E.5.3 How do I paste data copied from MS-Access into other applications?”

E.5.1 How do I copy/cut data from an MS-Access Table, Form or

Query result?

MS-Access allows you to copy/cut data from a Table or Form and to copy data from a

Query result.

Open the Table/Form/Query (from which you want to copy or cut data) in “Datasheet
View” (click B.4.1.3).

You can copy or cut the complete Table, Form or Query results, some contiguous

rows, some contiguous columns, one cell or one rectangle of cells. Notice I am calling

cell to one field of one specific record.

Select the data that you want to copy/cut (click B.5.2). You now have the following two

options:

• Right-click anywhere within the selected area and click on either “Copy” or “Cut”

from the pop-up menu.

• Press “Ctrl-c” (i.e., press the “Ctrl” key, and without releasing it, press the “c” key)

to copy the data.

• Press “Ctrl-x” (i.e., press the “Ctrl” key, and without releasing it, press the “x” key)

to cut the data.

You can now go to the other application and paste the data that you have just copied/cut

from MS-Access. You can also paste it into MS-Access, but, before pasting any data

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 217 of 725

into MS-Access, I suggest you click “E.5.2 How do I paste data into MS-Access?” to be

aware of a few tricky issues.

E.5.2 How do I paste data into MS-Access?

When pasting data into an MS-Access Table/Form there are four ways of pasting:

• Paste into a field’s value

This is pasting copied text into the string that represents the value of a field while

it is being edited.

You may click “E.5.2.1 How do I paste into a field’s value?”.

• Paste to edit one record.

This is pasting one (or more) fields over either the new-record row or over one

existing record, in order to edit one new or existing record.

You may click “E.1 How do I edit one new or existing record?”

• Paste over a rectangle of fields

This is pasting a copied rectangle of values over a rectangle of fields (over more

than one record) in order to modify several existing Table records.

You may click “E.5.2.2 How do I paste over a rectangle of fields?”

• Paste as new records.

This is pasting a copied rectangle of values (having more than one row) into the

new-record row, in order to enter several new records into your Table.

You may click “E.5.2.3 How do I paste as new records?”

You may also directly click:

• “E.5.2.1 How do I paste into a field’s value?”

• “E.5.2.2 How do I paste over a rectangle of fields?”

• “E.5.2.3 How do I paste as new records?”

• “E.5.2.4 What are the fields and field order when pasting?”

E.5.2.1 How do I paste into a field’s value?

Open the Table/Form (to which you want to paste) in “Datasheet View” (click B.4.1.1).

Select the field’s value (click B.5.3) where you want to paste.

Move (click E.2.2) the type-in cursor “|” to the place of the string representing the

value where you want to paste.

You now paste in either of the following ways:

• Right-click inside the field and click “Paste” from the pop-up menu.

• Press “Ctrl-v” (i.e., press the “Ctrl” key, and without releasing it, press the “v”

key).

If you are pasting a string and it does not work, you may click L.4.1.2.

E.5.2.2 How do I paste over a rectangle of fields?

This subsection applies to pasting a rectangle of values over a rectangle of fields over

more than one existing record. If you just paste over one existing record, click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 218 of 725

“E.1 How do I edit one new or existing record?”.

Open the Table/Form (to which you want to paste) in “Datasheet View” (click B.4.1.1).

Select the destination rectangle of fields (click B.5.2) where you want to paste into.

You can then either:

• Right-click within the selected rectangle of fields and click on “Paste” from the

pop-up menu.

• Press “Ctrl-v” (i.e., press the “Ctrl” key, and without releasing it, press the “v”

key).

If you paste without having previously selected the destination rectangle of fields, MS-

Access will attempt to paste the whole copied rectangle of values into the currently

selected field’s value (the field with its borders highlighted in pink color), which will

most likely produce nonsense.

MS-Access will start pasting the copied rectangle of values at the top-left field of the

destination rectangle of fields. It will then paste values rightwards and downwards

from that top-left field. In case that the geometry (number of rows and number of

columns) of the copied and the destination rectangles is not the same, the following

two rules apply:

• Every destination field that does not have a matching copied value (i.e., a copied

value in the same relative position) remains unchanged (there is no value to paste!).

• Every copied value that does not have a matching destination field (i.e., a

destination field in the same relative position) is ignored (there is no field to paste

into!).

MS-Access will never modify the records blindly, and rather, will always perform

error checks over each and every modified record. If you want to know more about

pasting errors, you may click “L.4.4 How do I fix errors when pasting records into a

Table/Form?”.

Pasting over a rectangle of fields applies to pasting over the whole Table/Form, pasting

over one column (one field across all records), pasting over a column range (several

contiguous fields across all records) and pasting over a row range (several contiguous

existing records). The only requirement is to paste over more than one existing record.

If you want to know what pasting error you can get, you may click “L.4.4 How do I fix

errors when pasting records into a Table/Form?”.

E.5.2.3 How do I paste as new records?

This subsection applies to pasting more than one row of values into the new-record

row. If you just paste one row of values, click “E.1 How do I edit one new or existing

record?”.

Go to the new-record row (click E.1.1) and select the whole new-record row by

clicking on the star “ ” icon on its leftmost side. The whole row should now have a

pink border and a light blue background: this tells you that the new-record row has

been properly selected. Notice that selecting the whole new-record row is different

from only selecting some of its fields.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 219 of 725

Paste the previously copied values (more than one row) in either of the following ways:

• Right-click within the new-record row and click on “Paste” from the pop-up menu.

• Press “Ctrl-v” (i.e., press the “Ctrl” key, and without releasing it, press the “v”

key).

If the number of columns that you had previously copied (or cut) is different from the

number of columns in the Table/Form, either of two following rules apply:

• If you copied more columns than the ones in the Table/Form, all the additional

columns in the copied data will be discarded.

• If you copied less columns than the ones in the Table, all the additional columns in

the Table/Form will be set to Null (if the error checking allows for it) in all the

newly pasted records.

MS-Access will never enter the records blindly, and rather, will always perform error

checks over each and every record resulting from the paste operation. If you want

to know what pasting error you can get, you may click “L.4.4 How do I fix errors when

pasting records into a Table/Form?”.

E.5.2.4 What are the fields and field order when pasting?

When doing copy/cut and paste, the fields and field order are exactly what you are

seeing in “Datasheet View” in the Table/Form or Query result. Whatever fields or field

order exists in “Design View” or in “SQL View”, is totally irrelevant: for the purpose of

copy/cut and paste, what you see in “Datasheet View” is what you get.

E.5.3 How do I paste data copied from MS-Access into other

applications?

When pasting data that you copied from a Table or Form or Query result (all in

“Datasheet View”) you should be aware that the data may be pasted differently from

what you copied. In the following subsections I explain some differences in content and

formatting that may occur when you paste:

• “E.5.3.1 How do I paste as plain text into Excel?”

• “E.5.3.2 How do I paste as formatted data into Excel?”

• “E.5.3.3 How do I paste as plain text into Word?”

• “E.5.3.4 How do I paste as formatted text into Word?”

• “E.5.3.5 What are the additional rows when pasting into Excel or Word?”

• “E.5.3.6 How do I paste into a plain-text processor?”

• “E.5.3.7 How do I paste back into MS-Access?”

E.5.3.1 How do I paste as plain text into Excel?

Data is pasted with the font and formatting corresponding to the style existing in the

Excel area where you paste. The data is pasted as the same rectangle of cells as it was

copied from MS-Access, but, with two additional rows. The leftmost cell of the first

row contains the Table/Form/Query name from which you copied the data. The second

row of cells contains the column headings of the Table/Form or Query results from

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 220 of 725

which you copied the data. The data you copied/cut begins in the third row of cells.

Pasting copied Short Text or String fields

Values of data/field type Short Text or String are pasted correctly. However, the pasted

values may appear to be different in case the Table/Query/Form field was showing a

different string from the stored value. If you want to know more about this, you may

click “L.7.1 Why text strings can be different from what is shown?”.

Pasting copied Yes/No or Boolean fields

Values of data/field type Yes/No or Boolean are pasted as follows, depending on the

“Format” property of the field:

• “Format=True/False”: pasted as the corresponding Excel Boolean values.

Excel will display “TRUE” or “FALSE”.

• “Format=Yes/No”: pasted text strings are “Yes” or “No”.

• “Format=On/Off”: pasted text strings are “On” or “Off”.

Pasting copied Number, Currency, Byte, Integer, Long, Single, Double or Currency

fields

Very surprisingly, pasting as plain-text into Excel preserves their data type and

formatting, but it will change some values! Numeric values will be pasted as you view

them in MS-Access. This means that number values that are formatted in MS-Access

with “n” decimal digits, are pasted as values with “n” decimal digits!

Notice that this can cause significant problems because copy/cut and paste is changing

the values of the numeric data. This is really unusual, because almost all programs

handling number data store the values with full precision, independently of the

formatting that you are using to view them.

Pasting copied Date/Time or Date fields

When pasting values copied from MS-Access Date/Time or Date data/field types, a

number of anomalies may happen. The cause of these anomalies is that Excel can only

correctly handle dates between 1-March-1900 and 31-December-9999 (both included).

For this reason, pasting Date/Time or Date values whose MS-Access format only shows

the time will work well, but pasting values that have date-only or date-and-time

formatting in MS-Access will experiment the following anomalies:

• Date/Time or Date values earlier than or equal to 31-December-1899:

Excel will paste them as a text string, therefore destroying the processable value.

The date and time shown in the text string will be correct.

• Date/Time or Date values between 1-January-1900 and 28-February-1900, both

included:

Excel will paste a different numeric value than the one in MS-Access, but, both

the formatting and the value shown will be correct. This is so because the numeric

value pasted is the one used by Excel, that in this case is different from the one in

MS-Access.

• Date/Time or Date values later than or equal to 1-March-1900:

Excel will paste the correct value, with correct formatting and the value shown will

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 221 of 725

be correct.

If you want to know more about the way Date/Time or Date values are

stored/represented in MS-Access, you may click “D.4.5 What is the “Date/Time” field

type?”.

E.5.3.2 How do I paste as formatted data into Excel?

Data is pasted with the same font and formatting as displayed in MS-Access. The data

is pasted in the same rectangle of cells as it was copied from MS-Access, but, with one

(not two, as when pasting as plain text) additional rows. The first row of cells contains

the column headings of the Table/Form or Query results from which you copied the

data (pasted as text string) and will have gray background. Copied data starts in the

second row of cells.

Pasting copied Short Text or String fields

The values, data type and formatting of Short Text or String is preserved when

pasting.

However, the pasted values may appear to be different in case the Table/Form or

Query results field was showing a different string from the stored value. If you want

to know more about this, you may click “L.7.1 Why text strings can be different from

what is shown?”.

Pasting copied Yes/No or Boolean fields

Values of data/field type Yes/No or Boolean are pasted as the corresponding Excel

Boolean values. Excel will display “TRUE” or “FALSE”.

Pasting copied Number, Currency, Byte, Integer, Long, Single, Double or Currency

fields

Their values, data type and formatting are preserved when pasting. Preserving

formatting means that the way you see the values (e.g., thousands separator and decimal

digits for a number) will be most similar as you were viewing them in MS-Access.

Notice that, contrary to what happens when pasting as plain-text, in this case the

number values are pasted correctly. The value of numbers will be pasted as they were

stored in MS-Access, independently of the way they were viewed in the MS-Access

Table/Form or Query result.

Pasting copied Date/Time or Date fields

When pasting values copied from MS-Access Date/Time or Date data/field types, a

number of anomalies will happen. The cause of these anomalies is that Excel can only

correctly display dates between 1-March-1900 and 31-December-9999 (both included)

and that Excel is not fully compatible with MS-Access formatting for Date/Time or

Date values. For these reasons, pasting Date/Time or Date values in Excel as formatted

will correctly paste all the numeric values, but the formatting and the values shown

will experiment the following anomalies:

• Date/Time or Date values whose MS-Access format shows the time-part:

Pasting these values will result in a plain number in Excel. This is, the MS-Access

formatting will be lost.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 222 of 725

• Date/Time or Date values whose MS-Access format does not show the time:

o Date/Time or Date values earlier than 30-December-1899

Excel will show them as “##########” because Excel will attempt to show them

as dates, but Excel cannot show negative values as dates.

o Date/Time or Date value 30-December-1899:

Excel will wrongly show it as “0-jan-1900”.

o Date/Time or Date values between 31-December-1899 and 27-February-1900:

Excel will wrongly show them as 1 day more. For example, 31-December-1899

is shown as 1-January-1900 and 27-February-1900 is shown as “28-February-
1900”.

o Date/Time or Date value 28-February-1900:

Excel will wrongly show it as “29-February-1900” (notice that 1900 is not a

leap year).

If you want to know more about the way Date/Time or Date values are

stored/represented in MS-Access, you may click “D.4.5 What is the “Date/Time” field

type?”.

E.5.3.3 How do I paste as plain text into Word?

Data is pasted with the font and formatting corresponding to the style existing in the

Word paragraph where you paste it. The data is pasted as one paragraph of text for

each row of copied data from MS-Access, but, with one additional paragraph. The

first paragraph contains the column headings of the Table/Form or Query results from

which you copied the data. The data you copied/cut begins in the second paragraph.

The text arising from different cells in each MS-Access row is delimited in Word with

an intermediate tab character. The data from each cell (numbers, dates, text strings, ...)

is pasted as text strings as was displayed in the MS-Access screen. For the case of

Yes/No or Boolean values displayed in MS-Access as a checkbox, their pasted text

depends on the value of the field’s “Format” property, as follows:

• “Format=True/False”: pasted text strings are “True” or “False”.

• “Format=Yes/No”: pasted text strings are “Yes” or “No”.

• “Format=On/Off”: pasted text strings are “On” or “Off”.

E.5.3.4 How do I paste as formatted text into Word?

Data is pasted with the same font and formatting displayed in MS-Access. Data is pasted

as a Word table. The first row of the table is a single table-wide cell that contains the

Table/Form/Query name from which you copied the data. The second row of the table

contains the column headings of the Table/Form or Query results from which you

copied the data. The first two rows will have gray background. Copied data starts in the

third row of the table. The data from each cell (numbers, dates, text strings, ...) is pasted

as text strings as was displayed in the MS-Access screen. For the case of Yes/No or

Boolean values displayed in MS-Access as a checkbox, their pasted text depends on

the value of the field’s “Format” property, as follows:

• “Format=True/False”: pasted text strings are “True” or “False”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 223 of 725

• “Format=Yes/No”: pasted text strings are “Yes” or “No”.

• “Format=On/Off”: pasted text strings are “On” or “Off”.”.

E.5.3.5 What are the additional rows when pasting into Excel or Word?

The different additional rows inserted when pasting are the following:

• Pasting as plain text into Excel

Two additional rows are pasted. The first row has the Table/Form/Query name in

the leftmost cell. The second row has the column headings.

• Pasting as formatted text into Excel

One additional row is pasted, having the column headings. The cells in this

additional row have gray background.

• Pasting as plain text into Word

One additional paragraph is pasted, having the column headings.

• Pasting as formatted text into Word

Two additional rows are pasted. The first row is a single table-wide cell having the

Table/Form/Query name. The second row has the column headings. The cells in

these two additional rows have gray background.

E.5.3.6 How do I paste into a plain-text processor?

You can also paste into any plain-text processor, or any application that takes plain-text

as input. The result will be the same as I explained in “E.5.3.3 How do I paste as plain

text into Word?”, subject to the different behavior that each plain-text processor may

have (e.g., splitting a paragraph into several independent lines, converting tabs into

spaces, …).

E.5.3.7 How do I paste back into MS-Access?

Of course, you can also paste the data you just copied into an MS-Access Table: I

explain how to paste into MS-Access in the next chapter E.5.2.

E.6 What checks are done when saving a field value, or

entering or modifying a record?

You may click:

• “E.6.1 What checks are done when saving a field value?”

• “E.6.2 What checks are done when entering or modifying a record?”

E.6.1 What checks are done when saving a field value?

When you attempt to save (click Part E) a field value, MS-Access will always do the

following checks:

• Check that the value complies the field type and size

Click “L.4.2.1 How do I fix an invalid value”?”.

• If the field is configured as “Required=Yes” (click D.5.1.7), check that its value is

non-Null. Remind that all Key fields are always configured as “Required=Yes”.

Click “L.4.2.2 How do I fix trying to save Null in a “Required” field?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 224 of 725

• If it is a Short Text field configured as “Allow Zero Length=No” (click D.5.2.1),

check that its value is not a string of zero length.

Click “L.4.2.3 How do I fix violating “Allow Zero Length=No”?”.

• If pasting a text string, check that the length of the string is lesser or equal than the

“Field Size” property of the Short Text field.

Click “L.4.2.4 How do I fix that I cannot paste a text string in full?”.

• If you chose the value using a drop-down menu configured to only accept values

from the menu (i.e., “Limit to List=Yes”), check that the value exists in the drop-

down menu. Notice that this check will not be done when pasting values.

Click “L.4.2.5 How do I fix a value rejected because it is not in the list?”.

• If the field has a validation rule (click D.5.1.5), check that its Boolean expression

does not return False. Recall from D.5.1.5 that if the Boolean expression returns

Null, the field value is considered valid.

Click “L.4.2.6 How do I fix a value violating a field validation rule?”.

If one or more of the above checks is wrong, MS-Access shows an error message

and/or requests you to fix the field value. The way MS-Access does this depends on

whether you are:

• Editing the record under edition or pasting over a rectangle of field values

over one record (click E.1).

• Pasting several rows of values as new records or pasting over a rectangle of

field values over several records (click L.4.4).

• Searching and replacing data in records (click E.7.1).

• Cascade updating slave fields (click L.4.3.4).

• Inserting or updating records with an SQL Query.

E.6.2 What checks are done when entering or modifying a record?

When you attempt to enter (click Part E) a record, MS-Access will always do the

following error checks over the record as a whole:

• If the Table has a record validation rule (click D.8.1), check that its Boolean

expression over the record fields does not return False. Recall from D.8.1 that if the

Boolean expression returns Null, the record is considered valid.

• If one field, or a group of fields, are configured as the primary Key (click D.6) or

have an associated index without duplicate values (click C.8.3.2), check that value

array of that fields is different from the value array in every other record already

in the Table.

• If one field, or a group of fields, are slave fields in a Relationship with referential

integrity (click “C.11 What is a Relationship?”), check that their value array is the

same as the one of their related master fields in at least one record already

existing in the corresponding master Table.

• If one field, or a group of fields, are master field(s) in one (or more) Relationship(s)

with referential integrity (click “C.11 What is a Relationship?”) with the option

“Cascade Update Related Fields” (click D.9.4), check the correctness of all the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 225 of 725

resulting slave records if updating the value(s) of the related slave field(s). This

means checking all the

If one or more of the above record error checks is wrong, MS-Access shows an error

message and/or requests you to fix the record. The way MS-Access does this depends

on whether you were entering:

• The record under edition (click E.1.2).

• Records pasted as new records or records modified by pasting over a

rectangle of field values over several records (click L.4.4).

E.7 How do I bulk-change my Table/Form’s data?

This chapter also answers the question:

• How I do I change erroneous values in a Table/Form field?

You can do bulk-changes in your Table/Form’s data in either of the following ways:

• “E.7.1 How do I bulk-modify my data using the “Find/Replace” tool?”

Using the “Find/Replace” tool is best when the number of records to modify is small

and the modification to perform is quite direct (i.e., it does not involve complex

operations over the searched data).

• “E.7.2 How do I bulk-change my data with an external application?”

Using an external application (e.g., Excel) is preferable when you are doing bulk

changes that are not repetitive, and when the involved data is not too large (e.g.,

thousands of records).

• “E.7.3 How do I bulk-change my data using data-changing Queries?”

Using Queries that change Table data is preferable when the data changing

operation (e.g., remove records older than five years) is repeated periodically, or

when the involved data is very large (e.g., tens of thousands of records, or more).

Notice also that bulk-changing your data is a quite risky operation, so always make a

backup of the MS-Access file before doing the bulk changes. Click:

• “E.7.4 Why should I backup my data before a bulk-change?”

In spite of being risky, bulk-changing your data is an extremely useful operation. It is

particularly convenient when you want to correct errors in your Table’s data, like

removing Nulls, zero-length strings or invisible strings, removing records with

duplicate values or fixing records that do not comply with validation rules.

E.7.1 How do I bulk-modify my data using the “Find/Replace” tool?

Show the “Replace” tab of the “Find and Replace” dialog box in either of the following

ways:

• Click on “Home” from the Ribbon-bar and then on the Replace “ ” icon from

the Ribbon.

• Click on the Find/Replace “ ” icon from the “Quick Access Toolbar (if you had

previously added it) and then click on the “Replace” tab of the “Find and Replace”

dialog box.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 226 of 725

• Click on on “Home” from the Ribbon-bar and then click the Find “ ” icon.

Finally, click on the “Replace” tab of the “Find and Replace” dialog box.

Regardless of how you showed it, you will see the “Replace” tab of the “Find and
Replace” dialog box, as displayed in the next screenshot:

You can then type-in the searched string, the replace string, and set a few options using

the drop-down menus and checkboxes. You can then either:

• Find and replace manually, match by match, clicking the “Find Next” and

“Replace” buttons as required. This is very safe, but it is only suitable for a very low

number of matches.

• Do a bulk replace by clicking the “Replace All” button.

What errors can I get doing one by one “Replace”?

Each field value over which you do “Replace” will be checked for field errors

(click E.6.1):

• If an error is encountered, the corresponding error message will be displayed. You

have to close the error dialog box by either clicking on its “OK” button, or on its

close “X” icon. Once the dialog box is closed, the erroneous field’s value will remain

selected. MS-Access will not allow you to do anything until you either enter a

correct field value or press the “Esc” key to cancel the value replacement of this

field. Either if you corrected or canceled, you may continue with the replace

operation.

• If no error is encountered, the field value is replaced and you may continue with

the replace operation.

When the last replaced field of each record is attempted to be saves, the record as a

whole is checked for record errors (click E.6.2):

• If an error is encountered, the corresponding error message will be displayed. You

have to close the error dialog box by either clicking on its “OK” button, or on its

close “X” icon. Once the dialog box is closed, the field’s value of the last replaced

field will remain selected. MS-Access will not allow you to do anything until you

either enter a correct field value or press the “Esc” key to cancel the value

replacement of this field. Notice that after you enter a correct field value, the record

as a whole may still be erroneous. You may then correct other field values of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 227 of 725

record to make the record correct or press the “Esc” key to cancel the editing of this

record. Either if you corrected or cancel, you may continue with the replace

operation.

• If no error is encountered, the replaced record is entered and you may continue

with the replace operation.

What errors can I get doing “Replace All”?

If you do a “Replace All”, each field value that is replaced will be checked for field

errors (click E.6.1) and for record errors (click E.6.2). For each different error that is

encountered, the corresponding error message will be displayed. You have to close each

displayed error dialog box by either clicking on its “OK” button, or on its close “X” icon.

When finishing the replace, in case there was one or more records successfully modified,

you will get the following dialog box:

If you click on “No”, the Replace operation will be cancelled, and no record will be

modified.

If you click on “Yes”, the replaced records that successful passed all checks will be

modified, while the replaced records that had one (or more) errors, will remain

unmodified.

E.7.2 How do I bulk-change my data with an external application?

You do this by copying/cutting the required rectangle of cells of Table data and

pasting it in an external application (typically Excel).

In the external application you use formulas (or whatever programming it offers) over

the data to detect the values that you want to change (e.g., Nulls, zero-length strings or

values that return False from the field validation rule). You should carefully design a

formula or script that automatically produces the correct value for each record and/or

field that you want to change.

Once you have produced the values or records that you want, you copy the

corresponding rectangle of values from the external application and paste it MS-Access.

If you want to know more about doing copy/cut and paste with your data, you may click

“E.5 How do I copy/cut and paste data between MS-Access and other applications?”.

E.7.3 How do I bulk-change my data using data-changing Queries?

You do this by creating specific Queries that do the data changes that you want over

your Tables. To do this you need to know how to code SQL Queries, and in particular,

Queries that can change your Table’s data. If you want to know more about this, you

may click “F.13 How do I write a Query that changes my Table data?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 228 of 725

E.7.4 Why should I backup my data before a bulk-change?

As a relevant overall advice, notice that a bulk-change operation involving hundreds

or thousands of records is inherently very risky. Doing bulk-change operations you

could inadvertently destroy or corrupt a huge number of records in your database.

Fixing this later may be extremely difficult and time consuming. Therefore, my strong

advice is that you do the following:

• Backup your database right before doing large bulk-change operations. This

will allow you to go back to a correct state of the database in case there were

problems with your bulk-change operations.

• Think very carefully what you are doing and be very sure that all the bulk-

change operations you will be doing are correct.

• Check quite thoroughly the database data after the bulk-change, to make sure

no problem has occurred, and that all database records and fields are correct.

You should at the very least run your data check Query (click K.6.11).

E.8 How do I upload my pre-existing data into my database?

When you create your database, you will need to populate its different Tables with data.

Most frequently, you do not start from zero, entering new records about new events, and

rather, you want to enter into the database a bulk of data you already have.

If you create a database of invoices, you will most likely want to enter the data of all

your current customers and suppliers. You will also want to enter your current product

list, and product list prices. You may want also to enter the current available units of

each product, and you will likely want to enter also the invoices from the last months.

This means that you will want to copy the data from whatever program(s) and/or file(s)

you currently have it and paste it into the Tables you have defined in MS-Access. You

can also import data from other program(s) and/or file(s) into your Tables.

However, the format of the data (cell placement, intermixing with textual cells, rows,

fields, data type...) that you currently have will for sure not match the format of your

newly designed database Tables. You will therefore need to process your existing

information in order to convert it to the format of the different database Tables. You can

do this using the best tool for each case of existing data. You can use programs such as

spreadsheets (Excel, ...), stream editors (sed, ...), math packages (R, ...), python scripts

or other tools. Notice that you can also use MS-Access itself. You can create a migration

database where you have Tables with the format of your existing information, and

Tables with the format of your newly designed database. Then you write specific

Queries to convert the data from the current Tables to the new Tables.

Regardless of how you will adapt your existing information, you will for sure end up

doing substantial copy/cut and paste from other programs/files into your new database.

You will use copy/cut and paste not only when you initially populate your database, but

also all along its lifetime.

Copying/cutting and pasting text between plain text applications is trivial, but doing

copy/cut and paste in MS-Access has a number of tricky issues. If you want to know

how to do copy/cut and paste with some detail, and in particular, what errors can arise

when doing it, you may click “E.5 How do I copy/cut and paste data between MS-Access

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 229 of 725

and other applications?”.

As a first overall advice, notice that a paste operation into MS-Access involving

hundreds or thousands of records is inherently very dangerous. Doing bulk paste

operations you could inadvertently destroy or corrupt a huge number of records in your

database. Fixing this later may be extremely difficult and time consuming. Therefore, it

is strongly recommended to both:

a) Backup your database before doing this type of bulk operations. This will allow

you to go back to a correct state of the database in case you make a mistake with

your bulk operations.

b) Think very carefully what you are doing and make very sure that all the bulk

operations you will be doing are correct.

E.9 Can I get inconsistent results out of my initial data in my

database?

Yes, you will usually get inconsistent (“wrong”) results when you apply Queries over

your newly created database. This does not always mean that the database design or

Query design is wrong. On my cases the problem is that when you populate initially

your database, in particular if you upload diverse already existing data, it is very difficult

to make all the data consistent timewise. The best you can get is partial consistency of

the Queries over your oldest data, and it is very important that you understand well

which Query results will be correct and which ones will not.

This explanation I just gave is really abstract, so I will try to clarify it with an example.

Imagine that you upload in one shot the list of your current building projects, and also

your past building projects up to some past moment in time. You also upload data on

your expenses on another Table. A first consistency problem may be between expenses

and projects. If you upload expenses corresponding to a certain number of past years,

you will be missing all the project expenses of projects that started earlier than the first

year of your data on expenses. You may think that this is solved by uploading all the

expenses starting from the starting date of the earliest uploaded project. However, this

will most likely cause wrong results in every Query providing data about yearly

expenses, because the first year only has part of the total expenses. You may now think

to upload all the missing expenses in the earliest year, but this is likely not possible

because expenses must be linked to an existing project (click “C.11 What is a

Relationship?”). One trick in such situations is to create “ad-hoc” objects to solve it. For

example, you could create a false “Legacy” project, and bind to it all expenses bound to

projects not uploaded in the database. Another solution is just to be aware that the results

of some Queries over some of the oldest records uploaded in the database will be wrong.

The bottom line is that when you start working with the database you should decide

what past data you will be uploading, and in what grade it is consistent. This will help

you understand what Query results can be correctly expected over past data, and which

ones not. Otherwise, you may be puzzled by some results that seem to indicate that the

database is not working correctly, when it is actually working properly.

E.10 Why should I use “Compact and Repair Database”?

Because as you use your database, its files get larger than is needed and may also get

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 230 of 725

corrupt. As you use your database, MS-Access adds to the files temporary Tables,

indexes and other temporary data that make them larger. Also, this temporary data may

be inconsistent with new data that has been added to your Tables, or with modifications

you have done on your Tables. These inconsistencies may eventually make MS-Access

return wrong results from your Queries.

Clicking on the Compact and Repair Database “ ” icon from the “Database Tools”

Ribbon makes MS-Access remove all the temporary data, and perform a check on

consistency, fixing any possible cross-data errors.

My advice is you click on “Compact and Repair Database” quite frequently (e.g., every

day, if you use the database a lot, or every few days if you use the database a little).

If you click on the Compact and Repair Database “ ” icon, and you get the error

message:

“Could not find field 'Field_name'.”

this is most likely because you removed a field 'Field_name' that was used in a

Calculated field and/or in the Table’s record validation rule. If you want to fix this, you

may click L.8.10.

Notice that if you have a distributed database (click K.3), “Compact and Repair
Database” works only over your local Tables and will have no effect on your linked

Tables. Therefore, you will have to run it by opening your backend files and cannot

do it from your frontend files.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 231 of 725

PART F. WRITING SQL QUERIES TO USE MY

DATABASE

You can read this Part F in “normal mode”, by actually creating the example Tables

and Queries that I propose, or, in “lightning mode”, by downloading the database and

just running the examples while following my indications. For “lightning mode” you

can download the MS-Access database with all the examples of Tables, Forms and

Queries in this Lightning Guide from the link:

 https://lightningguide.net/Company_Database.zip

You may click:

• “F.1 What is the Structured Query Language (SQL)?”

• “F.3 Why should I write and run Queries?”

• “F.4 What is an SQL operation and an SQL Query?”

• “F.5 How do I edit my SQL Queries with the plug-in “Access SQL Editor”?”

• “F.6 What are the SQL operators I use to write my Queries?”

• “F.7 What is a Select operation and how do I write it?”

• “F.8 What is a Join operation and how do I write it?”

• “F.9 What is a Union operation and how do I write it?”

• “F.10 What is a Transform operation and how do I write it?”

• “F.11 What are the SQL clauses, their expression’s elements and color codes?”

• “F.12 How do I add parameters (type-in variables) to my Queries?”

• “F.13 How do I write a Query that changes my Table data?”

• “F.14 How do I write and debug my SQL Queries?”

F.1 What is the Structured Query Language (SQL)?

The Structured Query Language (SQL) is an extremely widespread functional

programing language to write database Queries. It is used in most database systems and

is a widespread standard. There are a few syntax and semantics SQL variations from

one database system to another, but a very large part of the syntax and semantics of the

SQL they use will be the same. It is therefore a good investment to learn SQL, because

it will allow you to work not only in MS-Access, but also in many other database

systems.

The SQL language has operators and functions that can be combined to perform very

complex operations over record-lists (click C.3.3), producing as a result a new record-

list. SQL allows a very powerful and flexible way to select, merge, combine, split, and

perform many other operations over record-lists. Along this Part F you may learn what

are the different SQL operators and how to use them to write your Queries.

For those of you familiar with VBA, Java, C, C++, or any other imperative language,

you will find that SQL is very different, and may look somehow weird. This is because

SQL is a so-called functional language. Functional languages are not like imperative

https://lightningguide.net/Company_Database.zip

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 232 of 725

languages in which you have a set of data structures that you define, a set of variables

and an instruction flow that computes things. In functional languages you rather have

values and expressions that compute other values out of a set of initial values. The main

data type handled in an SQL operation is the record-list. An SQL Query is a named

piece of SQL code that takes some input record-lists, some other possible inputs, and

produces an output record-lists as a result.

F.2 What version of SQL is this guide for?

The MS-Access SQL is largely, but not completely, compatible with the ANSI-92 SQL

standard. MS-Access SQL has a few additions and a few restrictions over the ANSI

standards.

Most relevant additions on my view are the extremely useful Transform operator, the

very valuable “PARAMETERS” declaration and additional SQL aggregate functions like

“StDev()” and “VarP()”.

Most relevant restrictions on my view are not allowing the “DISTINCT” clause in

aggregate function references and not providing the “LIMIT TO n ROWS” clause.

You may check the official information from Microsoft about ANSI SQL and MS-

Access SQL in the link:

 Comparison of Microsoft Access SQL and ANSI SQL

Related with this, MS-Access has an option to align itself with either ANSI-89 or ANSI-

92 standards. On my experience, the difference is negligible and my advice is to keep

the MS-Access default setting, which is “ANSI-89”.

For these reasons, the SQL presented in this Lightning Guide is the one of MS-Access,

under the MS-Access ANSI-89 option.

F.3 Why should I write and run Queries?

Because each Query produces one of the many complex data results that you want to

perform over the data in your database.

Running Queries is the best part of using a database. It is when you get the fast results

you want from your database, even if they imply very complex calculations and data

processing over your database.

To run the Queries, you need to first write them. You can write as many Queries as you

need to get the complex results you want out of your database.

Using a database consists of inputting data records into the database Tables, coding

Queries to exploit the data in the database, and running the Queries to obtain the desired

summaries, statistics, reports, etc. out of your database.

F.4 What is an SQL operation and an SQL Query?

You may click:

• “F.4.1 What is an SQL operation?”

• “F.4.2 What is an SQL Query?”

https://docs.microsoft.com/en-us/office/client-developer/access/desktop-database-reference/comparison-of-microsoft-access-sql-and-ansi-sql#:~:text=Major%20differences,-Microsoft%20Access%20SQL&text=In%20Microsoft%20Access%20SQL%2C%20value1,use%20with%20the%20Like%20operator.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 233 of 725

• “F.4.3 Why should I write my Queries in SQL?”

• “F.4.4 What SQL Query editor should I use?”

• “F.4.5 How do I create a Query?”

• “F.4.6 How do I edit my SQL Queries without a plug-in Query editor?”

F.4.1 What is an SQL operation?

An SQL operation is a formula composed of an SQL operator, input record-lists

and other operands that produces one single output record-list. Each of its input

record-lists can be a Table name, a Query name or another SQL operation.

A SQL operation is conceptually the same as a conventional expression. The SQL

operation makes its computations over record-lists and uses SQL operators to build the

operations over other operations, while an expression makes its computation over scalar

values of given data type(s) (e.g., integer numbers, fractional numbers, dates, ...) using

conventional operators (e.g., “+”, “-”, “*”, “/”, ...) and functions (e.g., “Log()”, “Iif()”,

...). In spite of being conceptually the same, the syntax and semantics of an SQL

operation and the ones of a conventional value expression are very different.

An SQL operation (unless it contains non-deterministic functions) is deterministic and

does not have memory. This means that if you compute several times a given SQL

operation over the same input record-lists, you always get the same output record-

list.

F.4.2 What is an SQL Query?

A Query is a named and self-contained piece of SQL code that is stored in MS-Access.

Once a Query is defined and stored in MS-Access, you may run (click B.4.1.9) the

Query whenever you want, to get the result that the Query will produce. Query names

must be unique in each MS-Access database, to avoid ambiguity when invoking a

Query.

The SQL operations in the Query code may take as its input record-lists Table names

and/or other Query names (called “auxiliary Queries”) that exist in the database.

Therefore, the SQL code of a Query may contain references to Table names and/or to

other Query names of the database.

Most Queries are “consulting” Queries. You can think of a consulting Query as an SQL

operation taking as its input record-lists database Tables and/or other Queries, and after

processing them it produces one output record-list. A consulting Query will not modify

the data in the database Tables: it just reads data from the Tables and processes it to

produce one output record-list.

Some more advanced Queries (“modifying” Queries) may insert, delete or update the

records in the database Tables. If you want to know more about this, you may click

“F.13 How do I write a Query that changes my Table data?”.

F.4.3 Why should I write my Queries in SQL?

MS-Access allows you to create Queries with a proprietary semi-graphical user

interface. I think this proprietary interface is cumbersome, very limited in its expressing

power, and prone to errors. I will not cover this proprietary user interface and will only

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 234 of 725

explain how to create Queries using the SQL language. Learning SQL will allow you to

use other database systems in addition to MS-Access, because many database systems

use SQL. The SQL language in other systems will have some minor variations in respect

to the one used in MS-Access, but most of the logic and fundamental ideas will be the

same.

Writing your Queries in SQL can cause some minor issues in MS-Access: it may

sometimes report a warning, indicating that the Query was not correct, because it cannot

convert it to its internal semi-graphical interface. This is particularly likely if you open

the Query in “Design View”. This is not a relevant issue and has an easy fix.

F.4.4 What SQL Query editor should I use?

MS-Access allows you to edit your Queries in SQL. However, it does not allow to write

comments in the SQL code, and it destroys the code formatting. These are very severe

problems and in practice you should not write your SQL Queries with the MS-Access

text interface.

You should therefore buy a plug-in SQL editor for MS-Access. This will allow you to

write your Queries directly into MS-Access, with comments and proper formatting. I

have been using the plug-in “Access SQL Editor” for years and I like it very much. This

editor provides the basic functionalities (regexp search and replace, keyword highlight,

comment/uncomment and parentheses matching) that cover most of what you need, it

is very simple to use, and its price is really low!! If you buy it, it will be your second23

best investment ever. If you want to know more about the plug-in “Access SQL Editor”,

you may click “F.5 How do I edit my SQL Queries with the plug-in “Access SQL
Editor”?”.

While you buy a plug-in SQL editor, you may write your Queries in a standalone editor,

and then copy them into a Query opened in “SQL View” (click B.9). If you want to know

more, you may click “F.4.6 How do I edit my SQL Queries without a plug-in Query

editor?”.

F.4.5 How do I create a Query?

If you are not using the plug-in “Access SQL Editor”

Click on the “Create” from the “Ribbon-bar”, and then click on the Query Design “ ”

icon. This will create a Query with a default Query name (“Query1” or something

similar) displayed in a new “Query pane” in “Design View”.

In order to edit the SQL code of the Query, you have to change its view-type to “SQL
View” (click B.4.1.4). You can now edit the SQL code of your Query (click F.4.6). If

you want to rename your Query, click B.4.1.8. If you want to save your Query,

click B.4.1.6. If you want to run it, click B.4.1.9. Finally, if you want to close it,

click B.4.1.7.

If you are using the plug-in “Access SQL Editor”

Open the plug-in “Access SQL Editor” (click F.5.1.2).

Click on the New “ ” icon (click F.5.4.8) from the “Access SQL Editor” toolbar.

23 Your first best investment ever is this Lightning guide .

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 235 of 725

This creates a new Query and creates a new “Query pane” (click F.5.6.1) for it inside

the Access SQL Editor” (click F.5.2). You may then edit (click F.5.5), rename, save,

run or close (click F.5.3) your Query using the corresponding commands from the

“Access SQL Editor”.

F.4.6 How do I edit my SQL Queries without a plug-in Query editor?

You can edit your Queries in “SQL View” but (as of the writing of this book) the editing

capacities in “SQL View” are extremely poor. Microsoft announced that it would add the

Monaco SQL editor to MS-Access along the second quarter of 2021 to provide good

editing capacities.

Unless the Monaco editor is already added, my strong advice is that you install the plug-

in “Access SQL Editor” into MS-Access (click F.5). If for some reason you do not want

to install the “Access SQL Editor”, you may write your Queries in some standalone

(i.e., not integrated in MS-Access) SQL editor application and keep them stored

outside of MS-Access. Each time you modify a Query code, you open the MS-Access

Query in SQL mode (click B.9), and copy/paste the Query code from your external

editor into MS-Access. Notice that this makes the process of writing new Queries and

debugging them quite painful, as every modification requires a copy/paste operation,

and this is also prone to causing errors. This is why I advise you to install the “Access
SQL Editor”.

If you want to edit an existing Query in “SQL View”, open the Query (click B.4.1.3) and

then change its view-type to “SQL View” (click B.4.1.4). You may then directly edit the

Query or copy/paste the complete SQL code from the standalone SQL/text editor you

are using into MS-Access. Once you have edited the Query code, save the Query

(click B.4.1.6) and you may then run it (click B.4.1.9). Once you have finished editing

the query, you my close it (click B.4.1.7).

F.5 How do I edit my SQL Queries with the plug-in “Access
SQL Editor”?

The description of the “Access SQL Editor” in this chapter is for its version “1.1.53.0”.

If you have a newer version, notice that it will likely contain some improvements and

minor differences from what is described here.

You may click:

• “F.5.1 How do I start with the plug-in “Access SQL Editor”?”

• “F.5.2 What is the user interface of the plug-in “Access SQL Editor”?”

• “F.5.3 What are the toolbar commands in the “Access SQL Editor”?”

• “F.5.4 How do I manage the Queries/Tables with the “Access SQL Editor”?

• “F.5.5 How do I edit a Query in its query pane in the “Access SQL Editor”?”

• “F.5.6 How do I configure the layout of the “Access SQL Editor”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 236 of 725

F.5.1 How do I start with the plug-in “Access SQL Editor”?

You may click:

• “F.5.1.1 How do I get and install the plug-in “Access SQL Editor”?”

• “F.5.1.2 How do I open the plug-in “Access SQL Editor”?”

• “F.5.1.3 What options should I set in the “Access SQL Editor”?”

F.5.1.1 How do I get and install the plug-in “Access SQL Editor”?

You get the plug-in “Access SQL Editor” from the company “Field Effect” on-line at

fieldeffect.info. You can start with a free trial and if you like it buy it later.

You install the “Access SQL Editor” by running its set-up file, and it will then be

embedded into MS-Access.

F.5.1.2 How do I open the plug-in “Access SQL Editor”?

You open the “Access SQL Editor” in either of the following ways:

• If you did add the Access SQL Editor “ ” icon to the “Quick Access Toolbar”

(click B.1.4), just click on the “ ” icon.

• If you did not add the Access SQL Editor “ ” icon to the “Quick Access Toolbar”,

click on “Access SQL Editor” from the “Ribbon-bar”. This will show a Ribbon that

only contains the Access SQL Editor “ ” icon: click on it.

Either way will open the “Access SQL Editor” in an MS-Access “Object pane”

(click B.2.10) displayed in the MS-Access “Object Area” (click B.2.8). The tab heading

of this “Object pane” is (surprise!) “Access SQL Editor”. The next screenshot shows the

https://fieldeffect.info/

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 237 of 725

“Access SQL Editor” in its specific “Access SQL Editor” pane:

In this screenshot you may see the “Access SQL Editor” pane currently displayed in the

MS-Access “Object Area”, and the tabs of two additional MS-Access “Object panes”:

“T_Capital_Temps” and “F_Join_Cross”, that are opened but not displayed. Within the

“Access SQL Editor” pane you may see several of its objects (you my click F.5.2 for an

explanation of its user interface).

F.5.1.3 What options should I set in the “Access SQL Editor”?

You click on its “ ” icon and then click on “Editor Options…” from the pop-up

menu. I suggest you tick all the options, except “Show query results in built-in grid
(may be slow)” and “Ctrl+Q Toggles Comments”. You then click on “OK”, and close

and open the “Access SQL Editor” for the changes to take place. I advise you do not tick

the option “Show query results in built-in grid (may be slow)” because it has worse

performance, the layout of the Query results may differ from the one of MS-Access, it

can only show the results of one Query at a time, and on some rare cases it may cause

crashes.

You click on the “ ” icon and then place the mouse over “Windows”. You then

tick “Queries”, “Tables” and “Status”, and leave “Results” unticked. You have to click

on the “ ” icon again for each tick/untick that you want to do. After you have

configured this, the editor will show one “Queries” pane with the list of Queries, one

“Tables” pane with the list of Tables and one “Status” pane listing a log of Query

diagnostics.

You click on the “ ” icon and then untick “Word Wrap”. This will show your

SQL code as such, without word wrapping. If a line of code is wider than the viewing

area, you will have to do horizontal scroll to view it. I think this is the best approach to

view your code properly formatted.

If at any moment you are using a small screen, it may be useful to tick “Word Wrap”,

but in the usual situation with a large screen I think it better to have it unticked.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 238 of 725

F.5.2 What is the user interface of the plug-in “Access SQL Editor”?

When you run it, the “Access SQL Editor” is shown in one MS-Access “Object pane”,

in the MS-Access “Object Area”. This is, the “Access SQL Editor” is shown as if it were

one more MS-Access object type, like an MS-Access Query, Table or Form.

The “Access SQL Editor” pane has a toolbar (click F.5.3) on top, and below the toolbar

there is an object area that contains pane-spaces (click F.5.6.6) and/or sub-windows

(click F.5.6.7). The sub-windows can also be contained in self-standing windows

(click F.5.6.8). Each pane-space or sub-window hosts one, or more, object panes from

the “Access SQL Editor”. You can configure the layout of these different elements as

best suits you (click F.5.6 or F.5.6.11).

The object panes of the “Access SQL Editor” are:

• Several query panes

Each query pane shows the SQL code of one Query (click F.5.6.1).

• One “Queries” pane

It lists the names of all the database Queries (click F.5.6.2).

• One “Tables” pane

It lists the names of all the database Tables (click F.5.6.3).

• One “Status” pane

It lists the results of your commands and operations (click F.5.6.4).

• One “Results” pane

It shows the results of running a Query inside the “Access SQL Editor”

(click F.5.6.5).

As an example, the following screenshot shows my preferred layout for the “Access SQL
Editor” pane. You can see inside its object area one sub-window (left), hosting the

“Tables” pane and the “Queries” pane, another sub-window (bottom-right) hosting the

“Status” pane and a pane-space (top-right) hosting four query panes:

Do not mistake the “Queries” pane with a query pane. The “Queries” pane is just one

specific pane that lists the names of all the Queries in your database. The query pane(s)

are one or more object panes, each of which shows the SQL code of one specific

Query. To clarify this difference, I write “Queries” pane using quotes and a different

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 239 of 725

font, while I write query pane without quotes and with the usual font.

Finally, I want to point out that you should not mistake the following elements:

• The specific object area of the “Access SQL Editor” (that is described in this

chapter F.5) with the usual MS-Access “Object Area” (click B.2.8).

• The specific object panes of the “Access SQL Editor” (that are described in this

chapter F.5) with the usual MS-Access “Object panes” (click B.2.10).

• The specific query panes of the “Access SQL Editor” (that are described in this

chapter F.5) with the usual MS-Access “Query panes” that show a Query in different

view-types (click B.5, B.7 or B.9).

Notice that to facilitate distinguishing them, I write the specific elements of the “Access
SQL Editor” without quotes and in lower case, while I write the usual elements of MS-

Access between quotes and capitalized.

F.5.3 What are the toolbar commands in the “Access SQL Editor”?

While you are working with the “Access SQL Editor” you will use the command icons

in its toolbar (located at the top of the “Access SQL Editor” pane, right below its tab),

and you will not usually use the commands of MS-Access. The following screenshot

shows the “Access SQL Editor” toolbar:

The commands in the “Access SQL Editor” toolbar are, left to right:

• Open “ ”

Opens a Query/Table: click F.5.4.1.

• Save “ ”

Saves the Query in the current query pane: click F.5.4.6.

• New “ ”

Creates a new Query: click F.5.4.8.

• Find “ ”

Opens the “Find and Replace” dialog box in its “Find” tab: click F.5.5.2.

Do not mistake the “Find and Replace” dialog box of the “Access SQL Editor” with

the one of MS-Access (click B.5.5 and E.7.1).

• Find/Replace “ ”
Opens the “Find and Replace” dialog box in its “Replace” tab: click F.5.5.2.

Do not mistake the “Find and Replace” dialog box of the “Access SQL Editor” with

the one of MS-Access (click B.5.5 and E.7.1).

• Undo “ ”

Undoes the last editing operation that you performed: click F.5.5.2.

• Redo “ ”

Redoes the last editing operation that you undid: click F.5.5.2.

• Run “ ”

Runs the Query: click F.5.4.5.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 240 of 725

• Comment “ ”

Comments the selected lines of code: click F.5.5.1.

• Uncomment “ ”

Uncomments the selected lines of code: click F.5.5.1.

• View “ ”

This allows to set/unset word wrapping for showing the SQL code: click F.5.1.3.

• Tools “ ”

Shows some “Access SQL Editor” options (click F.5.1.3), and a couple other tools.

The tools to convert tabs to spaces and vice versa can be quite useful.

Finally, notice that each sub-window (click F.5.6.7) that is inside a self-standing

window (click F.5.6.8) also has a toolbar. This toolbar includes the same commands

as the main toolbar (as explained above) except “ ”, “ ” and “ ”.

If the width of the “Access SQL Editor” pane, or of the sub-window, is not enough to

show all the toolbar commands, the ones that do not fit will not be shown. In this case,

the pop-up menu “ ” icon will be shown on the rightmost side of the toolbar. If you

click on this icon, a pop-up menu will show all the toolbar commands that cannot be

shown for lack of width, and you will be able to click on them.

F.5.4 How do I manage the Queries/Tables with the “Access SQL
Editor”?

You may click:

• “F.5.4.1 How do I open a Query/Table from the “Access SQL Editor”?”

• “F.5.4.2 How do I select a Query/Table name in the “Access SQL Editor”?”

• “F.5.4.3 How do I show a query pane in the “Access SQL Editor”?”

• “F.5.4.4 How do I select a query pane in the “Access SQL Editor”?”

• “F.5.4.5 How do I run a Query from the “Access SQL Editor”?”

• “F.5.4.6 How do I save a Query from the “Access SQL Editor”?”

• “F.5.4.7 How do I close a query pane in the “Access SQL Editor”?”

• “F.5.4.8 How do I create a new Query from the “Access SQL Editor”?”

• “F.5.4.9 How do I rename a Query from the “Access SQL Editor”?”

• “F.5.4.10 How do I copy a Query from the “Access SQL Editor”?”

• “F.5.4.11 How do I delete a Query from the “Access SQL Editor”?”

F.5.4.1 How do I open a Query/Table from the “Access SQL Editor”?

You open a Query/Table (from the “Access SQL Editor”) in either of the following ways:

• Double-click24 on the Query or Table name from the “Queries” pane (click F.5.6.2),

24 I am assuming that you set the recommended option “Double-clicking queries opens them instead of
executing”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 241 of 725

or “Tables” pane (click F.5.6.3), respectively.

• Right-click on the Query or Table name from the “Queries” pane (click F.5.6.2), or

“Tables” pane (click F.5.6.3), respectively, and click on “Open” from the pop-up

menu.

• Select the Query or Table name(s) (click F.5.4.2) that you want. You then either:

o Click on the “ ” icon from the “Access SQL Editor” toolbar.

o Right-click on one of the selected Query or Table name(s) and click on “Open”

from the pop-up menu.

o Press the “Enter” key.

If you select several Query or Table names you can open all of them in one shot.

Regardless of how you open a Table, it will be opened in its own MS-Access “Table

pane” (click B.2.10) outside the “Access SQL Editor”, in the MS-Access “Object Area”

(click B.2.8).

Regardless of how you open a Query, it will be opened in its own query pane

(click F.5.6.1) within the “Access SQL Editor”. The query pane will be labeled with the

name of the Query, and it will be placed as follows:

• If there is an empty area in the “Access SQL Editor” object area, the new query pane

will be displayed in a pane-space in the formerly empty area.

• If there is no empty area, and the “Queries” pane is inside a sub-window, the new

query pane will be displayed in a pane-space as follows.

o If a pane-space that is hosting query panes already exists, the new query pane

will be displayed in that already existing pane-space.

o Otherwise, a new pane-space will be created (typically in the top-middle area

of the object area), and the new query pane will be displayed in that newly

created pane-space.

• If there is no empty area, and the “Queries” pane is inside a pane-space, the new

query pane will be displayed in this same pane-space. This means that it will be

displayed instead of the “Queries” pane. This on my view is quite uncomfortable,

so my advice is you always place the “Queries” pane in a sub-window, and never

in a pane-space.

Although a newly opened query pane is always displayed in a pane-space

(click F.5.6.6), you can move it (click F.5.6.9) into a sub-window (click F.5.6.7), either

within the “Access SQL Editor” object area or within a self-standing window

(click F.5.6.8).

If you open a Query that is already opened, this will select its query pane

(click F.5.4.4). Notice that you cannot have the same Query opened in two query panes.

If you open a Query and it is directly marked as containing unsaved changes (i.e., it

has an asterisk to the left of its name), you may click L.8.4.

F.5.4.2 How do I select a Query/Table name in the “Access SQL Editor”?

You select one Query/Table name (in the “Access SQL Editor”) by clicking on it from

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 242 of 725

the “Queries” pane (click F.5.6.2), or “Tables” pane (click F.5.6.3), respectively.

You select several individual Query/Table names (in the “Access SQL Editor”) by

clicking on one of them, and then doing Ctrl+click on each of the other ones that you

want to select. Notice that if you do Ctrl+click on a selected Query/Table name, it will

become unselected.

You select a range of Query/Table names (in the “Access SQL Editor”) by clicking on

one end of the range, and then doing Shift+click on the other end of the range.

Notice you can first select a range of Query/Table names doing Shift-click and then

select (or unselect) several individual ones doing Ctrl+click.

The selected Query/Table name(s) become highlighted with white text over blue
background.

F.5.4.3 How do I show a query pane in the “Access SQL Editor”?

The way to show one query pane (in the “Access SQL Editor”), making it the currently

shown one, depends on where it is hosted, as follows:

• If the query pane is hosted in a pane-space (click F.5.6.6), you show the query pane

by clicking on its tab (at its top). The currently shown query pane has its tab

highlighted with either a white text over blue background or a black text over gray
background.

• If the query pane is hosted in a sub-window (click F.5.6.7), or inside a self-

standing window (click F.5.6.8), you show the query pane by clicking on its tab

(at its bottom). The currently shown query pane will have its tab highlighted with

a blue text.

F.5.4.4 How do I select a query pane in the “Access SQL Editor”?

The “ ” and “ ” commands from the toolbar apply to the currently selected

query pane. It is therefore important to know which is the currently selected query

pane and also, how to select a given query pane to make it the currently selected one.

The way to select one query pane depends on where is it hosted, as follows:

• If the query pane is hosted in a pane-space (click F.5.6.6), you select the query pane

that you want by clicking on its tab (at its top). This will also make it the currently

shown query pane in the pane-space. Notice that in a pane-space the currently

selected query pane is not highlighted, which makes it more difficult to know which

one is it (read further below).

• If the query pane is hosted in a sub-window (click F.5.6.7), and the sub-window

contains more than one query pane, you select the query pane that you want by

clicking on its tab (at its bottom) of the query pane. This will also make it the

currently shown query pane in the sub-window. The top frame of the sub-window

hosting the currently selected query pane is highlighted with a white name over blue
background.

You may also select a query pane by opening its associated Query (click F.5.4.1):

• If the Query was already opened, this will select its query pane.

• If the Query was not opened, this will open the Query and make its query pane the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 243 of 725

currently selected one. If you open several Queries in one shot, the currently

selected query pane will be the last one in being opened (the shown one).

In the “Access SQL Editor” object area or in each self-standing window, the currently

selected query pane is identified as follows:

• If there is a sub-window with its top frame highlighted with a white name over blue
background, then the currently selected query pane is the currently shown one in

that sub-window.

• If there is no sub-window with its top frame highlighted with a white name over
blue background, then the currently selected query pane is the one highlighted with

a white name over blue background in a pane-space.

F.5.4.5 How do I run a Query from the “Access SQL Editor”?

You run a Query (from the “Access SQL Editor”) in either of the following ways:

• Select the query pane (click F.5.4.4) that you want and click the “ ” icon from

the toolbar (click F.5.3).

• Right-click on the Query name from the “Queries” pane (click F.5.6.2) and click

on “Run” from the pop-up menu.

• Select the Query name(s) (click F.5.4.2) that you want from the “Queries” pane.

You then either:

o Click the “ ” icon from the toolbar (click F.5.3).

o Right-click on any of the selected Query names and click on “Run” from the

pop-up menu.

If you select several Query names you can run all of them in one shot.

The corresponding Query results will be shown in an MS-Access “Query pane” in

“Datasheet View”25 in the MS-Access “Object Area”, this is, outside the “Access SQL
Editor”.

You will frequently run a Query from the “Access SQL Editor” while you are writing

or debugging it.

When you have been working on another MS-Access “Object pane”, or on another

application, and afterwards you click on the “ ” icon to run a Query in a pane that

appears to be selected, many times it does not work. In this case, you just need to click

on the query pane to activate the focus and click again on “ ”.

You may also run the Query from the MS-Access “Navigation Pane” (click B.4.1.9).

However, my advice is that you hide the “Navigation Pane” while you are using the

“Access SQL Editor”, to prevent some possible interferences between both of them.

Therefore, my advice is that you do not run the Queries from the “Navigation Pane”

while you are using the “Access SQL Editor”.

25 I am assuming that you did not set the non-advisable option “Show query results in built-in grid (may

be slow)”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 244 of 725

F.5.4.6 How do I save a Query from the “Access SQL Editor”?

You save the editing changes on the SQL code (from the “Access SQL Editor”) by

selecting the query pane (click F.5.4.4) and clicking on the “ ” icon from the

toolbar.

You can also save the SQL code by closing the query pane (click F.5.4.7), and then

clicking on “Yes” in the confirmation window, although this is somehow risky.

Before actually saving the SQL code of a query pane, the “Access SQL Editor” will do

a syntax check. If the Query code contains some types of syntax errors, MS-Access will

not save the unsaved editing changes and will show a syntax error message. If you

want advice on fixing this, you may click:

• “J.8 How do I fix a syntax error that prevents saving a Query?”

Finally, notice that clicking on “Save As…” from the pop-up menu over the Query name

will not save the editing changes of its query pane. Clicking on “Save As…” creates a

copy of the Query (click F.5.4.10), without the unsaved changes, and its query pane

will remain the same.

F.5.4.7 How do I close a query pane in the “Access SQL Editor”?

The way to close a query pane (in the “Access SQL Editor”) depends on where the query

pane is hosted, as follows:

a) If the query pane is hosted in a pane-space (click F.5.6.6), you close it in either of

the following ways:

• Click on the close “X” icon placed on the tab (at the top) of the query pane.

• Right-click on the tab (at the top) of the query pane and click on “Close” from

the pop-up menu.

• Right-click on the tab (at the top) of the query pane and click on “Close all BUT
this”.

Doing this will close all the other query panes, from all pane-spaces, all sub-

windows and all self-standing windows.

b) If the query pane is hosted in a sub-window (click F.5.6.7), you close it in either of

the following ways:

• Click on the “ ” icon placed on the top sub-window frame, or rather, right-click

anywhere on the top sub-window frame, or else, right-click on the tab (at the

bottom) of the query pane. Then click on “Close” from the pop-up menu. Notice

that right-clicking on the tab only applies if there is more than one query pane

in the sub-window (otherwise there will be no tabs).

Doing this will only close the currently displayed query pane.

• Click on the “X” icon on the right of the top frame of the sub-window.

Doing this will only close the currently displayed query pane.

• Click on the “ ” icon placed on the top sub-window frame, or rather, right-click

anywhere on the top sub-window frame, or else, right-click on the tab (at the

bottom) of the query pane. Then click on “Close all BUT this” from the pop-up

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 245 of 725

menu. Notice that right-clicking on the tab only applies if there is more than one

query pane in the sub- window (otherwise there will be no tabs).

Doing this will close all the other query panes, from all pane-spaces, all sub-

windows and all self-standing windows.

• If the sub-window is inside a self-standing window, click on the “X” icon on

the right of the top frame of the self-standing window.

Doing this will close the self-standing window itself, and therefore, it will also

close all its sub-windows, and all their query panes.

If you close a query pane that has unsaved changes in its SQL code, you will get a

confirmation dialog-box asking if you want to save it, showing the buttons: “Yes”, “No”

and “Cancel”:

• Clicking “Yes” saves the SQL code and closes the query pane. If you get a

syntax error that prevents saving the SQL code, you may click J.8.

• Clicking “No” closes the query pane without saving the unsaved changes in the

SQL code.

• Clicking “Cancel” cancels the closing of the query pane.

Do not mistake closing a specific query pane from the “Access SQL Editor, with closing

one of the usual MS-Access “Query panes” (click B.4.1.7).

Tables are not opened within the “Access SQL Editor”, and therefore you close them

from the MS-Access “Navigation Pane” in the usual way (click B.4.1.7).

F.5.4.8 How do I create a new Query from the “Access SQL Editor”?

You run a Query (from the “Access SQL Editor”) by clicking on the “ ” icon from

the “Access SQL Editor” toolbar. This will create a new Query with the name “New_nn”

where “nn” is a double-digit integer number.

The new Query will be opened in its own query pane inside the “Access SQL Editor”

and will be placed in the same way as when opening an existing Query (click F.5.4.1).

To give the name you want to the new Query click F.5.4.9.

F.5.4.9 How do I rename a Query from the “Access SQL Editor”?

The way to rename a Query (from the “Access SQL Editor”) depends on where it query

pane is hosted, as follows:

• For any hosting type, right-click on the Query name from the “Queries” pane and

click on “Rename” from the pop-up menu. This works even if the Query is not

opened.

• If the query pane is hosted in a pane-space (click F.5.6.6), right-click on its tab (at

the top) and clicking on “Rename” from the pop-up menu.

• If the query pane is hosted in a sub-window (click F.5.6.7), click on the “ ” icon

placed on the top sub-window frame, or rather, right-click anywhere on the top

sub-window frame, or else, right-click on its tab. Then click on “Rename” from

the pop-up menu. Notice that right-clicking on the tab only applies if there is more

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 246 of 725

than one query pane in the sub-window (otherwise there will be no tabs). Notice

also that if the sub-window is the only one within a self-standing window

(click F.5.6.8), the “ ” icon is not shown.

Regardless of which way you clicked on “Rename”, you get a dialogue-box where you

can type-in the new name that you want for the Query. When you are done typing-in,

click on the “OK” button. If you rather want to cancel the renaming, click on the

“Cancel” button.

F.5.4.10 How do I copy a Query from the “Access SQL Editor”?

You copy a Query (from the “Access SQL Editor”) by right-clicking on the Query name

from the “Queries” pane and clicking on “Save As…” from the pop-up menu. You then

type-in the name you want for the copy of the Query.

Notice that if the Query being copied (the query name where you did “Save As…”) was

being edited in a query pane, and it had unsaved changes, the unsaved changes will not

be included in the Query copy: the SQL code of the Query copy will be the one of the

last saved version of the Query being copied.

F.5.4.11 How do I delete a Query from the “Access SQL Editor”?

You delete a Query (from the “Access SQL Editor”) in either of the following ways:

• Right-click on the Query name from the “Queries” pane (click F.5.6.2) and click

on “Delete” from the pop-up menu.

• Select the Query name(s) (click F.5.4.2) that you want. You then either:

o Right-click on one of the selected Query name(s) and click on “Delete” from

the pop-up menu.

o Press the “Supr” key.

If you select several Query names you can delete all of them in one shot.

Regardless of how you delete the Query(s), you will get a message-box informing you

that Query deletion cannot be undone and asking for confirmation: you may click on

“Yes” to proceed deleting the Query(s) or click on “No” to cancel.

F.5.5 How do I edit a Query in its query pane in the “Access SQL
Editor”?

You open the Query (click F.5.4.1) and you then edit its SQL code in its query pane.

You edit its SQL code like in a conventional text editor but having also a few specific

functionalities. If you want to know more, you may click:

• “F.5.5.1 What are the specific editing functionalities of a query pane from the

“Access SQL Editor”?”

• “F.5.5.2 What are the conventional editing functionalities of a query pane from the

“Access SQL Editor”?”

If you see an asterisk “*” to the left of the Query name (in the query pane tab and/or in

the sub-window top frame), this means that the query pane contains unsaved

modifications of its SQL code.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 247 of 725

F.5.5.1 What are the specific editing functionalities of a query pane from the

“Access SQL Editor”?

I describe below the specific SQL editing functionalities.

Parentheses matching

When you place the editing cursor after a parenthesis character (either “(“ or “)”), the

editor will color in red both that parenthesis character and its matching parentheses

(either “)” or “(”, respectively). This is extremely useful to write and debug your

expressions and your other SQL code, saving you a lot of time and frustration arising

from fixing parentheses errors.

Syntax coloring

In the SQL code of the query pane the keywords are colored in blue, the function names

in pink, the operators, parentheses and commas in brown, the number constants in

orange, the comments in green and the names in black. This coloring highly improves

the readability of your SQL code. Notice that this coloring has nothing to do with the

color codes that I use along this Lightning Guide to highlight different parts of the SQL

code (click F.11.2).

Line numbering

Each SQL line of code is numbered on the left side, so you can know what part of the

SQL Query code you are currently viewing.

Indent selected text

Pressing the “Tab” key indents all the lines in the selected text. This is useful for

formatting your SQL code.

Comment26 selected text

If you click the “ ” icon, for each of the selected lines of text in the currently

selected query pane, it will be commented.

Commenting a line means adding two consecutive hyphens “--” right before the first

non-blank character of the line. This is the same as turning the complete line into an

SQL comment.

Pressing “Ctrl-q” (i.e., press the “Ctrl” key, and without releasing it, press the “q” key)

also comments all the selected lines of text in the currently selected query pane (even

if you set the non-recommended option “Ctl+Q toggles comments”).

Notice that if you have selected whole lines of text (e.g., by doing drag-and-drop over

the left margin), pressing “Ctrl-q” will also comment the line of text right after the

selection, which is quite annoying. This does not happen when you click the

“ ” icon.

Uncomment selected text

If you click the “ ” icon, this uncomments once all the selected lines of

text in the currently selected query pane.

Uncommenting a line once means removing two consecutive hyphens “--” when

26 I am assuming that you did not set the option “Ctl+Q toggles comments”, following my advice.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 248 of 725

they are the first non-blank characters of the line. This is the same as turning all the

line text after the two removed hyphens (until the next two consecutive hyphens) from

an SQL comment into valid SQL code.

Notice that if you have selected whole lines of text (e.g., by doing drag-and-drop over

the left margin), the “ ” command will also uncomment the line of text right

after the selection, which is quite annoying.

F.5.5.2 What are the conventional editing functionalities of a query pane

from the “Access SQL Editor”?

I describe below the conventional editing functionalities.

Find and Replace

Click on the “ ” or “ ” icons from the toolbar. This opens the

“Find/Replace” dialog box in its “Find” tab or “Replace” tab, respectively.

The “Find/Replace” tool of the “Access SQL Editor” is particularly useful because it

supports regular expressions (that the MS-Access find-and-replace does not support).

If you are familiar with regular expressions, you will really like this. If you are not, I

suggest you learn, because regular expression find-and-replace is extremely useful

when writing, debugging and updating your SQL code. When doing find and replace

using regular expressions, I suggest you tick the “Find/Replace” option “Multiline” (it

appears on the “Find/Replace” dialogue-box) so it works over multiple lines. In case

you want to do find and replace only on the selected text, then you also have to tick the

option “Search Selection”.

The regular expression version used is the one of “.NET”. You can check the

information about this version in the link .NET Regular expressions.

As a final remark, it would be extremely useful if the plug-in “Access SQL Editor”

would allow you to do find and replace over all the Queries, for example, to change the

name of a user-defined VBA function in all your SQL code in one shot. Unfortunately,

as of the date of release of this book it still does not have this functionality.

Do not mistake the “Find/Replace” dialog box of the “Access SQL Editor” with the “Find
and Replace” tool of MS-Access (click B.5.5 and E.7.1). Notice that the MS-Access

“Find and Replace” tool will not work in the “Access SQL Editor” pane. If you try to

use it, MS-Access will show a message indicating that it is not possible to do find and

replace.

Select text

You select text in the query pane in the usual way: drag and drop with the mouse or

click plus Shift-click. Selected text will be highlighted with white text over blue
background.

Select all

You select all the text in the query pane (i.e., all the SQL code of the Query) in either

of the following ways:

• Right-click inside the query pane and click on “Select All” from the pop-up

menu.

• Press “Ctrl-a” (i.e., press the “Ctrl” key, and without releasing it, press the “a”

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-language-quick-reference

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 249 of 725

key) while the mouse is inside the query pane.

Move/Delete/Copy/Cut the selected text

Selected text can be moved by doing drag and drop.

It can be deleted by pressing the “Supr” key or the “Del” key.

It can be copied by pressing “Ctrl-c” (i.e., press the “Ctrl” key, and without releasing

it, press the “c” key).

It can be cut by pressing “Ctrl-x” (i.e., press the “Ctrl” key, and without releasing it,

press the “x” key).

You can also do the last three actions by right-clicking inside the query pane, and then

clicking on “Delete”, “Copy” or “Cut” (respectively) from the pop-up menu.

Paste text

You can paste previously copied/cut text (from the editor or from any other Windows

application) in either of the following ways:

• Right-click inside the query pane, and then click on “Paste” from the pop-up

menu.

• Press “Ctrl-v” (i.e., press the “Ctrl” key, and without releasing it, press the “v”

key).

Undo

You can undo your last editing operation in either of the following ways:

• Clicking on the undo “ ” icon from the editor toolbar.

• Right-click inside the query pane, and then click on “Undo” from the pop-up

menu.

• Press “Ctrl-z” (i.e., press the “Ctrl” key, and without releasing it, press the “z”

key).

Redo

You can redo the editing operation that you undid in either of the following ways:

• Click on the redo “ ” icon from the editor toolbar.

• Right-click inside the query pane, and then click on “Redo” from the pop-up

menu.

• Press “Ctrl-y” (i.e., press the “Ctrl” key, and without releasing it, press the “y”

key).

F.5.6 How do I configure the layout of the “Access SQL Editor”?

You may click:

• “F.5.6.1 What are the query panes in the “Access SQL Editor”?”

• “F.5.6.2 What is the “Queries” pane in the “Access SQL Editor”?”

• “F.5.6.3 What is the “Tables” pane in the “Access SQL Editor”?”

• “F.5.6.4 What is the “Status” pane in the “Access SQL Editor”?”

• “F.5.6.5 What is the “Results” pane in the “Access SQL Editor”?”

• “F.5.6.6 What is a pane-space in the “Access SQL Editor”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 250 of 725

• “F.5.6.7 What is a sub-window in the “Access SQL Editor”?”

• “F.5.6.8 What is a self-standing window of the “Access SQL Editor”?”

• “F.5.6.9 How do I move an object pane, a sub-window or a self-standing window of

the “Access SQL Editor”?”

• “F.5.6.10 How do I convert between an object pane, a pane-space, a sub-window,

or a self-standing window in the “Access SQL Editor”?”

• “F.5.6.11 What can be a good layout for the “Access SQL Editor”?”

F.5.6.1 What are the query panes in the “Access SQL Editor”?

The purpose of each query pane of the “Access SQL Editor” is viewing and editing

(click F.5.5) the SQL code of one Query.

Each query pane shows the SQL code of one Query that you opened for editing. Each

query pane is labeled with the name of the Query whose SQL code it contains. If you

see an asterisk “*” to the left of the Query name (in the query pane tab and/or in the

sub-window top frame), this means that the query pane contains unsaved modifications

of its SQL code.

A query pane may be hosted in a pane-space (click F.5.6.6) or in a sub-window

(click F.5.6.7).

Do not mistake the specific query panes of the “Access SQL Editor” described along this

chapter F.5 with the usual MS-Access “Query panes” (click B.2.10).

F.5.6.2 What is the “Queries” pane in the “Access SQL Editor”?

The “Queries” pane lists the names of all the database Queries, in alphabetical order.

Notice that it also lists the Query names of Queries that are hidden in the MS-Access

“Navigation Pane”. It is labeled “Queries”.

You unhide the “Queries” pane by clicking on the toolbar “ ” icon, placing the

mouse over “Windows”, and then ticking “Queries”.

You hide the “Queries” pane by either closing it “X” icon from its top frame or by

clicking on the “ ” icon, placing the mouse over “Windows”, and then unticking

“Queries”.

On the leftmost side of each Query name there is a “+” icon. If you click on it, the

Query’s field names will be listed below the Query name.

Each Query name is prefixed by an icon indicating the type of Query, as follows:

• “ ” icon: Select Query

• “ ” icon: Union Query

• “ ” icon: Insert Query

• “ ” icon: Delete Query

• “ ” icon: Transform or Update Query

If you right-click on a Query name, a pop-up menu will be shown with the following

self-explicative actions: “Open”, “Run”, “Rename”, “Save As…”, “Delete” and

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 251 of 725

“Properties”. Notice that the name of the “Save As…” action is quite misleading,

because it does not save the Query being edited with a different name. It rather copies

the Query as is currently stored in the editor (i.e., as you last saved it) with the new

name that you provide after having clicked in “Save As…” (click F.5.4.10).

If you want to open, edit, or do other operations on your Queries, you may click:

• “F.5.4 How do I manage the Queries/Tables with the “Access SQL Editor”?”

• “F.5.5 How do I edit a Query in its query pane in the “Access SQL Editor”?”

If you click on the refresh “ ” icon at the top of the “Queries” pane, the list of Query

names will be refreshed. Refreshing may be required if you did changes over the

Queries from the “Access SQL Editor” and/or from MS-Access. Doing changes (e.g.,

deleting, creating, modifying, renaming, …) over your Queries from MS-Access while

you are also working over them from the “Access SQL Editor” is absolutely non-

advisable, because it can create a number of collisions and problems.

If you type-in a string in the filter box “ ” at the top of the “Queries”

pane, only the Query names containing that string will be shown. This is very useful

when you have lots of Queries. If you want to show back all the Query names, you can

either delete the string or click on the clear filter “ ” icon on the right of the filter box.

F.5.6.3 What is the “Tables” pane in the “Access SQL Editor”?

It is labeled “Tables”. It shows the names of all the database Tables, in alphabetical

order. Notice that it also shows the Table names of Tables that are hidden in the MS-

Access “Navigation Pane”. It also shows the MS-Access system Tables with names

starting with “MSys”: do not be puzzled by them and do not open them, just let them

stay.

You open the “Tables” pane by clicking on the toolbar “ ” icon, placing the

mouse over “Windows”, and then ticking “Tables”.

You close the “Tables” pane by either clicking on the close “X” icon from its top-right

or by clicking on the “ ” icon, placing the mouse over “Windows”, and then

unticking “Tables”.

On the leftmost side of each Table name there is a “+” icon. If you click on it, the Table’s

field names will be listed below the Table name.

If you right-click on a Table name, a pop-up menu will be shown with just one choice:

“Open”.

If you want to open Tables or select Table names, you may click:

• “F.5.4.1 How do I open a Query/Table from the “Access SQL Editor”?”

• “F.5.4.2 How do I select a Query/Table name in the “Access SQL Editor”?”

If you click on the refresh “ ” icon at the top of the “Tables” pane, the list of Table

names will be refreshed. Refreshing may be required if you did changes over the Tables

from the “Access SQL Editor” and/or from MS-Access.

If you type-in a string in the filter box “ ” at the top of the “Tables”

pane, only the Table names containing that string will be shown. This is very useful

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 252 of 725

when you have lots of Tables. If you want to show back all the Table names, you can

either delete the string or click on the clear filter “ ” icon in the filter box.

F.5.6.4 What is the “Status” pane in the “Access SQL Editor”?

It shows the results of your commands and operations, and most important, it shows

the error messages when you run a Query from the “Access SQL Editor”. Error

messages are shown in red color font (you can configure the color in the options).

F.5.6.5 What is the “Results” pane in the “Access SQL Editor”?

In case that you checked the non-advisable option “Show query results in built-in grid
(may be slow)”, the “Results” pane shows the result of running a Query inside the

“Access SQL Editor” instead of showing it in its own MS-Access “Query pane”. If you

want to know why is it not advisable to check this option, you may click F.5.1.3.

F.5.6.6 What is a pane-space in the “Access SQL Editor”?

A pane-space from the “Access SQL Editor” contains one or more object panes and is

used to display one of them in a flexible and configurable way.

Each pane-space has at its top a list of tabs instead of the thick top frame that sub-

windows and self-standing windows have. The name of each object pane hosted inside

the pane-space is shown as the label of one of the tabs. If the pane-space is too narrow

to show all the tabs, the rightmost tabs that do not fit will not be shown. When this

happens, the “ ” icon (on the right side of the tabs) changes to “ ” to indicate that

not all tabs are being shown (see below what it is for).

If the viewing area is too small to show all the contents of the currently displayed object,

a horizontal and/or vertical scrollbar will be shown.

The tab of the currently displayed object pane is highlighted with dark blue

background and a close “ ” icon is shown on the rightmost side of its tab (see the

screenshot below).

When the mouse is over any tab that is not the currently displayed one, the tab is

highlighted with medium-blue background and a close “ ” icon is shown on the

rightmost side of the tab.

In the next screenshot (a zoom from the screenshot in F.5.6.7), you may see the Query

tabs of a pane-space, which are “Aux_Ord_City”, “Aux_Plain_Query”, “Exp_Syntax” and

“Aux_Ord_Rainfall”.

You can display one of the object panes that are inside the pane-space by selecting it.

You select an object pane by clicking on its tab (at the top of the pane-space). You can

also select an object pane by clicking on the “ ” or “ ” icon (see above) and then

clicking on the name of the object pane that you want from the pop-up menu.

If you click on the close “ ” icon placed on the right side of a tab, the corresponding

object pane will be closed, and another object pane from the pane-space will be

displayed. If the pane-space only contained the closed object pane, then the pane-space

will also be closed.

When the only object pane in a pane-space is closed or moved, the former space of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 253 of 725

pane-space in the object area is either left empty or used to enlarge a neighboring pane-

space.

You can change the relative size of neighboring sub-windows and/or pane-spaces by

doing click-and-drag (i.e., pressing the right mouse button, moving the mouse, and then

releasing) on the separating frame between them.

Finally, you can move any of the object panes hosted in the pane-space outside of it

by doing drag-and-drop on the object pane’s tab. If you want to know more about this,

you may click “F.5.6.9 How do I move an object pane, a sub-window or a self-standing

window of the “Access SQL Editor”?”.

F.5.6.7 What is a sub-window in the “Access SQL Editor”?

A sub-window from the “Access SQL Editor” contains one or more object panes and is

used to display one of them in a flexible and configurable way.

Each sub-window has a thick top frame, like self-standing windows do, and unlike

pane-spaces (that have instead a list of tabs). This thick top frame shows on its left side

the name of the object pane that is currently displayed in the sub-window. The thick

top frame also has on its rightmost side a pin icon (“ ” or “ ”) and a close “X” icon

(see below their functionality).

While a sub-window is displaying a query pane, a pop-up menu “ ” icon will be shown

on the left side of its thick top frame (on the right side of the pin icon).

If a sub-window contains more than one object pane, the names of the object panes that

it contains are shown as tabs at the bottom of the sub-window. In case there are tabs,

the name of the currently displayed object pane is highlighted with blue text in its

corresponding tab. If the sub-window is too narrow to show all the tabs, some of the

tab names will be shortened to some initial part of the name followed by “…”.

If the viewing area is too small to show all the contents of the currently displayed object,

a horizontal and/or vertical scrollbar will be shown.

For the specific case of sub-windows that are inside a self-standing window

(click F.5.6.8), they have two differences:

• Each of them has its own toolbar. This toolbar has the same commands as the

main “Access SQL Editor” toolbar, except “ ”, “ ” and “ ”.

If you want to know more about the toolbar, you may click F.5.3.

• They do not have the pin icon (“ ” or “ ”), because they do not have the

autohide feature.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 254 of 725

The next screenshot shows the “Access SQL Editor” pane, where its object area contains

one pane-space (top-right) (click F.5.6.6) and two sub-windows (left and bottom-

right) (click F.5.6.7):

This screenshot shows several features that I presented above:

• The bottom-right sub-window only has one object pane (the “Status” pane), and

therefore it does not have tabs. The name of the currently displayed object pane

(which is “Status”) is displayed on the left side of its thick top frame. Since the

currently displayed object is not a query pane, the sub-window top frame does not

have the pop-up menu “ ” icon.

• The left sub-window has two object panes, and therefore it has two tabs

“ ” placed at its bottom. The name of the currently displayed object pane

(which is “Queries”) is displayed on the left side of its thick top frame. You can also

see that its name is highlighted with blue text in its tab. Since the currently displayed

object is not a query pane, the sub-window top frame does not have the pop-up

menu “ ” icon.

• You can see the pin “ ” icon and the close “X” icon on the right side of the thick

top frame of both sub-windows.

You can display one of the object panes that are inside the sub-window by selecting it.

You select an object pane by clicking on its tab (at the bottom of the sub-window).

If you click on the close “X” icon on the right side of the top frame, the currently

displayed object pane inside the sub-window will be closed, and another object pane

from the sub-window will be displayed. If the sub-window only contained the closed

object pane, then the sub-window will also be closed.

When a sub-window is closed or moved, its former space in the object area is occupied

by enlarging a neighboring sub-window or pane-space.

If you click on the pin icon (“ ” or “ ”) on the right side of the top frame, sub-window

autohide is toggled on and off. If the pin icon is shown as “ ”, the sub-window is

permanently displayed (autohide is off). If it is shown as “ ”, the sub-window will be

automatically hidden (autohide is on) when you select an object pane from outside of

the sub-window. My advice is you do not use autohide and leave all sub-windows

permanently displayed.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 255 of 725

You can change the relative size of neighboring sub-windows and/or pane-spaces by

doing click-and-drag (i.e., pressing the right mouse button, moving the mouse, and then

releasing) on the separating frame between them.

Finally, you can move a sub-window by doing drag-and-drop on its thick top frame.

You can also move any of the object panes hosted in the sub-window outside of it by

doing drag-and-drop on the object pane’s tab. If you want to know more about this,

you may click “F.5.6.9 How do I move an object pane, a sub-window or a self-standing

window of the “Access SQL Editor”?”.

F.5.6.8 What is a self-standing window of the “Access SQL Editor”?

A self-standing window from the “Access SQL Editor” is an application Window (as an

Excel or Word Window) that contains one or more sub-windows (click F.5.6.7) and is

used to display them in a flexible and configurable way.

Each self-standing window has a thick top frame, like sub-windows do, and unlike

pane-spaces (that have instead a list of tabs). This thick top frame has on its rightmost

side the usual minimize “ ”, maximize “ ” and close “ ” icons of Microsoft Windows.

If a self-standing window only contains one sub-window, the usual top thick frame of

the sub-window will be removed, and the name of the currently displayed object pane

will be shown on the right side of the top thick frame of the self-standing window.

The next screenshot shows a self-standing window that contains only one sub-window:

This screenshot shows several features that I presented above:

• The self-standing window has on the right side of its thick top frame the usual

minimize, maximize and close Windows icons.

• Since there is only one enclosed sub-window, the self-standing window displays

on the left side of its thick top frame “K_Efficiency_Select_Tables” as the name of

the currently displayed object pane.

• The enclosed sub-window has its own toolbar.

• The enclosed sub-window has two object panes, and therefore it has two tabs

placed at its bottom. The name of the currently displayed object pane is highlighted

with blue text in its tab.

If you click on the close “ ” icon on the right of the top frame of the self-standing

window, it will be closed, and therefore, all its sub-windows and all their object panes

will also be closed. Clicking on the minimize “ ” icon has no effect.

You can resize a self-standing window as you do with any other Microsoft Windows.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 256 of 725

Finally, you can move a self-standing window by doing drag-and-drop on its thick top

frame. You can also move any sub-window from the self-standing window by doing

drag-and-drop on its thick top frame. Also, you can move any of the object panes from

the self-standing window by doing drag-and-drop on the pane’s tab at the bottom of

its enclosing sub-window. If you want to know more about this, you may click

“F.5.6.9 How do I move an object pane, a sub-window or a self-standing window of the

“Access SQL Editor”?”.

F.5.6.9 How do I move an object pane, a sub-window or a self-standing

window of the “Access SQL Editor”?

You move an object pane (click F.5.2), a sub-window (click F.5.6.7) or a self-

standing window (click F.5.6.8) by doing drag-and-drop.

You press the left mouse button either on the object pane tab, on the sub-window top

frame, or on the self-standing window top frame. Then, without having released the

button, you move the mouse, and you will see a blue shadow area. This blue shadow

area shows the destination area where the object will be placed if releasing the mouse

button. The next screenshot shows the said blue shadow area (look at the bottom of the

image):

In addition to the blue shadow area, you will see some individual positioning icons

inside the object area of the “Access SQL Editor”. You may see some of the following

five individual positioning icons: left, right, center, top and/or bottom. The center

individual positioning icon is only shown when there is an empty area (gray

background), within the object area. See the five icons below, in the same order as just

listed:

In the screenshot above, you may see the top, bottom, and right individual positioning

icons.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 257 of 725

If you move the mouse (without releasing its button) inside a pane-space or inside a

sub-window, a combined positioning icon will be shown (in addition to the individual

ones already explained) in the center of the pane-space or sub-window. The next image

shows the combined positioning icon.

In the screenshot above you can see the combined positioning icon in the center of the

pane-space. The combined positioning icon contains five different squares: left,

right, center, top and bottom.

If you move the mouse (without releasing its button) inside an individual positioning

icon, or inside one of the five squares of a combined positioning icon, the blue

shadow area will change to show the destination area corresponding to that specific

individual positioning icon or square of a combined positioning icon.

After moving an object pane (click F.5.2), a sub-window (click F.5.6.7) or a self-

standing window (click F.5.6.8) it may change to a different object type. If you want

to know more about this, you may click F.5.6.10.

Finally, notice that you cannot directly move a pane-space. However, you can move

one of its object panes, and then move all the other ones (manually, one by one) to the

same place as the first one.

F.5.6.10 How do I convert between an object pane, a pane-space, a sub-

window, or a self-standing window in the “Access SQL Editor”?

How do I convert to a pane-space?

You convert an object pane, a sub-window or a self-standing window, into a pane-

space by moving it (click F.5.6.9) to either of the following places:

• The center individual positioning icon (click F.5.6.9) (which must correspond to

an empty area).

o For the case of an object pane or a sub-window it becomes a new pane-space

in the destination location.

o For the case of a self-standing window, each sub-window becomes a new

pane-space, all of them placed in the destination location.

• The up, down, right or left squares of the combined positioning icon (click F.5.6.9)

of an existing pane-space.

o For the case of an object pane or a sub-window, it becomes a new pane-space

in the destination location.

o For the case of a self-standing window, each sub-window becomes a new

pane-space, all of them placed in the destination location.

• The center square of the combined positioning icon (click F.5.6.9) of an existing

pane-space.

All the object pane(s) of the object being moved are added to the ones of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 258 of 725

existing pane-space.

How do I convert to a sub-window?

You convert an object pane or a self-standing window, into a sub-window by moving

it (click F.5.6.9) to either of the following places:

• The up, down, right or left individual positioning icon (click F.5.6.9).

o For the case of an object pane it becomes a sub-window in the destination

location.

o For the case of a self-standing window, each sub-window remains a sub-

window, all of them placed in the destination location.

• The up, down, right or left squares of the combined positioning icon (click F.5.6.9)

of an existing sub-window.

o For the case of an object pane it becomes a sub-window in the destination

location.

o For the case of a self-standing window, each sub-window remains a sub-

window, all of them placed in the destination location.

• The center square of the combined positioning icon (click F.5.6.9) of an existing

sub-window.

All the object pane(s) of the object being moved are added to the ones of the

existing pane-space.

How do I convert to a self-standing window?

You convert an object pane or a sub-window, into a self-standing window by moving

it (click F.5.6.9) to any place, inside or outside of the object area, that is not a

positioning icon (click F.5.6.9).

F.5.6.11 What can be a good layout for the “Access SQL Editor”?

My preferred layout for the “Access SQL Editor” is to have:

• The “Queries” pane and the “Tables” pane together in a vertical sub-window, on the

left side of the object area.

• All the query panes in a pane-space, at the top-right corner of the object area.

• The “Status” pane in a horizontal sub-window, at the bottom of the object area.

• The “Status” pane in a horizontal sub-window, at the bottom of the object area.

• A hidden “Navigation Pane” in the MS-Access window.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 259 of 725

The next screenshot shows this “Access SQL Editor” layout that I prefer:

In addition to the above layout, using self-standing windows is very useful to view

two (or more) Queries side by side. This allows you to compare their SQL code and/or

to copy/paste code between them. When you are developing new Queries that are based

on some existing Query(s), viewing them side by side, each in its own self-standing

window, will be very valuable.

F.6 What are the SQL operators I use to write my Queries?

SQL operators are the basic building blocks to write the SQL operations of a Query.

There are two groups of SQL operators:

• Consulting Operators:

They allow to analyze and process database Table data, presenting the results that

you want. Table data remains unmodified.

You may click “F.6.1 What are the SQL consulting operations?”.

• Data-changing Operators:

They allow to change your database Table data in the way you want. They do not

allow to analyze and process Table data.

You may click “F.6.2 What are the SQL data-changing operators?”.

F.6.1 What are the SQL consulting operations?

You can think of an SQL consulting operation as taking one or two input record-lists

(plus other optional operands that are not a record-lists) and producing as a result one

output record-list. There are only four SQL consulting operations:

• Select operation:

One operator that has several (some optional) clauses.

Its clauses are: “SELECT”, “DISTINCT”, “DISTINCTROW”, “TOP”, “FROM”,

“WHERE”, “GROUP BY”, “HAVING” and “ORDER BY”.

• Join operation:

Four operators, each having either one or two clauses.

The Join operators are: “,”, “INNER JOIN”, “RIGHT JOIN” and

“LEFT JOIN”. The first operator does not have the “ON” clause while the last three

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 260 of 725

Join operators have the “ON” clause.

• Union operation:

Two operators, each having only one clause.

The Union operators are: “UNION” and “UNION ALL”

• Transform operation:

One operator that has several (some optional) clauses.

Its clauses are: “TRANSFORM”, “SELECT”, “DISTINCT”, “DISTINCTROW”,

“FROM”, “WHERE”, “GROUP BY”, “ORDER BY”, “PIVOT” and “IN”.

With only four consulting operations (and eight operators), you may think that SQL

is much simpler than a conventional imperative programming language (e.g., VBA, C,

Java, ...). However, SQL is not simple, because some SQL consulting operators have

many options that make each of them much more complex than any statement from an

imperative programming language. I now briefly explain the four SQL consulting

operators:

• Select operator: “SELECT” clause plus other clauses

You can think of this operator as taking one input record-list (plus other optional

operands that are not record-lists) to produce one output record-list. Optional step

1 consists of retaining certain input records. Step 2 consists of modifying the

(retained) input record-list to produce the output record-list. There are three

modification options: a) produce one output record (changing fields and field

values) from each (retained) input record; b) produce one output record from each

group of (retained) input records; c) produce only one modified record from all

(retained) input records. After record modification, there may be up to four

additional optional steps. Optional step 3 consists of retaining some of the

aggregated output records. Optional step 4 consists of discarding duplicates to

produce distinct output records. Optional step 5 consists of ordering the output

record-list. Optional step 6 consists of retaining only the top output records.

The output record-list of a Select is therefore the (top) (ordered) (distinct) (retained)

modified (retained) input record-list, where the words between parentheses

represent optional processing steps.

If you want to know more, you may click “F.7 What is a Select operation and how

do I write it?”.

• Join operators: “,”, “INNER JOIN”, “RIGHT JOIN” and “LEFT JOIN”

You may think of each of the four Join operators as taking two input record-lists

(plus one more possible operand that is not a record-list) to produce one output

record-list. Each output record has all the field values of one record from its left

operand followed by all the field values of one record from its right operand. On

some cases, the values from one of both records may become all Nulls. The “,” is

called the Cross-Join operator. The “RIGHT JOIN” and “LEFT JOIN” are

jointly called Outer-Join operators. There is also a Full-Outer-Join operation that

does not have an MS-Access operator, but still is relevant to know.

If you want to know more, you may click “F.8 What is a Join operation and how do

I write it?”.

• Union operators: “UNION” and “UNION ALL”

You may think of each of the two Union operators as taking two input record-list

to produce one output record-list. The output record-list is the mixing of all the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 261 of 725

records from its two input record-lists. It is mandatory that the two input record-lists

have the same number of fields. The “UNION” operator discards all redundant

duplicate records in its output record-list, while the “UNION ALL” operator

preserves all duplicates. Notice that “UNION” is slower than “UNION ALL”

because the system has to check for duplicate records, and remove the redundant

ones if found, before producing the output record-list.

If you want to know more, you may click “F.9 What is a Union operation and how

do I write it?”.

• Transform operator: “TRANSFORM” clause plus other clauses

This operator creates a cross table by converting the distinct values of an

expression over its input field into output field names (i.e., columns) and

presenting the values of another expression in the corresponding cells (row x

column).

If you want to know more, you may click “F.10 What is a Transform operation and

how do I write it?”.

F.6.2 What are the SQL data-changing operators?

The three SQL data-changing operators are:

• “DELETE” operator:

This operator allows you to delete the records you want from a given database

Table.

If you want to know more, you may click “F.13.1 What is a Delete operation and

how do I write it?”.

• “INSERT” operator:

This operator allows you to insert the records you want into a given database Table.

If you want to know more, you may click “F.13.2 What is an Insert operation and

how do I write it?”.

• “UPDATE” operator:

This operator allows you to modify field values from the records that you want from

a given database Table. This operator is somehow similar to a find-and-replace

function from many applications (Word, Excel, ...).

If you want to know more, you may click “F.13.3 What is an Update operation and

how do I write it?”.

F.7 What is a Select operation and how do I write it?

A Select operation is an SQL operation performed with a Select operator (click F.7.1)

plus its corresponding operands. Therefore, a Select operation is the complete SQL

code associated to the Select operator.

A simple example of a Select operation27 is:

 SELECT Capital AS Cap_City, (Temp_Min + Temp_Max)/2 AS Temp_Average

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

27 This is the Query “F_Select_w_no_aggreg” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 262 of 725

The above SQL operation retains the input records from the Table

“T_Capital_Temps” (click F.10.5) in which the value of the field “Capital” is

different from the constant “Beijing”. For each such retained input record it

produces one modified record with a first output field named “Cap_City” having the

value of the first “SELECT” expression “Capital”, and a second output field

“Temp_Average” having the value of the second “SELECT” expression

“(Temp_Min+Temp_Max)/2”. These modified records are no further processed, and

they become the output record-list.

If you just want to know how to write and run a simple Select operation, you may

click:

• “A.4 How do I write and run my first SQL Query?”

• “A.6 How do I write and run my first Select Query with record aggregation?”

If you want to know more about a Select operation, you may click:

• “F.7.1 What is the Select operator?”

• “F.7.2 What are the three types of Select?”

• “F.7.3 What is the dataflow of a Select?”

• “F.7.4 What is the input record-list (“FROM” clause) of a Select?”

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6 What is the output record-list of a Select?”

• “F.7.7 What is the “WHERE” clause of a Select?”

• “F.7.8 What is the “DISTINCTROW” clause of a Select?”

• “F.7.9 What is the “GROUP BY” clause of a Select-group_by_aggreg?”

• “F.7.10 What is the “HAVING” clause of Select-group_by_aggreg or Select-

total_aggreg?”

• “F.7.11 What is the “DISTINCT” clause of a Select?”

• “F.7.12 How do I use “ORDER BY” to order the output records of a Select?”

• “F.7.13 What is the “TOP” clause of a Select?”

• “F.7.14 How do I write a correct (syntax) Select?”

• “F.7.15 How do I write a correct (syntax) Select-no_aggreg?”

• “F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?”

• “F.7.17 How do I write a correct (syntax) Select-total_aggreg?”

• “F.7.18 What is an SQL aggregate function?”

F.7.1 What is the Select operator?

The most basic and fundamental SQL operator is Select. It is also called “Select from

where”, to highlight that it almost always includes the clauses “SELECT”, “FROM” and

“WHERE”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 263 of 725

Select is a consulting (click F.6) operator that works over one single input record-list

(plus other optional operands that are not record-lists). It is the most complex SQL

operator because it has many optional clauses and features.

The Select operator includes the clauses “SELECT”, “DISTINCT” (optional), “TOP”

(optional), “DISTINCTROW” (optional and not advisable), “FROM”, “WHERE”

(optional), “GROUP BY” (optional), “HAVING” (optional) and “ORDER BY”

(optional).

A simplified view of writing (syntax) a Select operation is:

 SELECT [DISTINCT] [TOP int [PERCENT] [DISTINCTROW]

 Ouput-expression() 1 to n

 FROM Input-record-list

 [WHERE Where-Boolean-expression()]

 [GROUP BY Group_by-expression() 1 to k]

 [HAVING Having-Boolean-expression()]

 [ORDER BY Order_by-expression() 1 to w] ;

The clauses enclosed between square brackets “[]” are optional.

The Select operator works in the following steps:

1. Retaining some input records (optional “WHERE” clause)

2. Modifying the (retained) input record-list.

(“SELECT” clause, plus, the optional “GROUP BY” clause and/or optionally

SQL aggregate functions). This is the output record-list, unless one or more of

the following optional steps is applied.

3. Retaining some output records (optional “HAVING” clause)

4. Suppressing duplicate output records (optional “DISTINCT” clause).

5. Ordering the output record-list (optional “ORDER BY” clause)

6. Retaining the top output records.

Therefore, the output record-list from the Select operator is the (top) (ordered) (distinct)

(retained) modified (retained) input record-list, where words between parenthesis

denote optional processing steps.

I now explain these six steps in more detail:

1. Retaining some input records (optional “WHERE” clause)

Consists of retaining only some input records, while discarding the others.

The result is the retained input record-list.

The clause “FROM” (click F.7.4) indicates the input record-list.

The optional “WHERE” clause (click F.7.7) has a Boolean expression that

indicates what input records you want to retain. There is also an optional clause

“DISTINCTROW” (click F.7.8), but my advice is you do not use it.

2. Modifying the (retained) input record-list

Performed by the “SELECT” clause, plus, the optional “GROUP BY” clause

and/or optional SQL aggregate functions (click F.7.18).

Consists of modifying the (retained) input record to produce different records

and possibly a different record-list.

The result is the output record-list, still subject to the next four optional

processing steps.

The clause “SELECT” (click F.7.5) indicates the fields, field values and field

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 264 of 725

names of output records.

The optional clause “GROUP BY” (click F.7.9), combined with the optional

usage of SQL aggregate functions (click F.7.18), indicates one out of three

possible types (click F.7.2) of record modification: no aggregation, group_by

aggregation or total aggregation.

3. Retaining some output records (optional “HAVING” clause)

Consists of retaining only some output records, while discarding the others.

The Boolean expression in the optional “HAVING” (click F.7.10) clause

indicates what modified records you want to retain. This clause can only be

used when record aggregation took place in step 2.

4. Suppressing duplicate output records (optional “DISTINCT” clause)

Consists of classifying the output records in disjoint sets of records that have

the same values in all their output fields. Out of each set, only one output

record is retained, where this record only has the values of the output fields.

The optional clause “DISTINCT” (click F.7.11) indicates that the Select will

produce distinct output records.

5. Ordering the output record-list (optional “ORDER BY” clause)

Consists of ordering the output record-list.

The optional clause “ORDER BY” (click F.7.12) indicates the record order that

you want.

6. Retaining the top output records (optional “TOP” clause)

Consists of retaining a certain number or percentage of top output records. This

step only makes sense if the optional ordering from step 5 has been applied.

The optional clause “TOP” (click F.7.12.1) indicates how many (or what

percentage of) top output records you want to retain.

Therefore, the output record-list from the Select operator is the (top) (ordered) (distinct)

(retained) modified (retained) input record-list, where words between parenthesis

denote optional features.

I think that the “SELECT” name is somehow misleading, because it seems as if you

could only “select” some input fields and some input records. This is, as if you could

only use the exact input field names as the expressions in the “SELECT” clause, and

as if you could not do record aggregation. I think “CREATE” would have been a better

name for the operator, because is signals that you can “create” new output fields and

“create” new output records.

If you want to see these six steps in a dataflow diagram of a Select operation, showing

also the different clauses, you may click “F.7.3 What is the dataflow of a Select?”.

If you just want to know how to write and run a simple Select operation, you may

click “A.4 How do I write and run my first SQL Query?”.

If you just want to know how to write and run a simple Select-group_by_aggreg, you

may click “A.6 How do I write and run my first Select Query with record aggregation?”.

If you want to know more about Select, you may click:

• “F.7.2 What are the three types of Select?”

• “F.7.3 What is the dataflow of a Select?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 265 of 725

• “F.7.4 What is the input record-list (“FROM” clause) of a Select?”

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6 What is the output record-list of a Select?”

• “F.7.14 How do I write a correct (syntax) Select?”

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.7.2 What are the three types of Select?

There are three types of Select operations, depending on the usage, or not, of the

“GROUP BY” clause (click F.7.9) and/or of SQL aggregate functions (click F.7.18):

• “Select-no_aggreg”

It is a Select operation without a “GROUP BY” clause and without SQL aggregate

functions.

• “Select-group_by_aggreg”

It is a Select operation with a “GROUP BY” clause.

• “Select-total_aggreg”

It is a Select operation without a “GROUP BY” clause but with SQL aggregate

functions.

Some relevant characteristics of the three types of Select operations are:

• “Select-no_aggreg”

• It does not have a “GROUP BY” clause, nor SQL aggregate functions:

• It does not perform record aggregation.

• It produces one output record for each (retained) input record.

• The values of each output field are the result of an expression built over the

“Input-field-names”.

• “Select-group_by_aggreg”

• It has a “GROUP BY” clause.

• It performs record aggregation based on the “GROUP BY” expressions.

• It may have (and usually does have) SQL aggregate functions.

• It classifies the (retained) input records in disjoint record groups and produces

only one output record from each record group.

• The values of output fields are computed by expressions built over the

“GROUP BY” expressions and over SQL aggregate functions over expressions

over the fields of the input record-list.

• “Select-total_aggreg”

• It does not have “GROUP BY” clause but it has SQL aggregate functions.

• It performs total record aggregation.

• It produces only one28 output record for its whole input record-list. The values

in the output fields are computed using SQL aggregate functions over

expressions over the fields of the input record-list.

28 If the input record-list is empty, then it produces zero output records.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 266 of 725

If you want to know more about the output record-list of each of the three types of

Select operation, you may click “F.7.2 What are the three types of Select?”.

The following table compares the three types of Select operations in terms of their

having, or not, a “GROUP BY” clause and their having, or not, SQL aggregate

functions:

 Has SQL aggregate functions?

 No Yes

Has a

“GROUP BY”

clause?

No Select-no_aggreg Select-total_aggreg

Yes Select-group_by_aggreg

A simple example of a Select-no_aggreg29 operation is:

 SELECT Capital AS Cap_City, (Temp_Min + Temp_Max)/2 AS Temp_Average

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

This retains the records from the Table “T_Capital_Temps” (click F.10.5) in which

the value of the field “Capital” is different from the constant “Beijing”, and for

each such retained input record it produces one output record with the value of the

“Capital” input field, and a field called “Temp_Average” with the value of the

average of the fields “Temp_Min” and “Temp_Max” from each corresponding input

record.

A simple example of a Select-group_by_aggreg30 operation is:

 SELECT Capital AS Cap_City, Avg((Temp_Min + Temp_Max)/2) AS Temp_Average

 FROM T_Capital_Temps

 GROUP BY Capital

This creates disjoint groups of records, where all the records in the same group

produce the same value of the “GROUP BY” expression “Capital”. It then

aggregates all of the input records of each disjoint group into one output record. In

each output record, it places the average of the expression “(Temp_Min +

Temp_Max)/2” computed over all the records in each of the disjoint groups.

A simple example of a Select-total_aggreg31 operation is:

 SELECT Avg((Temp_Min + Temp_Max)/2) AS Temp_Average

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

This retains the records from the Table “T_Capital_Temps” (click F.10.5) in which

the value of the field “Capital” is different from the constant “Beijing”, and for all

such retained input records it produces one single output record with a field called

“Temp_Average” with the value of the average of the expression “(Temp_Min +

Temp_Max)/2” from all such input records.

29 This is the Query “F_Select_w_no_aggreg” from the “Company_Database.accdb” file.
30 This is the Query “F_Select_w_group_by_aggreg” from the “Company_Database.accdb” file.
31 This is the Query “F_Select_w_total_aggreg” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 267 of 725

If you want to know more about SQL aggregate functions, you may click “F.7.18 What

is an SQL aggregate function?”.

If you just want to know how to write and run a simple Select operation, you may

click “A.4 How do I write and run my first SQL Query?”.

If you just want to know how to write and run a simple Select-group_by_aggreg, you

may click “A.6 How do I write and run my first Select Query with record aggregation?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.7.3 What is the dataflow of a Select?

The picture below represents the dataflow for the three types of Select operations

(click F.7.3). The Select-no_aggreg is on the left, the Select-group_by_aggreg is in

the middle, and the Select-total_aggreg is on the right.

As was shown in F.7.1, the Select dataflow has the following six processing steps:

1. Retaining some input records (optional “WHERE” clause)

2. Modifying the (retained) input record-list.

(“SELECT” clause, plus, the optional “GROUP BY” clause and/or optionally

SQL aggregate functions). This is the output record-list, unless one or more of

the following optional steps is applied.

3. Retaining some output records (optional “HAVING” clause)

4. Suppressing duplicate output records (optional “DISTINCT” clause).

5. Ordering the output record-list (optional “ORDER BY” clause)

6. Retaining the top output records.

You may see that each step is delimited in the next picture with a horizonal dashed

line, and a label on the leftmost side. You may also see that the first step is the same

regardless of the type of Select operation, while the other steps have some differences

between the three types of Select operation.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 268 of 725

The picture representing the dataflow of the Select operator is:

The blue rectangular boxes with a folded corner (e.g., the ones labelled “Modified
Records”) represent record-lists. I indicate inside each box some of the characteristics

of the fields of the record-list, such as the expressions that determine the field values of

each record.

The green dented boxes (e.g., “WHERE”) represent “retaining” clauses that retain

some records, while discarding the others. These boxes do not modify the records

themselves: each retained record remains exactly the same as it was before being

processed by the green dented box. When applicable, I indicate inside each box the

Boolean expression associated to the “retaining” clause.

The pink trapezoidal boxes (e.g., “DISTINCT”) represent “aggregating” clauses that

classify input records in disjoint groups, producing one aggregated record from each

group. These boxes modify the record-list and may also modify the record values (e.g.,

when aggregating values from each “GROUP BY” group of records).

• The box labelled “GROUP BY” performs record aggregation based on its

associated “GROUP BY” expressions “Group_by-exp()” 1 to k.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 269 of 725

• The box labelled “Total record aggregation” performs total record aggregation,

this is, only one modified record is produced from all (retained) input records.

• The box labelled “DISTINCT” produces distinct modified records, which consists

of grouping them when the values of all their output fields are the same (i.e., when

the results of all their “SELECT” expressions “Output-exp()” 1 to n are the

same), and producing only one record out of each group of duplicate modified

records.

The yellow rectangular boxes labelled “ORDER BY” represent the two variants

(depending on the usage of “DISTINCT”) of the “ORDER BY” ordering clause. These

boxes do not modify the records themselves: the records remain exactly the same as

they were before being processed by the yellow rectangular box. When applicable, I

indicate inside each box the expressions used to order the records.

When the background of any of the previous boxes is shaded in gray it means that the

box is irrelevant. This happens in the dataflow for the “total_aggreg” Select operation,

placed on the right. The reason is that this type of Select operation aggregates all input

records into only one record (which can be later reduced to zero records by the

“HAVING” clause). This makes it irrelevant to apply, or not, the “TOP”, “DISTINCT”

and/or “ORDER BY” clauses.

The thick light blue arrowed lines represent the dataflow across the six steps of the

Select operator. The dataflow starts from the blue rectangular box with a folded corner

labeled “Input Records” at the top, to the similar boxes labeled “Output Record(s)” at

the bottom. Notice how these thick light blue arrowed lines depict dataflow detours to

go around each of the several optional steps (optional clauses).

The green dented box at the top, labelled “WHERE”, represents the (optional) dataflow

through the “WHERE” clause, that is performed equally in the three types of Select

operation. From that point on, each of the three vertical dataflows is specific to each

of the three types of Select operations. The dataflow for the “no_aggreg” expression

is on the left, the one for the “group_by_aggreg” is in the middle, and the one for the

“total_aggreg” is on the right.

The green text “1 to v Input-field-name” represents the “v” “Input-field-

names” in the input record-list to the Select operation. The green text “Ifs” is a

shorthand for “Input-field-names”.

The brown text “Output-field-names” represents the “n” output field names of the

“n” fields in the output record-list.

The turquoise text “IOfs” is a shorthand for “Input/Output-field-names”. These

are the “v” Input-field-names” and the “n” “Output-field-names”.

The purple text “1 to k Group_by-exp()” represents “k” “GROUP BY” expressions

written after the “GROUP BY” keyword. Each of these expressions is built over the

“Input-field-names”. The purple text “Gr_by()” is a shorthand to represent the

“GROUP BY” expressions.

The brown text “1 to n Output-exp()” represents the “n” “SELECT” expressions

written after the “SELECT” keyword. These “SELECT” expressions are used to

compute the “n” field values of each output record.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 270 of 725

The black text “1 to w Order_by-exp()” represents the 1 to w the “ORDER BY”

expressions written after the “ORDER BY” keyword. These “ORDER BY” expressions

are used to order the (distinct) (retained) modified records.

The terms between the parentheses of both the “n” “SELECT” expressions “Output-

exp()”, and the “w” “GROUP BY” expressions “Order_by-exp()”, are the

elements used to build them, by combining these elements with functions (excluding

SQL aggregate), value operators and constants.

Notice how the elements used to build the “Output-exp()” and the “Order_by-

exp()” expressions are different depending on the type of Select operation. You may

see the corresponding elements for the “Output-exp()” by looking into the three

blue rectangular boxes aligned horizontally near the top of the picture: the three boxes

labelled “Modified Record(s)”.

You may see the corresponding elements for the “Order_by-exp()” by looking into

the three green dented boxes aligned horizontally at the bottom of the picture: the

three boxes labelled “ORDER BY” and having “Order_by-exp()” inside them.

Notice further how there are two sets of three “ORDER BY” green dented boxes. The

ones without a previous “DISTINCT” box have “Order_by-exp()” expressions

inside them, and I have just described them. The ones with a previous “DISTINCT”

box have “Output-exp*()” expressions inside them. This means that when

“DISTINCT” is used, the “ORDER BY” clause can only contain exactly the same

“SELECT” expressions “Output-exp()” that do not include any “Output-field-

name”. This is why I added the “*” to indicate that there is this additional restriction.

Therefore, the term “Output-exp*()” denotes an “Output-exp()” that does not

include any “Output-field-name”.

The fuchsia text “SQL_agg_func()” represents any of the SQL aggregate functions

(click F.7.18). The fuchsia text “SAF()” is a shorthand for “SQL_agg_func()”.

The black text “exp()” represents any given value expression.

The thin green arrowed lines allow to track where the “v” “Input-field-names”

can be used as expression elements.

The thin purple arrowed lines allow to track where the “k” “GROUP BY” expressions

“Group_by-exp()” can be used as expression elements.

The thin brown arrowed lines allow to track where the “n” “SELECT” expressions

“Output-exp()”can be used as expression elements.

I think you will find very illustrative to match this dataflow picture with the explanation

that I provide in “F.7.6 What is the output record-list of a Select?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.7.4 What is the input record-list (“FROM” clause) of a Select?

In a Select operation, the mandatory “FROM” clause indicates the input record-list, as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 271 of 725

follows:

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

The input record-list of the Select operation is written exactly the same as in a

Transform operation, but in a different way from the Join and Union operators.

The input record-list is written after the “FROM” keyword. It can be a Table name, a

Query name, a Join operation, a Select operation or a Union operation.

The rules for parentheses and the “AS” clause depend on what is the input record-list

after the “FROM” clause, as follows:

• Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to

assign to it a new name, but it cannot have both: you cannot enclose it in

parentheses, and also have an “AS” clause. This writing rule is the same as the

one of the Join operation.

• Select operation or Union operation

It must be enclosed between parentheses. It may also have an “AS” clause to

assign to it a name. This writing rule is different from the ones of the Join and

the Union operations.

• Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one of the Join operation.

• Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same as the one of the Join operation.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

F.7.5 What are the output fields (“SELECT” clause) of a Select?

In a Select operation (click F.7.1), the mandatory “SELECT” clause determines the

output fields, the output field names, the output field order, the output data/field

types and the output field values, as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(exp-elements) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(exp-elements) [AS Output-field-name_n]] }

Each “SELECT” expression “Output-exp_i()” produces one output field.

Therefore, the number of output fields is the number of “SELECT” expressions. In

the code above, there are “n” output fields.

Notice that the number “n” of output fields is totally independent32 of the number of

32 Unless you are using “SELECT *”, which I advise you do not to use.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 272 of 725

input fields (this is, the number of “Input-field-names”). For example, if the input

record-list has 3 fields, there can be 1, 3, 11 or any other number of output fields. The

number “n” of output fields is only determined33 by the number of “SELECT”

expressions “Output-exp()”.

What are the output field names of a Select?

If after any given “SELECT” expression, you write the keyword “AS” followed by a

name, this will be the name of this output field.

Otherwise, if you are not using the “AS” clause, you then have two cases:

• If the “SELECT” expression consists exactly of a single input field name, then the

output field name will be that input field name.

• If the “SELECT” expression is anything other than exactly a single input field

name, MS-Access will assign to it the output field name “ExprXXXX”, where “XXXX”

is a four-digit integer number.

Notice that for the first bullet point, if there are more than one “SELECT” expression

that consist exactly of the same single input field name, then the output field name

for one of these output fields will be that input field name, and for each of the other

ones MS-Access will assign the output field name “ExprXXXX”, where “XXXX” is a four-

digit integer number.

Notice also that if you use an input field name as an output field name, you must

qualify all the usages of that input field name to avoid ambiguity. This is, if you write

an input field name after the “AS” keyword, you must qualify all the usages of that

input field name to avoid ambiguity. The ambiguity would arise from using the same

name to denote both an input and an output field that are different (remind we are

using the “AS” clause). Recall that qualifying a field name (click C.2.2) consists of

prefixing it by the name of the record-list where it belongs with an intermediate period

“.” character.

What is the output field order of a Select?

The output field order corresponds to the order of the “SELECT” expressions

“Output-exp_i()” 1 to n.

What are the output data/field types of a Select?

The data/field type of each output field “i” is the one of is corresponding “SELECT”

expression “Output-exp_i()”, for “i” from 1 to n.

What are the output fields, field names, field order and data/field types of a

“SELECT *”?

As an exception to the rules above, for the specific case of a Select-no_aggreg (i.e., a

Select without “GROUP BY” clause, and without SQL aggregate functions) it is

possible to replace the list of “SELECT” expressions by just one asterisk character:

“SELECT *”. I advise you do not use this option (click K.4.9).

If in spite of my advice you use “SELECT *”, then the output fields, the output field

names, the output field order and the output data types will be exactly the same as

33 Unless you are using “SELECT *”, which I advise you do not to use.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 273 of 725

the input ones. If the input record-list is a Query name, the output field order will be

the field order of the input Query in “SQL View” (and not the one in “Datasheet View”

nor the one in “Design View”). If the input record-list is a Table name, the output

field order and the output field names will be ones of the input Table in “Design
View” (and not the ones in “Datasheet View”).

What are the output field values and/or output record-list of a Select?

If you want to know what are the output field values and/or what is the output record-

list of a Select, you may click “F.7.6 What is the output record-list of a Select?”.

F.7.6 What is the output record-list of a Select?

You may click:

• “F.7.6.1 What are the output field values of a Select-no_aggreg?”

• “F.7.6.2 What are the output field values of a Select-group_by_aggreg?”

• “F.7.6.3 What are the output field values of a Select-total_aggreg?”

• “F.7.6.4 What are the output records of a Select?”

• “F.7.6.5 How many output records does a Select produce?”

If you rather want to know what are the output fields of a Select, you may click

“F.7.5 What are the output fields (“SELECT” clause) of a Select?”.

F.7.6.1 What are the output field values of a Select-no_aggreg?

A Select-no_aggreg is a Select without the “GROUP BY” (click F.7.9) clause and

without SQL aggregate functions (click F.7.18).

In a Select-no_aggreg, the output field values are determined by the “SELECT” clause

as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(INOUT-field-names) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(INOUT-field-names) [AS Output-field-name_n]]}

In a Select-no_aggreg each (retained) input record “In_j” (that has “v” input fields),

produces one modified record “Mod_j”, with “n” output fields, where “n” is the

number of “SELECT” expressions.

For each and every modified record “Mod_j” the value of its output field “i” is the

result of the “SELECT” expression “Output-exp_i()” computed over the “v” input

field values of the input record “In_j”, that produces the modified record “Mod_j”.

In the “SELECT” clause above you can see that each “Output-exp_i()” is built over

“INOUT-field-names”, this is, over the 1 to v “Input-field-names” and/or over

the 1 to n “Output-field-names” (as long as you do not create a circular reference,

click F.7.14). Since an “Output-field-name-i” is just a shorthand for its

corresponding “Output-exp_i()”, once expanded, each “Output-exp_i()” is built

only over the 1 to v “Input-field-names”.

For the specific case of the “Select-no_aggreg”, you can write just “*” instead of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 274 of 725

list of “Output-exps()”. If you do this, the list of output field values of modified

record “Mod_j” is exactly the same as the list of “v” input field values of its

corresponding (retained) input record “In_j”. My advice is you do not use an “*”,

because it is less readable than the explicit list of input field names, and it can also

create some problems (click K.4.9).

The output field values in the modified records will not be later changed along the

Select processing. However, some of the modified records may be discarded by the

optional “DISTINCT” (click F.7.11) and/or “TOP” (click F.7.13) clauses. Discarded

modified records will obviously not appear in the output record-list of the Select.

If you want to know about related concepts, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6.2 What are the output field values of a Select-group_by_aggreg?”

• “F.7.6.3 What are the output field values of a Select-total_aggreg?”

• “F.7.6.4 What are the output records of a Select?”

• “F.7.6.5 How many output records does a Select produce?”

F.7.6.2 What are the output field values of a Select-group_by_aggreg?

A Select-group_by_aggreg is a Select with the “GROUP BY” (click F.7.9) clause.

In a Select-group_by_aggreg, the output field values are determined by the

“SELECT” and “GROUP BY” clauses as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

 ...

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

In a Select-group_by_aggreg, each of the (retained) input records is assigned to one

disjoint group “GIn_j”, and one modified (i.e., aggregated) record “Mod_j” is

produced out of each “GIn_j” group. The (retained) input records in each disjoint

group “GIn_j” are the ones that produce exactly the same results in all the 1 to k

“GROUP BY” expressions “Group_by-exp(Input-field-names)”.

For each and every modified record “Mod_j” the value of its “i” field is the result of

“SELECT” expression “Output-exp_i()” computed over the “v” field values of all

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 275 of 725

the input records in the group “GIn_j”, that produces the modified record “Mod_j”.

Each “SELECT” expression can be built over the following elements:

• Other “Output-field-names” (as long as you do not create a circular

reference, click F.7.14).

• Any number of exactly the same “GROUP BY” expressions computed over the

field values of any of the input records in group “GIn_j”.

Notice that all the input records in each group must (as I indicated slightly

above) produce the same values in all the 1 to k “GROUP BY” expressions.

Therefore, we can compute the result of each “GROUP BY” expression over

any of the input records in group “GIn_j” and we would always get the same

result.

• Any number of SQL aggregate functions “SQL_agg_func()”, each computed

over its specific expression over the “INOUT-field-names”. This is, over the

1 to v “Input-field-names” and/or over the 1 to n “Output-field-

names” (as long as you do not create a circular reference, nor a nested SQL

aggregate function, click F.7.14). Since an “Output-field-name_x” is just a

shorthand for its corresponding “SELECT” expression, once expanded, each

“exp_oij()” above is built only over the 1 to v “Input-field-names”.

The expression that is the argument of each SQL aggregate function is

computed over the “v” field values of each and every of the input records in

the group “GIn_j”. Each computation produces a given result, so the overall

result is a group of values, each value coming from each input record in the

group “GIn_j”. The SQL aggregate function produces one value out of one

group of values. For example, the “Max()” SQL aggregate function returns

the maximum value in the group of values. Therefore, each SQL aggregate

function computed over expressions over the “Input-field-names” of the

records in each group “GIn_j” will be computed over the corresponding group

of values and will return one specific value for the input record group

“GIn_j”.

Therefore, each “GROUP BY” expression and each SQL aggregate function will

return one coherent value from each group of input records “GIn_j”. These are the

values used to compute each “SELECT” expression “Output-exp_i()”.

In short, for each and every modified record “Mod_j”, produced from input record

group “GIn_j” the value of its field “i” is the result of “SELECT” expression

“Output-exp_i()” applied over elements univocally computed from the records in

the group “GIn_j”.

The output field values in the modified records will not be later changed along the

Select processing. However, some of the modified records may be discarded by the

optional “HAVING” (click F.7.10), “DISTINCT” (click F.7.11) and/or “TOP”

(click F.7.13) clauses. Discarded modified records will obviously not appear in the

output record-list of the Select.

Be aware that an expression “exp_oij()” that is the argument of a given SQL

aggregate function cannot contain any SQL aggregate function. This cannot happen in

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 276 of 725

a direct manner, nor through a reference to another “Output-field-name”.

If you want to know about related concepts, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6.1 What are the output field values of a Select-no_aggreg?”

• “F.7.6.3 What are the output field values of a Select-total_aggreg?”

• “F.7.6.4 What are the output records of a Select?”

• “F.7.6.5 How many output records does a Select produce?”

F.7.6.3 What are the output field values of a Select-total_aggreg?

A Select-total_aggreg is a Select without the “GROUP BY” (click F.7.9) clause but

with SQL aggregate functions (click F.7.18).

In a Select-total_aggreg, the output field values are determined by the “SELECT”

clause as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

In a Select-total_aggreg, only one modified (i.e., aggregated) record “Mod” is

produced out of all the (retained) input records.

For this modified record “Mod the value of its “i” field is the result of “SELECT”

expression “Output-exp_i()” computed over the “v” field values of all the input

records. Each “SELECT” expression can be built over the following elements:

• Other “Output-field-names” (as long as you do not create a circular

reference, click F.7.14).

• Any number of SQL aggregate functions “SQL_agg_func()” each having as

argument its specific expression over the “INOUT-field-names”. This is,

over the 1 to v “Input-field-names” and/or over the 1 to n “Output-

field-names” (as long as you do not create a circular reference, nor a nested

SQL aggregate function, click F.7.14). Since an “Output-field-name_x” is

just a shorthand for its corresponding “SELECT” expression, once expanded,

each “exp_oij()” above is built only over the 1 to v “Input-field-names”.

The expression that is the argument of each SQL aggregate function is

computed over the “v” field values of each and every of the input records. Each

computation produces a given result, so the overall result is a group of values,

each value coming from each input record. The SQL aggregate function

produces one value out of one group of values. For example, the “Max()” SQL

aggregate function returns the maximum value in the group of values.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 277 of 725

Therefore, each SQL aggregate function computed over expressions over the

“Input-field-names” of all the input records will be computed over the

corresponding group of values and will return one specific value for all the

input records.

Therefore, each SQL aggregate function will return one coherent value from all the

(retained) input records. These are the values used to compute each “SELECT”

expression “Output-exp_i()”.

In short, the value of each field “i” of the only modified “Mod” record is the result of

“SELECT” expression “Output-exp_i()” computed over elements univocally

computed from all the (retained) input records.

The output field values in the modified records will not be later changed along the

Select processing. However, some of the modified records may be discarded by the

optional “HAVING” (click F.7.10) clause. Discarded modified records will obviously

not appear in the output record-list of the Select.

If you want to know about related concepts, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6.1 What are the output field values of a Select-no_aggreg?”

• “F.7.6.2 What are the output field values of a Select-group_by_aggreg?”

• “F.7.6.4 What are the output records of a Select?”

• “F.7.6.5 How many output records does a Select produce?”

F.7.6.4 What are the output records of a Select?

The output record order is unknown, unless you use the optional “ORDER BY” clause

(click F.7.12).

The output records of a Select operation are the result of a sequence of processing

steps (click F.7.1), many of them optional, starting from the input records, as follows.

Input record-list

The input record-list of the Select operation is written right after the “FROM” keyword

(click F.7.4).

The “Input-field-names” are all the “v” input field names from the input record-

list.

Step 1. Retaining some input records (optional)

If you use the optional clause “WHERE” (click F.7.7), it retains some input records,

while discarding the others. The retained input records are the ones that produce True

in the Boolean expression “Where-Boolean-exp()” of the “WHERE” clause.

Step 2. Modifying the (retained) input record-list

The modification performed on the (retained) input record-list depends on the type of

Select operation (click F.7.2), as follows:

• Select-no_aggreg

This is when you do not use the optional “GROUP BY” (click F.7.9) clause, nor

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 278 of 725

SQL aggregate functions (click F.7.18).

In this case, one modified record will be produced from each (retained) input

record.

• Select-group_by_aggreg

This is when you use the optional “GROUP BY” (click F.7.9) clause.

In this case, each (retained) input record is assigned to one disjoint group, and one

modified (i.e., aggregated) record is produced out of each group. The (retained)

input records in each disjoint group are the ones that produce exactly the same

results in all the “GROUP BY” expressions “Group_by-exp(Input-field-

names)” 1 to k.

• Select-total_aggreg

This is when you do not use the optional “GROUP BY” clause (click F.7.9), but you

do use SQL aggregate functions (click F.7.18).

In this case, only one modified (i.e., aggregated) record is produced out of all the

(retained) input records.

Step 3. Retaining some modified records (optional)

If you use the optional clause “HAVING” (click F.7.10), it retains some modified

records, while discarding the others. The “HAVING” clause cannot be used in a Select-

no_aggreg.

The retained modified records are the ones that return True in the Boolean expression

“Having-Boolean-exp()”.

Step 4. Generating the distinct (retained) modified record-list (optional)

If you use the optional clause “DISTINCT” (click F.7.11) only one modified record

will be produced from each set of duplicate modified records. These are the distinct

(retained) modified records.

Step 5. Ordering the (distinct) (retained) modified record-list (optional)

If you use the optional clause “ORDER BY” (click F.7.12), the record-list from the

previous step will be ordered according to the list of “ORDER BY” expressions

“Order_by-exp()”. If you do not use the “ORDER BY” clause, the order of output

records will be unknown.

Step 6. Retaining top (ordered) (retained) modified records (optional)

If you use the optional “TOP” clause (click F.7.13) this will retain the top “int+” (or

top “int+” percent if you use “PERCENT”) output records. This only makes sense if

you are also using the “ORDER BY” clause, because otherwise the record order is

unknown, and therefore, the top “x” fields are unpredictable.

Output record-list

Therefore, the output record-list from the Select operator is the (top) (ordered) (distinct)

(retained) modified (retained) input record-list, where words between parenthesis

denote optional features.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 279 of 725

If you want to know about related concepts, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.7.6.1 What are the output field values of a Select-no_aggreg?”

• “F.7.6.2 What are the output field values of a Select-group_by_aggreg?”

• “F.7.6.3 What are the output field values of a Select-total_aggreg?”

• “F.7.6.5 How many output records does a Select produce?”

F.7.6.5 How many output records does a Select produce?

Knowing how many records a Select operation produces is very useful when

debugging your Queries, and also for better understanding how a Select works.

The number of output records of a Select operation is the result of a sequence of

processing steps (click F.7.1), many of them optional, starting from the number of

input records, as follows.

Step 1:

• If you use “WHERE” (click F.7.7), the number of records is the number of input

records that produce True in the “WHERE” Boolean expression “Where-

Boolean-exp()”.

• If you do not use “WHERE”, the number of records is the number of input records.

Step 2: The number of records depends on the type of Select (click F.7.2) as follows:

• If it is a Select-no_aggreg, the number of records from the previous step is

unchanged.

• If it is a Select-group_by_aggreg, the number of records is the number of

different arrays of “k” results produced by the records from the previous step in

all the 1 to k “GROUP BY” expressions “Group_by-exp(Input-field-

names)”.

• If it is a Select-total_aggreg, the number of records is the lesser between one and

the number of records from the previous step.

Step 3:

• If you use “HAVING” (click F.7.10), the number records is the number of records

from the previous step that produce True in the “HAVING” Boolean expression

“Having-Boolean-exp()”. Recall that “HAVING” cannot be used in a Select-

no_aggreg.

• If you do not use “HAVING”, the number of records from the previous step is

unchanged.

Step 5:

• If you use “DISTINCT” (click F.7.11), the number records is the number of

records from the previous step that have different values in all fields.

• If you do not use “HAVING”, the number of records from the previous step is

unchanged.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 280 of 725

Step 6:

• If you use “TOP int” (click F.7.13), the number of records is the lesser between

the number of records from the previous step and “int+” records.

• If you use “TOP int PERCENT” (click F.7.13), the number of records is “int+”

percent of the number of records from the previous step.

• If you use neither “TOP”, nor “TOP PERCENT” (click F.7.13), the number of

records is the number of records from the previous step.

Notice that I have written “int+” above, instead of “int”, because in case the record

in ordered position “int” (or “int” percent) has the same values in all the

“ORDER BY” expressions as other “q” records, then all the “q” records will also be

output records from the “TOP” clause.

If you want to know about related concepts, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?

• “F.7.6.1 What are the output field values of a Select-no_aggreg?”

• “F.7.6.2 What are the output field values of a Select-group_by_aggreg?”

• “F.7.6.3 What are the output field values of a Select-total_aggreg?”

• “F.7.6.4 What are the output records of a Select?”

F.7.7 What is the “WHERE” clause of a Select?

In a Select operation (click F.7.1), the optional “WHERE” clause indicates what are the

retained input records, as follows:

 WHERE Where-Boolean-exp(Input-field-names)

The “WHERE” keyword is followed by a Boolean expression. This “WHERE” Boolean

expression is built by combining the “Input-field-names” with functions

(excluding SQL aggregate), value operators and constants.

The “WHERE” clause retains the input records whose field values produce True in the

“WHERE” Boolean expression.

If a “WHERE” Boolean expression produces Null, the Query works normally. The input

records producing Null are not retained.

If a “WHERE” Boolean expression produces an exception (e.g., divide by zero), on most

cases the Query will crash.

Very important to highlight that if the input record-list is a Table name, no records will

be deleted from the Table, and the Table remains unmodified. This is so because all

the SQL consulting operators work over an image of Table’s records, and not over the

Table records themselves. Remind that the Select operator is a consulting SQL operator

(i.e., one that can only consult Tables) and it is not a data-changing SQL operator. If

you want to actually change your Table’s records, you may click “F.6.2 What are the

SQL data-changing operators?”.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 281 of 725

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

F.7.8 What is the “DISTINCTROW” clause of a Select?

My advice is you do not use the “DISTINCTROW” optional clause in Select operations

because it is not compatible with SQL Server syntax.

You can get the same functionality by using the “DISTINCT” or “UNION” clauses (as

required) in the enclosed SQL operation of the Select operation.

If you still want to use it, the “DISTINCTROW” clause discards duplicate records from

the input record-list. Discarding duplicate records means leaving just one input record

from each set of duplicate input records, while non-duplicate input records stay the

same. Therefore, the retained input record-list will have no duplicate records.

Remind that two records are considered duplicate if they have exactly the same values

when comparing all their fields values, field to field. Remind that for the purpose of

discarding duplicate records Nulls are considered the same value.

You cannot use both the “DISTINCT” and “DISTINCTROW” clauses in the same

Select operation.

The “DISTINCTROW” clause works the same for the three types of Select operations

(click F.7.2).

Remind that the retained input record-list, or retained input records, are the list of

input records retained for further processing after applying the “WHERE” and/or the

“DISTINCTROW” clauses. The input records that are not retained for further

processing are discarded.

Very important to highlight that if the input record-list is a Table name, no records will

be deleted from the Table, and the Table remains unmodified. This is so because all

the SQL consulting operators work over an image of Table’s records, and not over the

Table records themselves. Remind that the Select operator is a consulting SQL operator

(i.e., one that can only consult Tables) and it is not a data-changing SQL operator. If

you want to actually modify your Table’s records, you may click “F.6.2 What are the

SQL data-changing operators?”.

F.7.9 What is the “GROUP BY” clause of a Select-group_by_aggreg?

In a Select-group_by_aggreg (click F.7.2) operation, the mandatory “GROUP BY”

clause indicates how to classify the (retained) input records into disjoint groups, as

follows:

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

As you may see, the “GROUP BY” keyword is followed by a list of expressions

“Group_by-exp(Input-field-names)” 1 to k. Each such “GROUP BY”

expression is built by combining the “Input-field-names” with functions

(excluding SQL aggregate), value operators and constants.

Using “GROUP BY” causes that each (retained) input record is assigned to one disjoint

group, and one modified (i.e., aggregated) record is produced out of each group. The

(retained) input records grouped in each disjoint group are the (retained) input

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 282 of 725

records that produce exactly the same results in all the “GROUP BY” expressions

“Group_by-exps()” 1 to k.

The “GROUP BY” expressions are extremely important, because they are, in a Select-

group_by_aggreg, some of the elements that can be used to build the “SELECT”

expressions, as well as the “HAVING” Boolean expression and the “ORDER BY”

expressions (click F.7.16).

You cannot assign an identifier (with an “AS” clause) to individual “GROUP BY”

expressions. Therefore, you have to write them as such when you use them as elements

to build the “SELECT” expressions (click F.7.5), the “HAVING” Boolean expression

(click F.7.10) and/or the “ORDER BY” expressions (click F.7.16). This may be

cumbersome when a “GROUP BY” expression is large, but there is no way to avoid

this.

If a “GROUP BY” expression produces Null, the Query works normally. Records

producing Null in a “GROUP BY” expression will be considered as producing the

same valid value in this expression and will be assigned to a group according to the

normal grouping rules.

If a “GROUP BY” expression produces an exception (e.g., divide by zero), on most

cases the Query will crash.

You can only use the optional “GROUP BY” clause in a Select-group_by_aggreg

(click F.7.2). In a Select-no_aggreg or in a Select-total_aggreg you cannot use the

“GROUP BY” clause.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

F.7.10 What is the “HAVING” clause of Select-group_by_aggreg or

Select-total_aggreg?

In a Select-group_by_aggreg or Select-total_aggreg (click F.7.2) operations, the

optional “HAVING” clause indicates the retained modified records, as follows:

 HAVING Having-Boolean-exp(having-elements)

As you may see, the “HAVING” keyword is followed by a Boolean expression. This

“HAVING” Boolean expression is built by combining some elements (called

“having-elements” above) with functions (excluding SQL aggregate), value

operators and constants. The specific “having-elements” that can be used to build

the “HAVING” Boolean expression depend on the type of Select operation, as I explain

further below.

The “HAVING” clause retains the modified records that produce True in the

“HAVING” Boolean expression.

If a “HAVING” Boolean expression produces Null, the Query works normally. The

modified records producing Null are not retained.

If a “HAVING” Boolean expression produces an exception (e.g., divide by zero), on

most cases the Query will crash.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 283 of 725

You can use the “HAVING” and/or “DISTINCT” and/or “TOP” clauses together in a

Select operation. Remind that if you use “HAVING” and/or “DISTINCT” plus “TOP”,

the “TOP” clause will be applied last (click F.7.1).

You can only use the optional “HAVING” clause in either a Select-group_by_aggreg

or in a Select-total_aggreg (click F.7.2). In the Select-no_aggreg you cannot use the

“HAVING” clause.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

What are the “having-elements” in a Select-group_by_aggreg?

In a Select-group_by_aggreg, the “having-elements” used to build the “HAVING”

Boolean expression are the “GROUP BY” expressions, and any number of SQL

aggregate functions each having as argument its specific expression over the “Input-

field-names”.

You cannot assign an identifier (with an “AS” clause) to individual “GROUP BY”

expressions. Therefore, you have to write them as such when you use them as elements

to build the “HAVING” Boolean expression. This may be cumbersome when a

“GROUP BY” expression is large, but there is no way to avoid this.

Summarizing, the way in which you can write the “HAVING” clause in a Select-

group_by_aggreg is:

 HAVING Having-Boolean-exp(Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names)))

What are the “having-elements” in a Select-total_aggreg?

In a Select-total_aggreg, the “having-elements” used to build the “HAVING”

Boolean expression are any number of SQL aggregate functions each having as

argument its specific expression over the “Input-field-names”.

Summarizing, the way you can write the “HAVING” clause in a Select-total_aggreg is:

 HAVING Having-Boolean-exp(SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names)))

F.7.11 What is the “DISTINCT” clause of a Select?

In a Select operation (click F.7.1), the optional “DISTINCT” clause produces one

distinct (i.e., with unique field values) record out of each set of (retained) modified

records that have the same field values, as follows:

 SELECT DISTINCT [TOP int [PERCENT]] [DISTINCTROW or ALL]

If you write the optional “DISTINCT” clause, the modified (retained) input records are

grouped in disjoint sets, such that the records in each set have exactly the same values

in all their output fields. From each such set, only one record is produced. This only

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 284 of 725

the output field values. Therefore, the record-list after the “DISTINCT” clause will

have no duplicate records.

Remind that for the purpose of discarding duplicate records Nulls are considered the

same value.

Notice that the records resulting from the “DISTINCT” clause only have the output

field values. All other information existing in the modified records (e.g., the values of

the input fields, or the values of the “Group_by-exp()” expressions) is lost. This has

an impact on the “ORDER BY” clause as follows:

• If you use the “DISTINCT” clause, each expression used in the “ORDER BY”

clause must be exactly the same as one of the “SELECT” expressions that do not

contain any “Output-field-name”. In other words, each “Order_by-exp-

i()” must be exactly the same as one of the “Output-exp-x()” that do not

contain any “Output-field-name”. If you want to overcome this restriction, you

can just remove the “ORDER BY” clause from this Select operation and enclose it

in another Select operation (without the “DISTINCT” clause), in which you can

write the “ORDER BY” expressions that you want.

• If you do not use the “DISTINCT” clause, the “ORDER BY” expressions can be

the corresponding ones of the type of Select operation used. If you want to know

more about this, you may click “F.7.12 How do I use “ORDER BY” to order the

output records of a Select?”.

Notice that using “DISTINCT” makes your Queries slower because the system has to

check for duplicate records, and remove them if found, before producing the output

record-list. If you want to know more, you may click “K.7.2.1 Why should I use

“DISTINCT”, “UNION” and “ORDER BY” only if needed?”.

You can use the “HAVING” and/or “DISTINCT” and/or “TOP” clauses together in a

Select operation. Remind that if you use “HAVING” and/or “DISTINCT” plus “TOP”,

the “TOP” clause will be applied last (click F.7.1).

You cannot use both the “DISTINCT” and “DISTINCTROW” clauses in the same

Select operation.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

F.7.12 How do I use “ORDER BY” to order the output records of a

Select?

In a Select operation (click F.7.1), the optional “ORDER BY” clause indicates the

ordering of the (distinct) (retained) modified records, as follows:

 ORDER BY Order_by-exp-1(order-elements) [DESC]

 [, ...

 , Order_by-exp-w(order-elements) [DESC]]

The order of (distinct) (retained) modified records is unknown unless you use the

optional “ORDER BY” clause.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 285 of 725

As you may see in the SQL code above, the “ORDER BY” keyword is followed by a

list of expressions “Order_by-exp()”. These “ORDER BY” expressions are built by

combining some elements (called “order-elements” above) with functions

(excluding SQL aggregate), value operators and constants. The specific “order-

elements” that can be used to build the “ORDER BY” expressions depend on the type

of Select operation, and on the usage of the “DISTINCT” clause, as I explain further

below.

Each output record is ordered on the result that its fields produce on the first

“ORDER BY” expression (the leftmost one). In case there are groups of output records

whose field values produce the same result in the first “ORDER BY” expression, then

the records in each such group are ordered by their result from the second

“ORDER BY” expression. In case there are groups of output records with the same

value in the first and second expressions, then the records in each such group are

ordered by the value of the third expression. As a general rule, in case there are groups

of output records with same value in the first “z” “ORDER BY” expressions, then the

records in each such group are ordered by the value of the “z+1” “ORDER BY”

expression.

The ordering of the records is done, by default, in ascending order (smallest higher up)

of the value of each of the “ORDER BY” expressions. In case you want to use

descending order (largest first) for one (or more) expressions, then you need to add the

optional keyword “DESC” after “ORDER BY” expression that you want. If you want

to know more about the way specific data/field types are treated in

ascending/descending order, you may click “F.7.12.1 How are the different data/field

types ordered by the “ORDER BY” clause?”.

If an “ORDER BY” expression produces Null, the Query will work normally. Records

producing Null in one or more “ORDER BY” expressions are therefore ordered

according to the normal ordering rules, taking into account that Null is considered the

lowest value for any data type (click F.7.12.1).

If an “ORDER BY” expression produces an exception (e.g., divide by zero), on most

cases the Query will crash.

The elements used to write the “ORDER BY” expressions depend firstly on the usage,

or not, of the optional “DISTINCT” clause, as follows:

• If you use the “DISTINCT” clause, each “ORDER BY” expression must be

exactly the same as one of the “SELECT” expressions. In other words, each

“ORDER BY” expression must be exactly the same as one of “SELECT”

expressions. As an additional restriction, the “SELECT” expressions that are used

as “ORDER BY” expressions cannot contain any “Output-field-name”.

If you want to overcome this overall restriction on the “ORDER BY” expressions,

you can just remove the “ORDER BY” clause from this Select operation and enclose

it in another Select operation (without the “DISTINCT” clause), where you can

write the “ORDER BY” expressions that you want.

If you want to overcome the additional restriction above, you can replace each

“Output-field-name” that is used in the “SELECT” expression (that you want

to use as an “ORDER BY” expression) by the “SELECT” expression corresponding

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 286 of 725

to that “Output-field-name”.

• If you do not use the “DISTINCT” clause, each “ORDER BY” expression is built

combining “order-elements” with functions (excluding SQL aggregate), value

operators and constants. What “order-elements” can be used depends, secondly,

on the type of Select operation (click F.7.2), as follows:

o In a Select-no_aggreg, the “order-elements” can only be the “Input-

field-names”.

o In a Select-group_by_aggreg, the “order-elements” can be:

▪ The exact same “GROUP BY” expressions

▪ SQL aggregate functions each having as argument its specific expression

over the “Input-field-names”.

You cannot assign an identifier (with an “AS” clause) to individual

“GROUP BY” expressions. Therefore, you have to write them as such when

you use them as elements to build the “ORDER BY” expressions. This may be

cumbersome when a “GROUP BY” expression is large, but there is no way to

avoid this.

o In a Select-total_aggreg, the “order-elements” can be SQL aggregate

functions each having as argument its specific expression over the “Input-

field-names”.

The reason why “DISTINCT” has this “strange” effect over “ORDER BY” is because

using “DISTINCT” resembles doing a “GROUP BY” over the results of “SELECT”

expressions. Doing this aggregates duplicate records, and therefore, destroys all the

record’s information (i.e., “GROUP BY” expressions as well as SQL aggregate

functions “SQL_agg_func()” over expressions over “Input-field-names”)

keeping only the results of the “SELECT” expressions. This is why you can only

“ORDER BY” over the “SELECT” expressions (that do not use any “Input-field-

names”). What is not so clear is why you can only use the “SELECT” expressions as

such, and you cannot use an expression built over them.

I want to highlight that whenever there is any type of record aggregation (i.e.,

“GROUP BY”, “total_aggreg” and/or “DISTINCT” record aggregation), the elements

you can use in the “ORDER BY” expressions are the ones having the same value for

all the records in each group.

Using “ORDER BY” in nested Selects makes your Query slower because the system

has to order each of the successive output record-lists34. Since record order is irrelevant

during SQL processing, it only makes sense to write an “ORDER BY” clause in the

outermost Select operation of a Query. If you want to know more, you may click

“K.7.2.1 Why should I use “DISTINCT”, “UNION” and “ORDER BY” only if

needed?”.

The “ORDER BY” clause works the same for the three types of Select operations

34 The Query optimizer will most likely fix this, but it is a bad practice to write inefficient SQL code and

trust that the Query optimizer will fix it.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 287 of 725

(click F.7.2), although using it in a Select-total_aggreg does not make any sense.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

F.7.12.1 How are the different data/field types ordered by the “ORDER BY”

clause?

The way values from the different data/field type are ordered by the “ORDER BY”

clause is as follows:

• Null

Null is lower than any valid value from any data type. Therefore, Null is the lowest

element of all.

If you configure ascending (or “A to Z”) ordering, all Null appear at the top.

• String and Short Text
Text strings are ordered using alphabetical ordering. In alphabetical ordering each

character is assigned an ordering-value. Text strings are ordered according to

the ordering-value of their first character. If the first “n” characters of two text

strings have the same ordering-value, then they are ordered according to the

ordering-value of their “n+1” character.

Leading space characters are treated like any other character. However, trailing

space characters are ignored for ordering purposes. If string A is a (case insensitive)

prefix of string B, then string A is lower than string B. Consequently, the zero-length

text string is the lowest text string because it is a prefix of any other text string (see

above).

Any all-space string is also the lowest text string because trailing space characters

are ignored for ordering purposes. Therefore, an all-space string is ordered as if it

were the zero-length string.

The lowest valued characters are (in increasing value) single quote “'”, hyphen “ - ”,

space “ ” Chr(32), no-break space “ ” Chr(160), horizontal tab “ ” Chr(9), and line-

feed “ ” Chr(10). Notice they are all invisible characters.

The next higher valued characters are “!”, “"”, “#”, “$”, “%”, “&”, “(”, “)”, “*”, “+”,

“,”, “.” and “/”, listed in increasing value.

The next higher valued characters are number characters “0” to “9”, in increasing

value. Notice that the string “11” will be sorted ahead of the string “2”, and this is

different from the resulting sorting if they were numbers.

The next higher valued characters are letter characters, having increasing value in

alphabetical order. This is, character “a” has a lower order-value than character “b”,

“b” has lower value than “c” and successively until “z”. MS-Access is case

insensitive for both comparison operators and string ordering. Therefore, the

order-value of a character is the same in upper case and lower case. Each non-

English character (“á”, “à”, “â”, ...) has its own specific order-value. Non-English

characters have consecutive values in respect to their equivalent English character

(and therefore, are sorted consecutively). Non-English characters have a higher

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 288 of 725

order-value than their English equivalent, except “ç” that has a lower order-value

than “c”.

If you configure ascending (or “A to Z”) order, Null will appear at the top. Next,

zero-length strings and all-space strings mixed together. Next, strings starting with

“'”, hyphen “-”, space “ ” Chr(32), no-break space “ ” Chr(160), horizontal tab “ ”

Chr(9), and line-feed “ ” Chr(10), in this order. Next, strings starting with special

characters. Next, strings starting with number characters “0” to “9”. Next, strings

starting with letter characters in alphabetical order, case insensitive, “a/A” to “z/Z”.

Strings starting with non-English letters go lower than the strings starting with the

equivalent English letter (with some exceptions). An example of exceptions is that

strings starting with “ç” go higher than strings starting with “c”.

Remind that the string “11” will be sorted higher than string “2”, and this is different

from the resulting sorting if they were numbers.

• Date and Date/Time

Are ordered according to their equivalent numeric value (click D.4.5).

If you configure ascending order, Null will appear at the top, followed by oldest

date-time, and most future date-time will appear at the bottom.

• Boolean and Yes/No

True/Yes/On or ticked is lower than False/No/Off or unticked, according to their

equivalent numeric value (click D.4.7). If you configure ascending order, Null will

appear at the top, followed by True/Yes/On or ticked, followed by False/No/Off or

unticked that will appear at the bottom.

• Integer, Long, Single, Double, Currency and Integer, Long Integer, Single,

Double, Currency

Are ordered according to their numeric value. If you configure ascending order, Null

will appear at the top, followed by the most negative value (negative value with

highest absolute value) and the largest positive value will appear at the bottom.

F.7.13 What is the “TOP” clause of a Select?

In a Select operation (click F.7.1), the optional “TOP” clause indicates what are the top

output records (discarding the others), as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

The optional “TOP int” clause retains the first “int+” output records, according to

the “ORDER BY” ordering criterion, while the others are discarded.

If you add the optional “PERCENT” keyword, then “TOP int PERCENT” retains the

first “int+” percent records, according to the “ORDER BY” ordering criterion. Notice

that records whose percentage is fractional, but lower than “int” percent will be

retained. For example, if you have ten ordered records, and you indicate “1

PERCENT”, this will retain one record (the first one). If you rather indicate “11

PERCENT”, this will retain two records.

Notice that I indicate “int+” and not “int” because more than “int”, or “int” percent,

records will be produced in case there is a tie according to the “ORDER BY” criterion.

If according to the “ORDER BY” criterion there is a tie between the “intth”, or the “intth

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 289 of 725

percent”, record and one or more subsequent records, all the tied records will be

produced.

The parameter “int” must be a positive integer constant: if “int” is an expression or

a zero or negative constant, it is a syntax error and you will not be able to save the Query.

For the case of “TOP int PERCENT”, the parameter “int” must be an integer

constant lesser than or equal 100: if it is greater than 100, it is a syntax error and you

will not be able to save the Query.

If the parameter “int” is a fractional constant, MS-Access will remove the period “.”,

and consider the result an integer number. For example, if you write “0.5”, it will be

considered “5”; if you write “0.50”, it will be considered “50”; if you write “1.2”, it

will be considered “12”. This may be an MS-Access bug.

You can use the “HAVING” and/or “DISTINCT” and/or “TOP” clauses together in a

Select operation. Remind that if you use “HAVING” and/or “DISTINCT” plus “TOP”,

the “TOP” clause will be applied last (click F.7.1).

You can use the “TOP” clause without the “ORDER BY” clause. However, this does

not make much sense because the record order would be unknown, and you would

basically get the “TOP” records from an unknown order.

You can use the “TOP” clause in a Select-total_aggreg. However, this does not make

much sense because a Select-total_aggreg only produce one (or none) record, to

getting the top out of one does not seem very useful.

Very important to highlight that if the input record-list is a Table name, no records will

be deleted from the Table, and the Table remains unmodified. This is so because all

the SQL consulting operators work over an image of Table’s records, and not over the

Table records themselves. Remind that the Select operator is a consulting SQL operator

(i.e., one that can only consult Tables) and it is not a data-changing SQL operator. If

you want to actually modify your Table’s records, you may click “F.6.2 What are the

SQL data-changing operators?”.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.7.14.

F.7.14 How do I write a correct (syntax) Select?

For all Select operations it is possible to use “Output-field-names” in the

“SELECT” expressions “Output-exp()” 1 to n (as long as you do not create a

circular reference, nor a nested SQL aggregate function, see below).

Using an “Output-field-name” in this way allows to reuse the expression from one

output field to write the “SELECT” expression of another output field.

Creating a circular reference is when you are assigning an output field name to itself,

or when you are assigning output field names in a circular way (e.g., “Name_1” is used

in the expression for “Name_2”, “Name_2” is used in the expression for “Name_3” and

“Name_3” is used in the expression for “Name_1”).

Creating a nested SQL aggregate function is when the argument of an SQL aggregate

function contains another SQL aggregate function. For example, the following

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 290 of 725

“SELECT” expressions creates a nested SQL aggregate function:

 SELECT Sum(Rainfall) AS Rain, Avg(Rain+Humid) AS Combined

Since the output field name “Rain” represents “Sum(Rainfall)”, where “Sum()”

is an SQL aggregate function, using “Rain” inside the SQL aggregate function “Avg()”

creates a nested SQL aggregate function.

Notice also that “Output-field-names” cannot be used in the “HAVING”

expression, nor in the “ORDER BY” expressions.

The outermost Select operation of a Query may be enclosed between parentheses.

Depending on what type (click F.7.2) of Select operation you want to write, you may

click:

• “F.7.15 How do I write a correct (syntax) Select-no_aggreg?”

• “F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?”

• “F.7.17 How do I write a correct (syntax) Select-total_aggreg?”

How do I nest Selects?

The Select operations can be nested, so you may write a Select operation as the input

record-list of another Select operation. Each Select operation that is an input record-list

must be enclosed in parentheses. The following nested Select operation35 is correct:

 SELECT City AS Non_capital_cities

 FROM

 (

 SELECT City

 FROM

 (SELECT City

 FROM T_Subsidiary_sites

 WHERE City <> "Washington")

 WHERE City <> "Paris"

)

 WHERE City <> "Madrid"

Notice I have colored matching parentheses for your convenience.

F.7.15 How do I write a correct (syntax) Select-no_aggreg?

A Select-no_aggreg is when you do not use the “GROUP BY” clause (click F.7.9), nor

any SQL aggregate function (click F.7.18). You may click:

• “F.7.15.1 What is a syntax-example of a Select-no_aggreg?”

• “F.7.15.2 What are the formal rules (syntax) to write a Select-no_aggreg?”

35 This is the Query “F_Select_nested” in file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 291 of 725

F.7.15.1 What is a syntax-example of a Select-no_aggreg?

An illustrative example of a fairly complete Select-no_aggreg36 is:

 SELECT TOP 80 PERCENT "City_" & Capital AS Out_fld

 , Len(Out_fld) + Temp_Min AS Nonsense

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

 ORDER BY 5*Temp_Max, Exp(Temp_Min) DESC

The optional “DISTINCT” clause is not used, to allow using more flexible

“ORDER BY” expressions.

The optional “TOP” clause is used, in its “PERCENT” variant.

There are two “SELECT” expressions:

• The two “SELECT” expressions are assigned an output field name using the

optional “AS” clause. The two field names are “Out_fld” and “Nonsense”.

• The “SELECT” expression for output field “Out_fld” uses as an element the

input field name “Capital”.

• The “SELECT” expression for output field “Nonsense” uses as elements the

output field name “Out_fld” and the input field name “Temp_Min”.

The input record-list in the “FROM” clause is:

• The Table name “T_Capital_temps” (click F.10.5).

The elements of the “WHERE” Boolean-expression are:

• The input field name “Capital”.

The two “ORDER BY” expressions are:

• “5*Temp_Max” in ascending (default) order. This expression uses as an element the

input field name “Temp_Max”.

• “Exp(Temp_Min)” using the keyword “DESC” to indicate descending order. This

expression uses as an element the input field name “Temp_Min”.

• Notice how the “ORDER BY” expressions may be totally unrelated to the

“SELECT” expressions.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

36 This is the Query “F_Select_w_no_aggreg_Syn” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 292 of 725

F.7.15.2 What are the formal rules (syntax) to write a Select-no_aggreg?

A correct Select-no_aggreg has to be written in the following way:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(INOUT-field-names) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(INOUT-field-names) [AS Output-field-name_n]]}

[FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr]}]

[WHERE Where-Boolean-exp(Input-field-names)]

[ORDER BY Order_by-exp-1() [DESC]

 [, ...

 , Order_by-exp-w() [DESC]]]

The words in bold font are SQL keywords. The elements enclosed in square brackets

“[]” are optional, and you may use each of these elements or not, depending on your

desired result from the Select operation. The elements separated with “or” are

alternative options. Each list of alternative options for an element is enclosed between

curly braces “{}” when the element is not optional and between square brackets “[]”

when the element is optional. Some curly braces “{}” and square brackets “[]” are

colored just to make it easier to see which ones are paired.

The elements in gray text are the ones that I advise you do not use:

• I advise you do not use the optional “DISTINCTROW” clause because it is not

compatible with SQL server, and because you can get its same functionality in an

easy way. If you want to know more, you may click “F.7.8 What is the

“DISTINCTROW” clause of a Select?”.

• When the list of “SELECT” expressions “Output-exps()” is exactly the same

as the list of all input field names, you can replace the list of “SELECT”

expressions by just one “*”. My advice is you do not use an “*”, because it is less

readable than the explicit list of input field names and also because it can create

some problems (click K.4.9).

• I advise you do not use the optional “ALL” clause because it does not have any

effect.

All the terms above with a trailing “-exp” are expressions. The terms enclosed

between the parentheses of each expression are the elements that can be used to build

that specific expression, by combining these elements with functions (excluding SQL

aggregate), value operators and constants.

All the terms above with a trailing “-opr” are SQL operations.

The “Input-field-names” are the 1 to v input field names from the input record-

list.

The “INOUT-field-names” are the 1 to v “Input-field-names” and/or the 1 to n

“Output-field-names”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 293 of 725

“F.11.2 What are the SQL color codes used in this Guide?”.

I will now explain how to write the different clauses of the Select-no_aggreg in the

order they appear in the SQL code, because I think this is more convenient for syntax

purposes.

How do I write the “SELECT” clause?

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(INOUT-field-names) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(INOUT-field-names) [AS Output-field-name_n]]}

After the “SELECT” keyword (and after the optional clauses “DISTINCT”, “TOP”

and/or “DISTINCTROW”, in case you are using them) you write the “SELECT”

expressions “Output-exp()” separated with commas “,”. Each “SELECT”

expression that you write produces one output field.

Each “Output-exp()” is built over the “Input-field-names” and/or over the

“Output-field-names” (as long as you do not create a circular reference,

click F.7.14).

Although you can use “Output-field-names” in the “SELECT” expressions,

remind you cannot use them in the “ORDER BY” expressions.

If you add after a “SELECT” expression the keyword “AS” followed by a name, this

will be the name of this output field. If you do not add this “AS” clause, then you have

two cases:

• If the “Output-exp_i()” consists exactly of a single input field name, then the

output field name will be that input field name.

• Otherwise, MS-Access will assign to that “Output-exp_i()” the output field

name “ExprXXXX”, where “XXXX” is a four-digit integer number.

If you want to know more about the “SELECT” clause, you may click “F.7.5 What are

the output fields (“SELECT” clause) of a Select?”.

How do I write the “DISTINCT”, “TOP” and “DISTINCTROW” clauses?

The optional “DISTINCT” clause is written by adding the “DISTINCT” keyword after

the “SELECT” keyword.

If you want to know more about the “DISTINCT” clause, you may click “F.7.11 What

is the “DISTINCT” clause of a Select?”.

The optional “TOP” clause is written by adding “TOP int” after the “SELECT”

keyword. If you use the percent variant, then it is written by adding “TOP int

PERCENT” after the “SELECT” keyword. In case “DISTINCT” is used, then the “TOP”

clause is written after the “DISTINCT” keyword. The text “int” stands for a positive

integer constant. For the “PERCENT” variant, “int” cannot be greater than 100.

If you want to know more about the “TOP” clause, you may click “F.7.13 What is the

“TOP” clause of a Select?”.

I advise you do not use the optional “DISTINCTROW” clause. If in spite of my advice

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 294 of 725

you want to use it, you just write the keyword “DISTINCTROW” after the “SELECT”

keyword (or after the “TOP” clause, in case it is used). Remind that you cannot use both

“DISTINCT” and “DISTINCTROW” in the same Select operation.

If you want to know more about the “DISTINCTROW” clause, you may click

“F.7.8 What is the “DISTINCTROW” clause of a Select?”.

How do I write the “FROM” clause?

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

Right after the “FROM” keyword you write the input record-list. The input record-list

can be a Table name or a Query name or a Join operation or a Select operation or a

Union operation. Notice this is different from the writing rules (syntax) of the Join

operation.

Let me clarify the rules for parentheses and the “AS” clause, depending on what is the

input record-list after the “FROM” keyword:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to

assign to it a new name, but it cannot have both: you cannot enclose it in

parentheses, and also have an “AS” clause. This writing rule is the same as the

one of the Join operation.

• A Select operation or Union operation

It must be enclosed between parentheses. It may also have an “AS” clause to

assign to it a name. This writing rule is different from the one of the Join and

Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one of the Join operation.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same as the one of the Join operation.

If you want to know more about the “FROM” clause, you may click “F.7.4 What is the

input record-list (“FROM” clause) of a Select?”.

How do I write the “WHERE” clause?

 WHERE Where-Boolean-exp(Input-field-names)

The “Where-Boolean-exp()” expression that you write after the “WHERE” keyword

is built by combining the input field names with functions (excluding SQL aggregate),

value operators and constants.

If you want to know more about the “WHERE” clause, you may click “F.7.7 What is the

“WHERE” clause of a Select?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 295 of 725

How do I write the “ORDER BY” clause?

Each of the expressions “Order_by-exp-i()” that you write after the “ORDER BY”

keyword depends on the usage, or not, of the optional “DISTINCT” clause, as follows:

If you use the “DISTINCT” clause,

then each expression used in the “ORDER BY” clause must be exactly the same as one

of the “SELECT” expressions. The resulting “ORDER BY” clause would then be:

 ORDER BY Output-exp_x()-not-having-Output-field-names [DESC]

 [, ...

 , Output-exp_y()-not-having-Output-field-names [DESC]]

Moreover, you can only use the “SELECT” expressions “Output-exp_i()” that do

not contain any “Output-field-name”.

If you do not use the “DISTINCT” clause,

then each “Order_by-exp-i()” “ORDER BY” expression is built over the “Input-

field-names”. The resulting “ORDER BY” clause would then be:

 ORDER BY Order_by-exp_1(Input-field-names) [DESC]

 [, ...

 , Order_by-exp_w(Input-field-names) [DESC]]

If you want to know more about the “ORDER BY” clause, you may click “F.7.12 How

do I use “ORDER BY” to order the output records of a Select?”.

Final remarks

The outermost Select-no_aggreg operation of a Query may be enclosed between

parentheses.

You probably have noticed that the “FROM” clause at the beginning of this section is

enclosed between square brackets, which implies that the “FROM” clause is optional.

This is not a typo, and it is actually correct. The following Select operation37 without a

“FROM” clause is valid:

 SELECT "New York" AS City, "Manhattan" AS District ;

This operation produces one record with the constant field values indicated in the

“SELECT” expressions. Although this Select operation is correct, producing only one

record with constant field values is of very limited use.

Finally, if you want to see the dataflow diagram of the three types of Select operations,

you may click “F.7.3 What is the dataflow of a Select?”.

F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?

A Select-group_by_aggreg is when you use the “GROUP BY” clause (click F.7.9).

You may click:

• “F.7.16.1 What is a syntax-example of a Select-group_by_aggreg?”

• “F.7.16.2 What are the formal rules (syntax) to write a Select-group_by_aggreg?”

37 This is the Query “F_Select_without_FROM” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 296 of 725

F.7.16.1 What is a syntax-example of a Select-group_by_aggreg?

An illustrative example of a fairly complete Select-group_by_aggreg38 is:

 SELECT TOP 80 PERCENT

 Len("City_" & Capital) AS Out_fld

 , 2 * Len(Out_fld) AS Nonsense_2

 , 3 * Sum(3 + Temp_Max) AS Nonsense_3

 , 4 * (1+(9+Temp_min) + Max(5*Temp_Max)) AS Nonsense_4

 , 5 * Avg(Len(Out_fld)) AS Nonsense_5

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

 GROUP BY "City_" & Capital, 9+Temp_Min

 HAVING (Len("City_" & Capital) < 2) OR (Min(3*Temp_Min) < 0)

 ORDER BY 5*(9+Temp_Min) DESC, 7+StDev(Temp_Min+Temp_Max)

The optional “DISTINCT” clause is not used, to allow using more flexible

“ORDER BY” expressions.

The optional “TOP” clause is used, in its “PERCENT” variant.

There are five “SELECT” expressions:

• The five “SELECT” expressions are assigned an output field name using the

optional “AS” clause. The five output field names are “Out_fld”,

“Nonsense_2”, “Nonsense_2” , “Nonsense_3” , “Nonsense_4” and

“Nonsense_5”.

• The “SELECT” expression for output field “Out_fld” uses as an element the first

“GROUP BY” expression “"City_" & Capital”.

• The “SELECT” expression for output field “Nonsense_2” uses as an element the

output field name “Out_fld”.

• The “SELECT” expression for output field “Nonsense_3” uses as an element the

SQL aggregate function “Sum()” over an expression that uses as an element the

input field name “Temp_Max”.

• The “SELECT” expression for output field “Nonsense_4” uses as an element the

second “GROUP BY” expression “9+Temp_min”. It also uses as another element

the SQL aggregate function “Max()” over an expression that uses as an element

the input field name “Temp_Max”.

• The “SELECT” expression for output field “Nonsense_5” uses as an element the

SQL aggregate function “Avg()” over an expression that uses as an element the

output field name “Out_fld”.

The input record-list in the “FROM” clause is:

• The Table name “T_Capital_temps” (click F.10.5).

The elements of the “WHERE” Boolean-expression are:

• The input field name “Capital”.

38 This is the Query “F_Select_w_group_by_aggreg_Syn” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 297 of 725

The two “GROUP BY” expressions are:

• “"City_" & Capital”, which uses as an element the input field name

“Capital”.

• “9+Temp_Min”, which uses as an element the input field name “Temp_Min”.

The elements of the “HAVING” Boolean-expression are:

• The first “GROUP BY” expression “9+Temp_min”.

• The SQL aggregate function “Min()” over an expression that uses as an element

the input field name “Temp_Min”.

The two “ORDER BY” expressions are:

• “5*(9+Temp_Min)” using the keyword “DESC” to indicate descending order. This

expression uses as an element the second “GROUP BY” expression

“9+Temp_min”.

• “7+StDev(Temp_Min+Temp_Max)” in ascending (default) order. This expression

uses as an element the SQL aggregate function “StDev()” over an expression that

uses as elements the two input field names “Temp_Min” and “Temp_Max”.

• Notice how the “ORDER BY” expressions may be totally unrelated to the

“SELECT” expressions.

Let me point out a few relevant issues:

• If you remove the parentheses enclosing the “GROUP BY” expression

“9+Temp_min” from the fourth “SELECT” expression, the Query will produce a

syntax error. This is because without the parentheses, the evaluation order of the

expression evaluates first “1+9”, and this causes that the “GROUP BY” expression

is not recognized.

• If you add the “SELECT” expression “Count(Nonsense_3)”, the Query will

produce a syntax error. This is because you are using the “Sum()” SQL aggregate

function as an argument of the “Count()” SQL aggregate function, through the

output field name “Nonsense_3”. You are then nesting SQL aggregate functions,

which is not allowed.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 298 of 725

F.7.16.2 What are the formal rules (syntax) to write a Select-

group_by_aggreg?

A correct Select-group_by_aggreg has to be written in the following way:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr]}

 [WHERE Where-Boolean-exp(Input-field-names)]

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

 [HAVING Having-Boolean-exp(Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names)))]

 [ORDER BY Order_by-exp-1() [DESC]

 [, ...

 , Order_by-exp-w() [DESC]]]

The words in bold font are SQL keywords. The elements enclosed in square brackets

“[]” are optional, and you may use each of these elements or not, depending on your

desired result from the Select operation. The elements separated with “or” are

alternative options. Each list of alternative options for an element is enclosed between

curly braces “{}” when the element is not optional and between square brackets “[]”

when the element is optional. Some curly braces “{}” and square brackets “[]” are

colored just to make it easier to see which ones are paired.

The elements in gray text are the ones I advise you do not use:

• I advise you do not use the optional “DISTINCTROW” clause because it is not

compatible with SQL server, and because you can get its same functionality in an

easy way. If you want to know more, you may click “F.7.8 What is the

“DISTINCTROW” clause of a Select?”.

• I advise you do not use the optional “ALL” clause because it does not have any

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 299 of 725

effect.

All the terms above with a trailing “-exp” are expressions. The terms enclosed

between the parentheses of each expression are the elements that can be used to build

that specific expression, by combining these elements with functions (excluding SQL

aggregate), value operators and constants.

All the terms above with a trailing “-opr” are SQL operations.

The “Input-field-names” are all the input field names from the input record-list.

The “INOUT-field-names” are the 1 to v “Input-field-names” and/or the 1 to n

“Output-field-names”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

I will now explain how to write the different clauses of the Select-group_by_aggreg in

the order they appear in the SQL code, because I think this is more convenient for syntax

purposes.

How do I write the “SELECT” clause?

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

After the “SELECT” keyword (and after the optional clauses “DISTINCT”, “TOP”

and/or “DISTINCTROW”, in case you are using them) you write the “SELECT”

expressions “Output-exp()” separated with commas “,”. Each “SELECT”

expression that you write produces one output field.

Each “Output-exp()” is built over the following elements:

• “Output-field-names” 1 to n

This is, other output field names (as long as you do not create a circular

reference, click F.7.14).

• “Group_by-exp(Input-field-names) 1 to k

This is, any number of exactly the same “GROUP BY” expressions

(click F.7.9).

• “SQL_agg_func(exp(INOUT-field-names))”

This is, any number of SQL aggregate functions (click F.7.18) each having as

argument its specific expression over the “Input-field-names” and/or over

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 300 of 725

the “Output-field-names” (as long as you do not create a circular

reference, nor a nested SQL aggregate function, click F.7.14).

Although you can use “Output-field-names” in the “SELECT” expressions,

remind that you cannot use them in the “HAVING” expressions, nor in the

“ORDER BY” expressions.

You cannot assign an identifier (with an “AS” clause) to individual “GROUP BY”

expressions. Therefore, you have to write them as such when you use them as elements

to build the “SELECT” expressions. This may be cumbersome when a “GROUP BY”

expression is large, but there is no way to avoid this.

When you use the “GROUP BY” expressions as part of a larger “SELECT”

expression, I strongly advice that you write each of them between parentheses to

prevent that MS-Access rejects the larger “SELECT” expression due to a different

evaluation order than the one you expected (see the example in F.7.16.1).

If you add after a “SELECT” expression the keyword “AS” followed by a name, this

will be the name of this output field. If you do not add this “AS” clause, then you have

two cases:

• If the “Output-exp_i()” consists exactly of a single input field name, then the

output field name will be that input field name.

• Otherwise, MS-Access will assign to that “Output-exp_i()” the output field

name “ExprXXXX”, where “XXXX” is a four-digit integer number.

Be aware that an expression “exp_o()” that is the argument of a given SQL aggregate

function cannot contain any SQL aggregate function. This cannot happen in a direct

manner, nor through a reference to another “Output-field-name”.

If you want to know more about the “SELECT” clause, you may click “F.7.5 What are

the output fields (“SELECT” clause) of a Select?”.

How do I write the “DISTINCT”, “TOP” and “DISTINCTROW” clauses?

The optional “DISTINCT” clause is written by adding the “DISTINCT” keyword after

the “SELECT” keyword.

If you want to know more about the “DISTINCT” clause, you may click “F.7.11 What

is the “DISTINCT” clause of a Select?”.

The optional “TOP” clause is written by adding the “TOP int” after the “SELECT”

keyword. If you use the percent variant, then it is written by adding “TOP int

PERCENT” after the “SELECT” keyword. In case “DISTINCT” is used, then the “TOP”

clause is written after the “DISTINCT” keyword. The symbol “int” stands for a

positive integer constant, not greater than 100 for the percent variant.

If you want to know more about the “TOP” clause, you may click “F.7.13 What is the

“TOP” clause of a Select?”.

I advise you do not use the optional “DISTINCTROW” clause. If in spite of my advice

you want to use it, you just write the keyword “DISTINCTROW” after the “SELECT”

keyword (or after the “TOP” clause, in case it is used). Remind that you cannot use both

“DISTINCT” and “DISTINCTROW” in the same Select operation.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 301 of 725

If you want to know more about the “DISTINCTROW” clause, you may click

“F.7.8 What is the “DISTINCTROW” clause of a Select?”.

How do I write the “FROM” clause?

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

Right after the “FROM” keyword you write the input record-list. The input record-list

can be a Table name or Query name, or a Join operation, Select operation or Union

operation. Notice this is different from the writing rules (syntax) of the Join operation.

Let me clarify the rules for parentheses and the “AS” clause, depending on what is the

input record-list after the “FROM” keyword:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to

assign to it a new name, but it cannot have both: you cannot enclose it in

parentheses, and also have an “AS” clause. This writing rule is the same as the

one of the Join operation.

• A Select operation or Union operation

It must be enclosed between parentheses. It may also have an “AS” clause to

assign to it a name. This writing rule is different from the one of the Join and

Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one of the Join operation.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same as the one of the Join operation.

If you want to know more about the “FROM” clause, you may click “F.7.4 What is the

input record-list (“FROM” clause) of a Select?”.

How do I write the “WHERE” clause?

 WHERE Where-Boolean-exp(Input-field-names)

The “Where-Boolean-exp()” expression that you write after the “WHERE” keyword

is built by combining the input field names with functions (excluding SQL aggregate),

value operators and constants.

If you want to know more about the “WHERE” clause, you may click “F.7.7 What is the

“WHERE” clause of a Select?”.

How do I write the “GROUP BY” clause?

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

Each of the expressions “Group_by-exp-i(Input-field-names)” that you write

after the “GROUP BY” keyword is built by combining the input field names with

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 302 of 725

functions (excluding SQL aggregate), value operators and constants.

If you want to know more about the “GROUP BY” clause, you may click “F.7.9 What

is the “GROUP BY” clause of a Select-group_by_aggreg?”.

How do I write the “HAVING” clause?

 HAVING Having-Boolean-exp(Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names)))

The “Having-Boolean-exp()” expression in the “HAVING” clause is built over the

elements:

• “Group_by-exp(Input-field-names)” 1 to k

This is, any number of exactly the same “GROUP BY” expressions

(click F.7.9).

• “SQL_agg_func(exp(Input-field-names))”

This is, any number of SQL aggregate functions (click F.7.18) each having as

argument its specific expression over the “Input-field-names”.

Notice that these are the same elements you can use for the expressions in the

“ORDER BY” clause when “DISTINCT” is not used.

You cannot assign an identifier (with an “AS” clause) to individual “GROUP BY”

expressions. Therefore, you have to write them as such when you use them as elements

to build the “HAVING” expression. This may be cumbersome when a “GROUP BY”

expression is large, but there is no way to avoid this.

When you use the “GROUP BY” expressions as part of a larger “HAVING”

expression, I strongly advise you write each of them between parentheses to prevent

that MS-Access rejects the larger “HAVING” expression due to a different evaluation

order than the one you expected (see the example in F.7.16.1).

If you want to know more about the “HAVING” clause, you may click “F.7.10 What is

the “HAVING” clause of Select-group_by_aggreg or Select-total_aggreg?”.

How do I write the “ORDER BY” clause?

Each of the expressions “Order_by-exp-i()” that you write after the “ORDER BY”

keyword depends on the usage, or not, of the optional “DISTINCT” clause, as follows:

If you use the “DISTINCT” clause,

then each expression used in the “ORDER BY” clause must be exactly the same as one

of the “SELECT” expressions. Moreover, you can only use the “SELECT” expressions

“Output-exp_i()” that do not contain any “Output-field-name”. The resulting

“ORDER BY” clause would then be:

 ORDER BY Output-exp-r()-not-having-Output-field-names [DESC]

 [, ...

 , Output-exp-t()-not-having-Output-field-names [DESC]]

If you do not use the “DISTINCT” clause,

then each “Order_by-exp-i()” expression in the “ORDER BY” list is built over the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 303 of 725

elements:

• Group_by-exp(Input-field-names) 1 to k

This is, any number of exactly the same “GROUP BY” expressions

(click F.7.9).

• SQL_agg_func(exp(Input-field-names))

This is, any number of SQL aggregate functions (click F.7.18) each having as

argument its specific expression over the “Input-field-names”.

Notice these are the same elements you can use for the “HAVING” Boolean-expression.

The resulting “ORDER BY” clause would then be:

 ORDER BY Order_by-exp-1(Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 SQL_agg_func(exp_b11(Input-field-names))

 , ...

 , SQL_agg_func(exp_b1q(Input-field-names))

) [DESC]

 [, ...

 , Order_by-exp-w(Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 SQL_agg_func(exp_bw1(Input-field-names))

 , ...

 , SQL_agg_func(exp_bwm(Input-field-names))

) [DESC]]

You cannot assign an identifier (with an “AS” clause) to individual “GROUP BY”

expressions. Therefore, you have to write them as such when you use them as elements

to build the “ORDER BY” expressions. This may be cumbersome when a “GROUP BY”

expression is large, but there is no way to avoid this.

When you use the “GROUP BY” expressions as part of a larger “ORDER BY”

expression, I strongly advise you write each of them between parentheses to prevent

that MS-Access rejects the larger “ORDER BY” expression due to a different

evaluation order than the one you expected (see the example in F.7.16.1).

If you want to know more about the “ORDER BY” clause, you may click “F.7.12 How

do I use “ORDER BY” to order the output records of a Select?”.

If you want to see the dataflow diagram of the three types of Select operations, you

may click “F.7.3 What is the dataflow of a Select?”.

Final remarks

The outermost Select-group_by_aggreg operation of a Query may be enclosed between

parentheses.

Finally, if you want to see the dataflow diagram of the three types of Select operations,

you may click “F.7.3 What is the dataflow of a Select?”.

F.7.17 How do I write a correct (syntax) Select-total_aggreg?

A Select-total_aggreg is when you do not use the “GROUP BY” clause (click F.7.9),

but you use SQL aggregate functions (click F.7.18). You may click:

• “F.7.17.1 What is a syntax-example of a Select-total_aggreg?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 304 of 725

• “F.7.17.2 What are the formal rules (syntax) to write a Select-total_aggreg?”

F.7.17.1 What is a syntax-example of a Select-total_aggreg?

An illustrative example of a fairly complete Select-total_aggreg39 is:

 SELECT Len(Max(Capital & "_Cap")) AS Out_fld

 , 2 * Len(Out_fld) AS Nonsense_2

 , 5 * Avg(5+Temp_Min) AS Nonsense_5

 FROM T_Capital_Temps

 WHERE Capital <> "Beijing"

 HAVING Min(3*Temp_Min) < 0

There are three “SELECT” expressions:

• The three “SELECT” expressions are assigned an output field name using the

optional “AS” clause. The three output field names are “Out_fld”,

“Nonsense_2” and “Nonsense_5”.

• The “SELECT” expression for output field “Out_fld” uses as an element the

SQL aggregate function “Max()” over an expression that uses as an element the

input field name “Capital”.

• The “SELECT” expression for output field “Nonsense_2” uses as an element the

output field name “Out_fld”.

• The “SELECT” expression for output field “Nonsense_5” uses as an element the

SQL aggregate function “Avg()” over an expression that uses as an element the

input field name “Temp_Min”.

The input record-list in the “FROM” clause is:

• The Table name “T_Capital_temps” (click F.10.5).

The elements of the “WHERE” Boolean-expression are:

• The input field name “Capital”.

The elements of the “HAVING” Boolean-expression are:

• The SQL aggregate function “Min()” over an expression that uses as an element

the input field name “Temp_Min”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

39 This is the Query “F_Select_w_total_aggreg_Syn” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 305 of 725

F.7.17.2 What are the formal rules (syntax) to write a Select-total_aggreg?

A correct Select-total_aggreg has to be written in the following way:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

[WHERE Where-Boolean-exp(Input-field-names)]

[HAVING Having-Boolean-exp(SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names))]

 [ORDER BY clause]

The words in bold font are SQL keywords. The elements enclosed in square brackets

“[]” are optional, and you may use each of these elements or not, depending on your

desired result from the Select operation. The elements separated with “or” are

alternative options. Each list of alternative options for an element is enclosed between

curly braces “{}” when the element is not optional and between square brackets “[]”

when the element is optional. Some curly braces “{}” and square brackets “[]” are

colored just to make it easier to see which ones are paired.

The elements in gray text are the ones I advise that you do not use:

• I advise you do not use the optional “DISTINCT” clause because in this case only

one modified record is produced, and therefore, this clause does not make any sense.

For this reason, I will not be explaining this clause in this section.

• I advise you do not use the optional “TOP” clause because in this case only one

modified record is produced, and therefore, the “TOP” clause does not make much

sense.

• I advise you do not use the optional “DISTINCTROW” clause because it is not

compatible with SQL server, and because you can get its same functionality in an

easy way. If you want to know more, you may click “F.7.8 What is the

“DISTINCTROW” clause of a Select?”.

• I advise you do not use the optional “ALL” clause because it does not have any

effect.

• I advise you do not use the optional “ORDER BY” clause because in this case only

one modified record is produced, and therefore, this clause does not make any sense.

For this reason, I will not be explaining this clause in this section.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 306 of 725

All the terms above with a trailing “-exp” are expressions. The terms enclosed

between the parentheses of each expression are the elements that can be used to build

that specific expression, by combining these elements with functions (excluding SQL

aggregate), value operators and constants.

All the terms above with a trailing “-opr” are SQL operations.

The “Input-field-names” are all the input field names from the input record-list.

The “INOUT-field-names” are the 1 to v “Input-field-names” and/or the 1 to n

“Output-field-names”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

I will now explain how to write the different clauses of the Select-total_aggreg in the

order they appear in the SQL code, because I think this is more convenient for syntax

purposes.

How do I write the “SELECT” clause?

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

After the “SELECT” keyword (and after the optional clauses “DISTINCT”, “TOP”

and/or “DISTINCTROW”, in case you are using them) you write the “SELECT”

expressions “Output-exp()” separated with commas “,”. Each “SELECT”

expression that you write will produce one output field.

Each “Output-exp()” is built over the elements:

• “Output-field-names” 1 to n

This is, other output field names (as long as you do not create a circular

reference, click F.7.14).

• “SQL_agg_func(exp(INOUT-field-names))”

This is, any number of SQL aggregate functions (click F.7.18) each having as

argument its specific expression over the “Input-field-names” and/or over

the “Output-field-names” (as long as you do not create a circular

reference, nor a nested SQL aggregate function, click F.7.14).

Although you can use “Output-field-names” in the “SELECT” expression, remind

that you cannot use them in the “HAVING” Boolean-expression.

If you add after a “SELECT” expression the keyword “AS” followed by a name, this

will be the name of this output field. If you do not add this “AS” clause, then you have

two cases:

If the “Output-exp_i()” consists exactly of a single input field name, then the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 307 of 725

output field name will be that input field name.

Otherwise, MS-Access will assign to that “Output-exp_i()” the output field name

“ExprXXXX”, where “XXXX” is a four-digit integer number.

Be aware that an expression “exp_o()” that is the argument of a given SQL aggregate

function cannot contain any SQL aggregate function. This cannot happen in a direct

manner, nor through a reference to another “Output-field-name”.

If you want to know more about the “SELECT” clause, you may click “F.7.5 What are

the output fields (“SELECT” clause) of a Select?”.

How do I write the “TOP” and “DISTINCTROW” clauses?

Notice that using “TOP” does not make much sense because a Select-total_aggreg

produces zero or one record.

The optional “TOP” clause is written by adding the “TOP int” after the “SELECT”

keyword. If you use the percent variant, then it is written by adding “TOP int

PERCENT” after the “SELECT” keyword. In case “DISTINCT” is used, then the “TOP”

clause is written after the “DISTINCT” keyword. The symbol “int” stands for a

positive integer constant, not greater than 100 for the percent variant.

If you want to know more about the “TOP” clause, you may click “F.7.13 What is the

“TOP” clause of a Select?”.

I advise you do not use the optional “DISTINCTROW” clause. If in spite of my advice

you want to use it, you just write the keyword “DISTINCTROW” after the “SELECT”

keyword (or after the “TOP” clause, in case it is used). Remind that you cannot use both

“DISTINCT” and “DISTINCTROW” in the same Select operation.

If you want to know more about the “DISTINCTROW” clause, you may click

“F.7.8 What is the “DISTINCTROW” clause of a Select?”.

How do I write the “FROM” clause?

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

Right after the “FROM” keyword you write the input record-list. The input record-list

can be a Table name or a Query name or a Join operation or a Select operation or a

Union operation. Notice this is different from the writing rules (syntax) of the Join

operation.

Let me clarify the rules for parentheses and the “AS” clause, depending on what is the

input record-list after the “FROM” keyword:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to

assign to it a new name, but it cannot have both: you cannot enclose it in

parentheses, and also have an “AS” clause. This writing rule is the same as the

one of the Join operation.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 308 of 725

• A Select operation or Union operation

It must be enclosed between parentheses. It may also have an “AS” clause to

assign to it a name. This writing rule is different from the one of the Join and

Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one of the Join operation.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same as the one of the Join operation.

If you want to know more about the “FROM” clause, you may click “F.7.4 What is the

input record-list (“FROM” clause) of a Select?”.

How do I write the “WHERE” clause?

 WHERE Where-Boolean-exp(Input-field-names)

The “Where-Boolean-exp()” expression that you write after the “WHERE” keyword

is built by combining the input field names with functions (excluding SQL aggregate),

value operators and constants.

If you want to know more about the “WHERE” clause, you may click “F.7.7 What is the

“WHERE” clause of a Select?”.

How do I write the “HAVING” clause?

 HAVING Having-Boolean-exp(SQL_agg_func(exp_h1(Input-field-names))

 , ...

 , SQL_agg_func(exp_ht(Input-field-names)))

The “Having-Boolean-exp()” expression in the “HAVING” clause is built over

“SQL_agg_func(exp(Input-field-names))”. This is, any number of SQL

aggregate functions (click F.7.18) each having as argument its specific expression

over the “Input-field-names”.

If you want to know more about the “HAVING” clause, you may click “F.7.10 What is

the “HAVING” clause of Select-group_by_aggreg or Select-total_aggreg?”.

Final remarks

The outermost Select-total_aggreg operation of a Query may be enclosed between

parentheses.

Finally, if you want to see the dataflow diagram of the three types of Select operations,

you may click “F.7.3 What is the dataflow of a Select?”.

F.7.18 What is an SQL aggregate function?

An SQL aggregate function returns one result from a group of values, where each

value in the group is computed by applying the expression in the argument of the SQL

aggregate function to one input record from a group of input records. Therefore, an

SQL aggregate function returns one result from a group of input records. The

argument of an SQL aggregate function is an expression over the “Input-field-

names” (either directly, or indirectly though the usage of “Output-field-names”).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 309 of 725

SQL aggregate functions can only be used in some:

• “SELECT” expressions

• “TRANSFORM” expression

• “HAVING” Boolean expression

• “ORDER BY” expressions

within a Select-group_by_aggreg or Select-total_aggreg operations (click F.7.2), or

within a Transform operation (click F.10).

SQL aggregate functions cannot be directly used in your VBA code (although they can

be part of SQL code that is invoked from VBA code).

Notice that SQL aggregate functions have the same basic functionality as domain

aggregate functions (click G.6.2). However, they have relevant differences. One such

difference is that SQL aggregate functions can only be used in some expressions

belonging to a few SQL clauses. Conversely, domain aggregate functions can be

directly used in your user-defined VBA functions and subroutines, in your macros, in

any expression within your SQL code and in your calculated controls.

MS-Access allows you to use the following built-in SQL aggregate functions:

• Count(*)

Click “F.7.18.1 What is the “Count(*)” SQL aggregate function?”.

• Count(expression(field-names))

Click “F.7.18.2 What is the “Count()” SQL aggregate function?”.

• First, Last(expression(field-names))

Click “F.7.18.3 What are the “First()” and “Last()” SQL aggregate

functions?”

• Min, Max(expression(field-names))

Click “F.7.18.4 What are the “Min()” and “Max()” SQL aggregate functions?”.

• Sum, Avg(expression(field-names))

Click “F.7.18.5 What are the “Sum()” and “Avg()” SQL aggregate functions?”.

• StDev, StDevP, Var, VarP(expression(field-names))

Click “F.7.18.6 What are the “StDev()”, “StDevP()”, “Var()” and “VarP()”

SQL aggregate functions?”.

MS-Access does not allow to write user-defined SQL aggregate functions, so you can

only use the above built-in SQL aggregate functions that are provided by MS-Access.

However, there are some useful tricks to get the same result as if the SQL aggregate

functions “AllNull()”, “AllEqual()”, “Or()” and “And()” would exist. If you

want to know more about this, you may click “K.6.14 What are useful tricks with SQL

aggregate functions?”.

An exception-value (click J.15) in one, or more, record fields being processed by any

aggregate function will crash the Query. The exception are the “Count(*)” and

“DCount("*")” aggregate functions that count the records in each group of records,

regardless of their field values, and will return a correct value even if one or more record

fields contain exception-values.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 310 of 725

F.7.18.1 What is the “Count(*)” SQL aggregate function?

Count(*) returns the number of records in each group of records. Notice that all the

records in each group of records are counted, even records with one, several or all Null

field values.

Count(*) always returns a non-Null integer-like value. If a group of records contains

no records, then Count(*) returns the value “0” for that group of records.

F.7.18.2 What is the “Count()” SQL aggregate function?

Count(expression(field-names)) returns the number of records in each group

of records that produce a non-Null result in the argument “expression()”. Notice

that records whose result in “expression()”is Null are not counted.

Count() always returns a non-Null integer-like value. If a group of records contains

no records, then Count() returns the value “0” for that group of records.

Count() can be used over any Table field type and any VBA data type, including

AutoNumber, Long Text, OLE Object, Hyperlink and Attachment.

F.7.18.3 What are the “First()” and “Last()” SQL aggregate functions?

First(expression(field-names)) and
Last(expression(field-names))

return the result of the argument “expression()” calculated over the fields of the first

or last (respectively) record from each group of records.

First() and Last() can be used over any Table field type and any VBA data type,

including AutoNumber, Long Text, OLE Object, Hyperlink and Attachment.

First() and Last() return the same data type returned by its argument

“expression()”.

First() and Last() return Null for a group of records in case its argument

“expression()” returns Null over the first or last record (respectively) in that group

of records. First() and Last() also return Null for a group of records in case the

group of records contains no records.

Notice that what is the first or last record depends on the internal record-list

ordering of each group, as managed by MS-Access. Therefore, the first or last record

does not depend on the “ORDER BY” clause that is used in the input record-list of the

Select or Transform operations. Therefore, “First()” and “Last()” return one

arbitrary record from each group of records.

F.7.18.4 What are the “Min()” and “Max()” SQL aggregate functions?

Min(expression(field-names)) and
Max(expression(field-names))

return the minimum or maximum (respectively) value among the non-Null results of

its argument “expression()” calculated over the fields of each record from its group

of records.

Min() and Max() can be used over any string data/field type and any numeric-like

data/field type (click F.7.18.7).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 311 of 725

Therefore, Min() and Max() can be used over the VBA data types Byte, Integer, Long,

LongLong, Currency, Single and Double, plus their equivalent Table field types-sizes

Number-Byte, Number-Integer, Number-Long Integer, Large Number, Currency,

Number-Single and Number-Double.

Min() and Max() cannot be used over Long Text, Hyperlink, OLE Object and

Attachment.

The value True/Yes/On or ticked is considered as number “-1” and False/No/Off or

unticked as number “0”, while datetime values are interpreted as the corresponding

number values (click D.4.5).

Min() and Max() return the same data type returned by its argument

“expression()”.

Min() and Max() return Null for a group of records in case its argument

“expression()” returns Null over each and every record in that group of records.

Min() and Max() also return Null for a group of records in case the group of records

contains no records.

If Min() or Max() are used over any of its unsupported data types, the Query will

crash, and MS-Access will show the error message:

“Cannot have Memo, OLE, or Hyperlink Object fields in aggregate argument
(Arg_expr).”

where “Arg_expr” is the expression in the argument of the aggregate function that

caused the error. Remind that “Memo” is the name used for “Long Text” in older MS-

Access versions.

Notice that the minimum or maximum value is calculated based on the specific

data/field type of the expression. For example: “50” is larger than “2000” if they are

text strings, but “50” is obviously smaller than “2000” if they are numbers. You must

therefore be sure of what is the data type of its argument “expression()”, or you will

not get the results that you expect.

F.7.18.5 What are the “Sum()” and “Avg()” SQL aggregate functions?

Sum(expression(field-names)) and
Avg(expression(field-names))

return the sum or the average (respectively) of all the non-Null results of its argument

“expression()” calculated over the fields of each record from its group of records.

Notice that records that produce a Null result in its argument “expression()” are

ignored in the calculation of the sum or average (respectively).

Sum() and Avg() can be used over any numeric-like data/field type (click F.7.18.7).

Therefore, Sum() and Avg() can be used over the VBA data types Boolean, Byte,

Integer, Long, LongLong, Currency, Single, Double and Date, plus their equivalent

field types-sizes: Yes/No, Number-Byte, Number-Integer, Number-Long Integer,
Large Number, Currency, Number-Single, Number-Double and Date/Time

Sum() and Avg() cannot be used over String, Short Text, Long Text, Hyperlink, OLE
Object and Attachment.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 312 of 725

The value True/Yes/On or ticked is considered as number “-1” and False/No/Off or

unticked as number “0”, while datetime values are interpreted as the corresponding

number values (click D.4.5).

Sum() and Avg() return the same data type returned by its argument its argument

“expression()”.

Sum() and Avg() return Null for a group of records in case its argument

“expression()” returns Null over each and every record in that group of records.

Sum() and Avg() also return Null for a group of records in case the group of records

contains no records.

If Sum() or Avg() is used over a String or Short Text value, the Query will crash, and

MS-Access will show the error message:

“Data type mismatch in criteria expression.”

If Sum() or Avg() is used over any other of its other unsupported data types, the Query

will crash, and MS-Access will show the error message:

“Cannot have Memo, OLE, or Hyperlink Object fields in aggregate argument
(Value_expr).”

where “Value_expr” is the expression in the argument of the Sum() or Avg() function

that caused the error. Remind that “Memo” is the name used for “Long Text” in older

MS-Access versions.

F.7.18.6 What are the “StDev()”, “StDevP()”, “Var()” and “VarP()”

SQL aggregate functions?

StDev(expression(field-names)),

StDevP(expression(field-names)),

Var(expression(field-names)) and
VarP(expression(field-names))

return, respectively, the sample standard deviation, the population standard

deviation, the sample variance, and the population variance, over all the non-Null

results of its argument “expression()” calculated over the fields of each record in its

group of records. Notice that records that produce a Null result in its argument

“expression()” are ignored in the computations of these functions.

StDev(), StDevP(), Var() and VarP() are collectively called “Two-value” SQL

aggregate functions, because they require at least two non-Null results from its group

of records to return a non-Null result.

StDev(), StDevP(), Var() and VarP() can be used over any numeric-like Table

field type or any numeric-like VBA data type (click F.7.18.7). Therefore, they cannot

be used over String, Short Text, Long Text, Hyperlink, OLE Object and Attachment.
The value True/Yes/On or ticked is considered as number “-1” and False/No/Off or

unticked as number “0”, while Date/Time or Date values are interpreted as the

corresponding number values (click D.4.5).

StDev(), StDevP(), Var() and VarP() return the same data type returned by its

argument “expression()”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 313 of 725

StDev(), StDevP(), Var() and VarP() return Null for a group of records in case

its argument “expression()” returns Null over all, or all but one, records in that

group of records. StDev(), StDevP(), Var() and VarP() also return Null for a

group of records in case the group of records contains zero or one records.

If StDev(), StDevP(), Var() or VarP() is used over a String or Short Text value,

the Query will crash, and MS-Access will show the error message:

“Data type mismatch in criteria expression.”

If StDev(), StDevP(), Var() or VarP() is used over any of its other unsupported

data types, the Query will crash, and MS-Access will show the error message:

“Cannot have Memo, OLE, or Hyperlink Object fields in aggregate argument
(Value_expr).”

where “Value_expr” is the expression in the argument of the SQL aggregate function

that caused the error. Remind that “Memo” is the name used for “Long Text” in older

MS-Access versions.

F.7.18.7 What is a summary and grouping of aggregate functions?

SQL aggregate functions (and their dual domain aggregate functions, click G.6.2) are

usually classified as follows:

• Two-value aggregate functions

Two value aggregate functions are StDev(), DStdev, StDevP(), DStDevP(),

Var(), DVar(), VarP() and DVarP().

Two-value aggregate functions require at least two non-Null input values to return

a non-Null value.

Two-value aggregate functions require that their argument is of a numeric-like

data/field type and return a numeric-like data/field type.

• Numeric-like aggregate functions

Numeric-like aggregate functions are the two-value ones plus Avg(), DAvg(),

Sum() and DSum().

Numeric-like aggregate functions require that their argument is of a numeric-like

data/field type and return a numeric-like data/field type.

• Calculation aggregate functions

Calculation aggregate functions are numeric-like ones plus Min(), DMin(),

Max() and DMax().

Calculation aggregate functions are the ones that perform some calculation over

their group of records.

Min(), DMin(), Max() and DMax() require that their argument is of string or

numeric-like data/field types.

Calculation aggregate functions return a value of the same data/field type (either

string or numeric-like) as the expression of their argument.

• Value aggregate functions

Value aggregate functions are calculation ones plus First(), DFirst(),

DLookup(), Last() and DLast().

First(), DFirst(), DLookup(), Last() and DLast() work over any data/field

type and return an integer.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 314 of 725

• All aggregate functions

All aggregate functions are value ones plus Count(), DCount(), Count(*) and

DCount("*").

Count(), DCount(), Count(*) and DCount("*") work over any data/field type

and return an integer.

F.8 What is a Join operation and how do I write it?

A Join operation is an SQL operation performed with a Join operator (click F.8.2) plus

its corresponding operands. Therefore, a Join operation is the complete SQL code

associated to a Join operator.

A simple example of a Join operation40 is:

 T_House_owners

 INNER JOIN

 T_Car_owners

 ON Houses.ID = Cars.ID ;

The above Join operation produces output records joining every left input record

from the Table T_House_owners with every right input record from the Table

“T_Car_owners”, but only when both records have the same value in their “ID” field.

The field values of each output record are all the field values (in the same order) from

its originating left input record followed by all the field values (in the same order) from

its originating right input record.

A Join operation cannot be the outermost operation in a Query. If you have a series of

nested Join operations, the outermost Join operation must be enclosed in a Select

operation.

If you want to know more about a Join operation, you may click:

• “F.8.1 What is “joining” two ordered records?”

• “F.8.2 What are the Join operators?”

• “F.8.3 What are the input record-lists of a Join?”

• “F.8.4 What are the output fields of a Join?”

• “F.8.5 What is the output record-list of a “,” Cross-Join?”

• “F.8.6 What is the output record-list of an “INNER JOIN”?”.

• “F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

• “F.8.8 What is the output record-list of a Full-Outer-Join?”

• “F.8.10 How do I write a correct (syntax) Join?”

F.8.1 What is “joining” two ordered records?

“Joining” two ordered records, a left “l” record and a right “r” record, produces one

larger output record by concatenating the fields and the field values of these two

40 A Join operation (or a series of Join operations) must always be enclosed in a Select operation. If you

want to run this Join operation, you have to enclose it in a Select operation.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 315 of 725

ordered records.

Joining a left “l” record and a right “r” record is also called joining the ordered record

pair (l, r).

The following picture graphically shows the result of joining a left and a right record:

Notice that joining records is not commutative. It is not the same joining the record

pair (a, b) than joining the record pair (b, a), because the order of output fields and

field values is different. To remind you of this I will be frequently adding the term

“ordered” when talking about joined record pairs along this chapter.

I now explain in more detail the resulting output record of joining an ordered pair of

records.

What are the resulting fields of joining an ordered record pair?

When you join an ordered record pair (l, r), the fields of the joined output record are

all the fields (in the same order) from “l” followed by all the fields from “r”. Each

output field keeps the same properties (field name, field type, …) it had in the

corresponding left or right record.

For example, if the left (first) record has fields “Name”, “Address” and “Phone”, and

the right (second) record has fields “Name” and “Birthdate”, the corresponding joined

output record will have fields “Name”, “Address”, “Phone”, “Name” and “Car”.

Notice that the field name “Name” is repeated, which happens very frequently. This is

called a “duplicated field name”.

In case the output records have duplicated field names, in order to avoid ambiguity,

any reference to a duplicated field name must be qualified. Remind that qualifying a

field name (click C.2.2) consists of prefixing the field name with the name of the input

record-list that contained that field name, with an intermediate period “.” character.

Notice that even if two fields have the same unqualified field name, they are two

different fields and their field properties (e.g., field type) and field values are

completely independent, and may be completely different (or not).

What are the resulting field values of joining an ordered record pair?

When you join an ordered record pair (l, r), the field values of the joined output record

are all the field values (in the same order) from “l” followed by all the field values (in

the same order) from “r”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 316 of 725

For example, joining a left “l” record having field values “Xi Liu”, “1342 Belmont St”

and “658458545” with a right “r” record having field values “Juan Perez” and “Ford
Mustang”, produces a joined output record having field values “Xi Liu”, “1342
Belmont St”, “658458545”, “Juan Perez” and “Ford Mustang”.

F.8.2 What are the Join operators?

The Join operators are consulting (click F.6) operators that work over two input

record-lists, plus another possible operand that is not a record-list.

A simplified view of writing (syntax) a Join operation is:

 Left-Input-record-list AS Left_name

 Join-Operator

 Right-Input-record-list AS Right_name

 [ON ON-Boolean-expression(Left_name.x, Right_name.y)]

The “ON” clause enclosed between square brackets “[]” cannot be used with the “,”

Cross-Join operator and it is mandatory for all the other Join operators.

The Join operators join, one with one, some records from its left (first) “L” input

record-list with some records from its right (second) “R” input record-list. On some

cases, they also join one input record with one void record.

Remind that joining (click F.8.1) a left “l” record and a right “r” record produces one

larger output record that has the fields and field values of the left record followed (i.e.,

to its left) by the ones of the right record.

If you want to know the writing rules (syntax) of a Join, you may click “F.8.10 How do

I write a correct (syntax) Join?”.

All the Join operators produce the same output fields. If you want to know more about

this, you may click “F.8.4 What are the output fields of a Join?”.

There are four Join operations, and four Join operators (but there is no one-to-one

correspondence):

• Cross-Join operation: operator “,” (i.e., just one comma character)

Joins all (l, r) pairs.

• Inner-Join operation: operator “INNER JOIN”

Joins all (lm, rm) matching pairs.

• Outer-Join operation: operators “LEFT JOIN” and “RIGHT JOIN”

A “LEFT JOIN” joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs. A “RIGHT JOIN” joins all (lm, rm) matching pairs, plus, all the

(void, rnm) non-matching pairs.

• Full-Outer-Join operation: does not have an operator in MS-Access

A Full-Outer-Join joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs, plus, all the (void, rnm) non-matching pairs.

A void record has all its fields void. A void field has Null pointers to all the Table

fields in its expanded “SELECT” expression. An expanded “SELECT” expression is

the one where all the field names from the enclosed SQL operations or auxiliary Queries

are replaced, recursively, by the corresponding “SELECT” expression. Therefore, an

expanded “SELECT” expression is composed of Table field names combined with

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 317 of 725

functions, operators and constants, and it does not contain any field name from an SQL

expression or auxiliary Query.

One main difference between the four Join operations is which records are joined to

produce the output record-list. The other difference is that the Inner-Join, Outer-Join

and Full-Outer-Join operations require an “ON” clause with a Boolean expression,

while the Cross-Join does not have the “ON” clause. Let me now explain the result of

the four Join operations and the four Join operators over a left input record-list “L”

and a right input record-list “R”. In the explanation below “l” is a record from “L” and

“r” is a record from “R”.

• Cross-Join operation: operator “,” (i.e., just one comma character)

A Cross-Join joins all (l, r) pairs.

In more detail, a Cross-Join joins all ordered record pairs (l, r) in the set of record

pairs (L, R). This is called the “Cartesian product”.

A Cross-Join does not cause the pointers to the Table fields in its “SELECT”

expressions to become Null, and therefore it does not create Nulls (but Nulls

existing in the input records will stay in the corresponding output records).

Notice that the SQL keyword for the Cross-Join operator is just a comma (“,”).

The Cross-Join operator is also called the Full-Join operator.

If you want to know more about the output record-list of a Cross-Join, you may

click “F.8.5 What is the output record-list of a “,” Cross-Join?”.

• Inner-Join operation: operator “INNER JOIN”

An “INNER JOIN” joins all (lm, rm) matching pairs.

We say that a (lm, rm) pair matches when the field values of “lm” and “rm” jointly

return True in Boolean-expression of the “ON” clause of the “INNER JOIN”

operator. If the result is other than True, then (lnm, rnm) is a non-matching pair.

In more detail, a “INNER JOIN” joins all ordered record pairs (lm, rm) in each and

every of the “N” sets of matching ordered record pairs (Lmi, Rmi).

In this statement, each “Lmi” is a subset of “L” and each “Rmi” is a subset of “R”,

such that all records in “Lmi” match with all records in “Rmi”. The index “i” goes

from 1 to “N”. It is also required that the “N” (Lmi, Rmi) pairs of record sets contain

the same elements as all the matching record pairs (lm, rm) between “L” and “R”.

This second definition of “INNER JOIN” may seem a little strange now, but it will

make sense when you see the picture at the end of this section comparing the results

from the different Join operators and also when explaining the number of output

records (click F.8.6.3) from an “INNER JOIN”.

An “INNER JOIN” does not cause the pointers to the Table fields in its

“SELECT” expressions to become Null, and therefore it does not create Nulls (but

Nulls existing in the input records will stay in the corresponding output records).

Notice that an “INNER JOIN” produces a subset of the output records produced

by a Cross-Join. The subset corresponds to those Cross-Join’s output records

arising from matching input records.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 318 of 725

If you want to know more about the output record-list of an “INNER JOIN”, you

may click “F.8.6 What is the output record-list of an “INNER JOIN”?”.

• Outer-Join operation: operators “LEFT JOIN” and “RIGHT JOIN”

A “LEFT JOIN” joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs.

We say that that (lnm, void) is a non-matching pair when all pairs in the set (lnm, R)

do not match. This is, when the “lnm” record does not match with any record in

“R”.

In more detail, a “LEFT JOIN” joins the same (lm, rm) ordered record pairs as an

“INNER JOIN”, plus, all the ordered record pairs (lnm, void) in the set (Lnm, void).

In this statement, the record-list “Lnm” contains all the non-matching “lnm” input

records. This is, “Lnm” is the subset of “L” such that all the pairs (lnm, R) do not

match.

A void record has all its fields void. A void field has Null pointers to all the Table

fields in its expanded “SELECT” expression.

A “RIGHT JOIN” is exactly the same as a “LEFT JOIN”, with the only difference

that the input record-list that produces the additional set of records, is the right

(second) one instead of the left (first) one. Therefore, it makes Null all the pointers

to the Table fields in the “SELECT” expressions of the left (first) “L” input record-

list. This may cause a “SELECT” expression to crash, or to return an exception-

value or a Null.

Therefore, a “RIGHT JOIN” joins all (lm, rm) pairs that match, plus, all the

(void, rnm) pairs, such that all pairs in the set (L, rnm) do not match.

Using “LEFT JOIN” is usually preferable to using “RIGHT JOIN” because it is

considered that the resulting SQL code is more readable. However, a

“RIGHT JOIN” may still be useful on some cases.

If you want to know more about the output record-list of the Outer-Join operators,

you may click “F.8.7 What is the output record-list of an Outer-Join

(“LEFT JOIN” or “RIGHT JOIN”)?”.

• Full-Outer-Join operation: does not have an operator in MS-Access

A Full-Outer-Join joins all (lm, rm) matching pairs, plus, all the (lnm, void) and all

the (void, rnm) non-matching pairs.

We say that that (lnm, void) is a non-matching pair when all pairs in the set (lnm, R)

do not match. This is, when the “lnm” record does not match with any record in

“R”.

We say that that (void, rnm) is a non-matching pair when all pairs in the set (L, rnm)

do not match. This is, when the “rnm” record does not match with any record in

“L”.

In other words, a Full-Outer-Join joins the same pairs as an “INNER JOIN”, plus,

all the additional (lnm, void) pairs of a “LEFT JOIN”, plus, all the additional

(void, rnm) pairs of a “RIGHT JOIN”.

A void record has all its fields void. A void field has Null pointers to all the Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 319 of 725

fields in its expanded “SELECT” expression.

MS-Access does not provide an operator to produce a Full-Outer-Join. However,

I am explaining Full-Outer-Join because it is an important concept, and on some

cases you may need to write an SQL piece of code for a Full-Outer-Join. If you

want to know more about the output record-list of a Full-Outer-Join, you may click

“F.8.8 What is the output record-list of a Full-Outer-Join?”.

Full-Outer-Join is considered undesirable because it creates Null pointers to Table

fields (that need to be handled properly) and weakens indexing (which results in

worse performance). Avoid Full-Outer-Join as much as possible. In many cases,

what you want is to “merge” two record-lists into a single one, and you can get this

using “UNION ALL” and “GROUP BY” instead of using a Full-Outer-Join. If you

want to know how to “merge” record-lists using “UNION”, you may click

“K.6.9 How do I “merge” two record-lists?”. If you cannot avoid writing a Full-

Outer-Join, I explain how to do it in “K.6.8 How do I write a Full-Outer-Join?”.

If you want to know more about the Join operations and operators, you may click:

• “F.8.2.1 How do the four Join operations compare?How do the four Join operations

compare?”

• “F.8.2.2 Are Join operations commutative?”

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.8.2.1 How do the four Join operations compare?

The summary of the four Join operations and the four Join operators is:

• Cross-Join operation: operator “,” (i.e., just one comma character)

Joins all (l, r) pairs.

• Inner-Join operation: operator “INNER JOIN”

Joins all (lm, rm) matching pairs.

• Outer-Join operation: operators “LEFT JOIN” and “RIGHT JOIN”

A “LEFT JOIN” joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs. A “RIGHT JOIN” joins all (lm, rm) matching pairs, plus, all the

(void, rnm) non-matching pairs.

• Full-Outer-Join operation: does not have an operator in MS-Access

A Full-Outer-Join joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs, plus, all the (void, rnm) non-matching pairs.

To better understand the results of the different Join operations and Join operators,

the following picture shows the joined record pairs leading to the output record-list of:

 L Join-op R

depending on which Join operation or Join operator you use as “Join-op”. Notice

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 320 of 725

that “L” and “R” are the left and right input record-lists, respectively.

The following table compares the Join operations and Join operators in terms of their

having, or not, an “ON” clause with a Boolean expression and their possibly creating, or

not, Nulls.

 Requires an “ON” Boolean-expression?

 No Yes

May

create

Nulls?

No Cross-Join “,” “INNER JOIN”

Yes

Full-Outer-Join

and

Outer-Joins

(“LEFT JOIN” and

“RIGHT JOIN”)

F.8.2.2 Are Join operations commutative?

Strictly speaking, none of the Join operations is commutative, this is, you cannot

exchange their input record-lists and be sure that the result will be the same. The reason

is that joining records is not commutative (click F.8.1) because if you reverse the

joined records, the order of the output fields and field values is different.

However, the outermost Join operation must always be enclosed in a Select operation,

and a Select operation works the same (except the non-advisable “SELECT *”)

irrespective of the field order of its input record-list.

Therefore, the Join operations “,” Cross-Join, “INNER JOIN” and Full-Outer-Join

are commutative (except if they are enclosed in a “SELECT *”). You may then

exchange its left and right input record-lists, and you will get exactly the same result.

If for some reason (e.g., improving the readability of the code) you exchange the left

and right input record-lists of an “INNER JOIN” or of a Full-Outer-Join be aware

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 321 of 725

that the “ON” Boolean-expression may, or may not, be commutative. If it is not

commutative, you should not exchange the corresponding input field names, and rather

leave the “ON” expression unmodified.

Let me show you the difference with an example over two Tables that I will be also

using in other sections of this chapter F.8. One Table is a list of house owners and the

other Table is a list of car owners. The field “ID” represents a unique identification

number to avoid mistaking two different persons that have the same name. The example

Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

If you write and run the following “INNER JOIN”41:

 SELECT Houses.ID, Houses.Name, Cars.ID, Cars.Name

 FROM

 T_House_Owners AS Houses

 INNER JOIN

 T_Car_Owners AS Cars

 ON Houses.ID > Cars.ID ;

the corresponding output record-list from this Query is:

F_Join_Commut_1

Houses.ID Houses.Name Cars.ID Cars.Name

6 Xi Liu 3 Peter Sellers

14 Xi Liu 3 Peter Sellers

14 Xi Liu 6 Xi Liu

If you now exchange the two input record-lists you get42:

 SELECT Houses.ID, Houses.Name, Cars.ID, Cars.Name

 FROM

 T_Car_Owners AS Cars

 INNER JOIN

 T_House_Owners AS Houses

 ON Houses.ID > Cars.ID ;

Notice I have kept the color of both input record-lists (so the left one is now blue), so

you can compare more easily both SQL operations.

This second which produces exactly the same output record-list.

Notice that I did not exchange the field names “Cars.ID” and “Houses.ID” in the

“SELECT” clause, nor in the “ON” expression. Notice also that this “ON” expression is

not commutative. In case I had mistakenly exchanged the field names in the “ON”

41 This is the Query “F_Join_Commut_1” from file “Company_Database.accdb”.
42 This is the Query “F_Join_Commut_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 322 of 725

expression, I would get the following Query43:

 SELECT Houses.ID, Houses.Name, Cars.ID, Cars.Name

 FROM

 T_Car_Owners AS Cars

 INNER JOIN

 T_House_Owners AS Houses

 ON Cars.ID > Houses.ID ;

which produces a very different output record-list.

F.8.3 What are the input record-lists of a Join?

The two input record-lists of the Join operators are written at both sides of the Join

operator. The left (first) input record-list is written just before the Join operator, and

the right (second) input record-list is written just after it, as follows:

 { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Left-name]]

 or [({Select-opr or Union-opr }) AS Left-name]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

 {, or INNER JOIN or LEFT [OUTER] JOIN or RIGHT [OUTER] JOIN }

 { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Right-name]]

 or [({Select-opr or Union-opr }) AS Right-name]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

Both the left and right input record-lists can be written as either a Table name, a

Query name, a Select operation or a Union operation. The left and right input

record-lists may be the same record-list.

Notice that I have shaded above the Join operation with gray text. Although you can

actually use a Join operation as an input record-list of the Join operators, the code

readability becomes poor, and it is very easy to make a mistake with the parentheses.

For these reasons, I advise you avoid nesting Join operations. If you want to do a Join

of a Join, just enclose the innermost join in a Select operation. As an exception to this

advice, you can do a Join of a Join if both operators are a Cross-Join, because the

Cross-Join operator is associative, and each Cross-Join operation is not enclosed

between parentheses, so there is no risk of making a mistake.

The rules on parentheses and “AS” clause depend on what is the input record-list after

the “FROM” clause, as follows:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to assign

to it a new name, but it cannot have both: you cannot enclose it in parentheses,

and also have an “AS” clause. This writing rule is the same as the one in Select

and Transform operations.

• A Select operation or Union operation

It must be enclosed between parentheses, and it must have an “AS” clause to

assign to it a name. This writing rule is different from the one in Select,

Transform and Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

43 This is the Query “F_Join_Commut_3” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 323 of 725

This writing rule is the same in Select and Transform operations.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same in the Select and Transform operations.

F.8.4 What are the output fields of a Join?

The output fields of all the Join operation are exactly the same.

The output fields are all the fields (in the same order) from the left (first) input record-

list followed by all the fields (in the same order) from the right (second) input record-

list.

The number of output fields of the Join operations is the addition of the number of

input fields of its left and right input record-lists.

What are the output field names of a Join?

The output field names of all the Join operations are exactly the same.

The output field names are all the field names (in the same order) from the left (first)

input record-list followed by all the field names (in the same order) from the right

(second) input record-list.

In case the left and right input record-lists have one, or more, equal field names, MS-

Access will qualify the corresponding output field names in the Query results shown

in “Datasheet View”. Remind that qualifying a field name (click C.2.2) consists of

prefixing the field name with the name of the record-list that contained that field

name, with an intermediate period “.” character.

What is the output field order of a Join?

The output field order of all the Join operations is exactly the same.

The output field order is the same field order of fields from the left (first) input

record-list followed by the same field order of the right (second) input record-list.

What are the output data/field types of a Join?

The output field data/field types of all the Join operations are exactly the same.

The data/field type of each output field is the same as the data/field type of its

corresponding input field.

Therefore, the data/field types of its output fields are the ones (in the same order) of

the fields of its left (first) input record-list followed by the ones (in the same order) of

the fields of its right (second) input record-list.

What are the output field values and/or output record-list of a Join?

If you want to know what are the output field values, and/or what is the output record-

list of a Join, they depend on the type of Join. You may click:

• “F.8.5 What is the output record-list of a “,” Cross-Join?”

• “F.8.6 What is the output record-list of an “INNER JOIN”?”

• “F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 324 of 725

• “F.8.8 What is the output record-list of a Full-Outer-Join?”

F.8.5 What is the output record-list of a “,” Cross-Join?

You may click:

• “F.8.5.1 What are the output field values of a “,” Cross-Join?”

• “F.8.5.2 What are the output records of a “,” Cross-Join?”

• “F.8.5.3 How many output records does a “,” Cross-Join produce?”

If you rather want to know what are the output fields of a “,” Cross-Join, you may

click “F.8.4 What are the output fields of a Join?”.

F.8.5.1 What are the output field values of a “,” Cross-Join?

The output record produced by joining (click F.8.1) the record pair (l, r) has the field

values (in the same order) from the left “l” record followed by the field values (in the

same order) from the right “r” record.

F.8.5.2 What are the output records of a “,” Cross-Join?

A Cross-Join joins all (l, r) pairs.

In more detail, a Cross-Join joins (click F.8.1) each and every “l” record from its left

(first) “L” input record-list with each and every “r” record from its right (second)

“R” input record-list (this is called the “Cartesian product”).

The output record-list of a Cross-Join is therefore the joining (click F.8.1) of all

ordered pairs of input records in the set of pairs (L, R).

The order of the output records is unknown.

A Cross-Join does not cause the pointers to the Table fields in its “SELECT”

expressions to become Null, and therefore it does not create Nulls (but Nulls existing

in the input records will stay in the corresponding output records).

Notice that the SQL codeword for the Cross-Join operator is just a comma (“,”).

The Cross-Join operator is also called the Full-Join operator.

If you want to see the differences between a Cross-Join and the other Join operations,

you may click “F.8.2 What are the Join operators?”.

I am explaining all the Join operations with an example based on the same two Tables,

so you can clearly see the differences between the results they produce. One Table is a

list of house owners, and the other Table is a list of car owners. The field “ID” represents

a unique person identification number (e.g., Social Security) to avoid mistaking two

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 325 of 725

different persons that have the same name. The example Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

Imagine that you want all ordered pairs of records between these two Tables: you can

get this with a Cross-Join. The Query code44 would be:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 ,

 T_Car_owners AS Cars

The output record-list from this Query is:

F_Cross_Join

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 3 Peter Sellers Renault Clio

14 Xi Liu 580 Beacon St. 3 Peter Sellers Renault Clio

3 Peter Sellers 345 Bolton St. 6 Xi Liu Ford Focus

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 6 Xi Liu Ford Focus

3 Peter Sellers 345 Bolton St. 18 John Welsh Opel Zafira

6 Xi Liu 1342 Main St. 18 John Welsh Opel Zafira

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

3 Peter Sellers 345 Bolton St. 23 Juan Perez Ford Mustang

6 Xi Liu 1342 Main St. 23 Juan Perez Ford Mustang

14 Xi Liu 580 Beacon St. 23 Juan Perez Ford Mustang

Notice how the duplicated field names are qualified by prefixing each of them with

the name of the input record-list that originated it, with an intermediate period “.”

character (click C.2.2). The first two field names are prefixed with the name “Houses.”,

while field names four and five are prefixed with the name “Cars.”. Notice also that in

the SQL code above these two names were assigned to the input record-lists of the Join

operation using the “AS” clause (click F.8.9).

44 This is the Query “F_Join_Cross” from file “Company_Database.accdb”..

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 326 of 725

The following picture graphically shows how the output records are produced:

These 12 output records were produced by joining the 3 records from the left input

record-list with the 4 records from the right input record-list.

Notice that in this example I wrote the Select operation to produce all the fields, and in

the same order, from its enclosed Join operation, but in the general case you can write

the Select operation with whatever output fields, each with its specific expression, as

you want.

If you want to know what are the output fields of “,” Cross-Join, you may click

“F.8.4 What are the output fields of a Join?”.

F.8.5.3 How many output records does a “,” Cross-Join produce?

Knowing how many records a Cross-Join produces is very useful when debugging

your Queries, and also for better understanding how a Cross-Join works.

A Cross-Join produces:

 num(L)*num(R)

records, where “L” is the left (first) input record-list, and “R” is the right (second)

input record-list.

The function “num()” represents the number of records in the record-list provided as its

argument.

F.8.6 What is the output record-list of an “INNER JOIN”?

You may click:

• “F.8.6.1 What are the output field values of an “INNER JOIN”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 327 of 725

• “F.8.6.2 What are the output records of an “INNER JOIN”?”

• “F.8.6.3 How many output records does an “INNER JOIN” produce?”

If you rather want to know what are the output fields of “INNER JOIN”, you may

click “F.8.4 What are the output fields of a Join?”.

F.8.6.1 What are the output field values of an “INNER JOIN”?

The output record produced by joining (click F.8.1) the matching record pair (lm, rm)

has the field values (in the same order) from the left “lm” record followed by the field

values (in the same order) from the right “rm” record.

Remind that a record pair (lm, rm) matches when the field values of “lm” and “rm”

jointly produce True in the “ON” Boolean expression.

F.8.6.2 What are the output records of an “INNER JOIN”?

An “INNER JOIN” joins all (lm, rm) matching pairs.

Remind that a record pair (lm, rm) matches when the field values of “lm” and “rm”

jointly produce True in the “ON” Boolean expression.

In more detail, an “INNER JOIN” joins every “lm” record from its left (first) “L”

input record-list with every “rm” record from its right (second) “R” input record-list

such that the field values of “lm” and “rm” jointly return True in the “ON” Boolean

expression.

An “INNER JOIN” does not cause the pointers to the Table fields in its “SELECT”

expressions to become Null, and therefore it does not create Nulls (but Nulls existing

in the input records will stay in the corresponding output records).

Notice that an “INNER JOIN” produces a subset of the output records produced by a

Cross-Join. The subset corresponds to those Cross-Join’s output records arising from

matching input records.

The order of the output records is unknown.

If you want to see the differences between a “INNER JOIN” and the other Join

operations, you may click “F.8.2 What are the Join operators?”.

I am explaining all the Join operators with an example based on the same two Tables,

so you can clearly see the differences between the results they produce. One Table is a

list of house owners, and the other Table is a list of car owners. The field “ID” represents

a unique person identification number (e.g., Social Security) to avoid mistaking two

different persons that have the same name. The example Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 328 of 725

Imagine that you want a listing of persons that own a house and also own a car,

indicating for each of them his/her house address and car model: you can get this with

an “INNER JOIN”. The Query code45 would be:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 INNER JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID ;

The output record-list from this Query is:

F_Inner_Join_1

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

Notice how the duplicated field names are qualified by prefixing each of them with

the name of the input record-list that originated it (and a separation period “.”

character). The first two field names are prefixed with name “Houses.”, while field

names four and five are prefixed with name “Cars.”. Notice also that these names were

assigned to the input record-lists of the Join operation using the SQL clause “AS”

(click F.8.3).

Notice how these two output records correspond to the only two pairs of left and right

input records that match (i.e., produce True) in the “ON” Boolean expression.

45 This is the Query “F_Join_Inner_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 329 of 725

The following picture graphically shows how the output records are produced:

These 2 output records were produced by joining 1 matching record from the left input

record-list with 1 matching record from the right input record-list, plus, 1 matching

record from the left input record-list with 1 matching record from the right input

record-list. The colors of the term “matching” refer to the colors of the records in the

picture.

Notice that in this example I wrote the Select operation to produce all the fields, and in

the same order, from its enclosed Join operation, but in the general case you can write

the Select operation with whatever output fields, each with its specific expression, as

you want.

Notice also that it is mandatory that each and every individual Boolean expression

within the “ON” Boolean expression contains qualified field names from both input

record-lists. Notice also that the “ON” Boolean expression may produce Null and/or

errors. If you want to know more about this, you may click “F.8.9 What is the “ON”

clause of “INNER JOIN” and Outer-Join (“LEFT JOIN” and “RIGHT JOIN”)?”.

The example I just used may lead some SQL beginners to wrongly believe that in an

“INNER JOIN”, each record from one of the input record-lists can only match one or

none records from the other record-list. Actually, the matching of records is extremely

versatile and depends on the specific “ON” Boolean expression that you write. Writing

a suitable “ON” Boolean expression you can produce almost any output record-list that

you want.

Let me show you this with an example. If we used the “Name” field instead of the “ID”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 330 of 725

field for the “ON” matching of records, we would get the following Query code46:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 INNER JOIN

 T_Car_owners AS Cars

 ON Houses.Name = Cars.Name ;

The output record-list from this Query is:

F_Inner_Join_2

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 6 Xi Liu Ford Focus

Notice this output record-list is different from the one of “INNER JOIN” in the

previous example, where we used the “ON” expression “Houses.ID = Cars.ID”. In

the present example, we got the additional record:

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

14 Xi Liu 580 Beacon St. 6 Xi Liu Ford Focus

which comes from the matching of two different persons having the same name.

The following picture graphically shows how the output records are produced:

These 3 output records were produced by joining 1 matching record from the left input

46 This is the Query “F_Join_Inner_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 331 of 725

record-list with 1 matching record from the right input record-list, plus, 2 matching

records from the left input record-list with 1 matching record from the right input

record-list. The colors of the term “matching” refer to the colors of the records in the

picture. You may see how the two left input records “6-Xi Liu-1342 Main St.” and “14-
Xi Liu-580 Beacon St.” match with the right input record “6-Xi Liu-Ford Focus”.

The way an “INNER JOIN” works is that its “ON” Boolean expression will define N

matching record-list pairs “Lmi” and “Rmi” such that all records in “Lmi” match with

all records in “Rmi”. For each such “i” matching record-list pair, the “INNER JOIN”

will join all the ordered record pairs (lmi, rmi) in each set (Lmi, Rmi), as if it were a Cross-

Join. Since you have “N” such record-list pairs, the “INNER JOIN” will join all the

ordered record pairs (lmi, rmi) in the sets (Lmi, Rmi) “1” to “N”. The following picture

shows this graphically:

Notice in the picture how the left matching record-lists “Lmi” may overlap among

themselves, same as the right matching record-lists Rmi may overlap among

themselves. However, the rectangles (Lmi, Rmi) may not overlap among themselves.

The “ON” expression allows you to get the joined ordered input record pairs that you

want in a very flexible way. To show an extreme case, you can write an “ON” Boolean

expression such that the “INNER JOIN” produces the same output record-list as a

Cross-Join. For example, if you run the following Query47:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 INNER JOIN

 T_Car_owners AS Cars

 ON Houses.ID*Cars.ID*0 = 0 ;

you will see that its output record-list is the same as in a Cross-Join: if you check the

“ON” Boolean expression you will quickly realize that it is satisfied by each and every

pair of input records.

As an exercise, you may think of an “ON” Boolean expression that will produce zero

47 This is the Query “F_Join_Inner_Cross” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 332 of 725

output records in an “INNER JOIN” between the two example Tables.

A useful way to understand the “INNER JOIN” is thinking of it as a Cross-Join with

a “WHERE” clause. The following two Queries produce exactly the same output record-

list:

 SELECT L.a, L.b, …, L.k, R.a, R.b, …, R.n

 FROM

 L , R

 WHERE Boolean-exp_X(L.a, L.b, …, L.k, R.a, R.b, …, R.n)

 SELECT L.a, L.b, …, L.k, R.a, R.b, …, R.n

 FROM

 L INNER JOIN R

 ON Boolean-exp_X(L.a, L.b, …, L.k, R.a, R.b, …, R.n)

This being true, you may wonder…“why do we need the “INNER JOIN” at all?” The

answer is that an Inner-Join operation is more efficient than its equivalent Cross-Join

operation.

F.8.6.3 How many output records does an “INNER JOIN” produce?

Knowing how many records an “INNER JOIN” produces is very useful when

debugging your Queries, and also for better understanding how a “INNER JOIN”

works.

An “INNER JOIN” produces:

 num(Lm1)*num(Rm1) + num(Lm2)*num(Rm2) + … + num(LmN)*num(RmN)

records, where each “Lmi” is a subset of “L” and each “Rmi” is a subset “R”, such that

all records in “Lmi” match with all records in “Rmi”. The index “i” goes from 1 to “N”.

It is also required that the “N” (Lmi, Rmi) sets of record pairs contain exactly the same

record pairs as all the matching record pairs (lm, rm) between “L” and “R”.

The function “num()” represents the number of records in the record-list provided as its

argument.

F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN”

or “RIGHT JOIN”)?

You may click:

• “F.8.7.1 What are the output field values of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

• “F.8.7.2 What are the output records of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

• “F.8.7.3 How many output records does an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”) produce?”

If you rather want to know what are the output fields of an Outer-Join, you may click

“F.8.4 What are the output fields of a Join?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 333 of 725

F.8.7.1 What are the output field values of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?

For both “LEFT JOIN” and “RIGHT JOIN” the output record produced by joining

(click F.8.1) the matching record pair (lm, rm) has the field values (in the same order)

from the left “lm” record followed by the field values (in the same order) from the right

“rm” record.

Remind that a record pair (lm, rm) matches when the field values of “lm” and “rm”

jointly produce True in the “ON” Boolean expression.

For a “LEFT JOIN”, the output record produced by joining (click F.8.1) the non-

matching record pair (lnm, void) has the field values (in the same order) from the left

“lnm” record followed by the “SELECT” expressions of the right input record-list “R”

with Null pointers to all their Table fields.

For a “RIGHT JOIN”, the output record produced by joining (click F.8.1) the non-

matching record pair (void, rnm) has “SELECT” expressions of the left input record-

list “L” will Null pointers to all their Table fields followed by the field values (in the

same order) from the right “rnm” record.

The Null pointers to Table fields that are created in void fields may cause a “SELECT”

expression to crash, or to return an exception-value or a Null. You should therefore

carefully handle these created Null pointers (you may click “K.5 Why and how should

I carefully handle Nulls in my Queries?”).

F.8.7.2 What are the output records of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?

A “LEFT JOIN” joins all (lm, rm) matching pairs, plus, all the (lnm, void) non-

matching pairs.

We say that that (lnm, void) is a non-matching pair when all pairs in the set (lnm, R) do

not match. This is, when the “lnm” record does not match with any record in “R”.

In more detail, a “LEFT JOIN” joins the same (lm, rm) input record ordered pairs as

an “INNER JOIN”, plus, all the ordered record pairs (lnm, void) in the set (Lnm, void).

In this statement, the record-list “Lnm” contains all the non-matching “lnm” input

records. This is, “Lnm” is the subset of “L” such that all the pairs (lnm, R) do not match.

A void record has all its fields void. A void field has Null pointers to all the Table

fields in its expanded “SELECT” expression.

A “RIGHT JOIN” is exactly the same as a “LEFT JOIN”, with the only difference

that the input record-list that produces the additional set of records, is the right (second)

one instead of the left (first) one. Therefore, the Null pointers to Table fields that are

created appear in the “SELECT” expressions of the left (first) “L” input record-list.

Therefore, a “RIGHT JOIN” joins all (lm, rm) matching pairs, plus, all the (void, rnm)

non-matching pairs.

We say that that (void, rnm) is a non-matching pair when all pairs in the set (L, rnm) do

not match. This is, when the “rnm” record does not match with any record in “L”.

Using “LEFT JOIN” is usually preferable to using “RIGHT JOIN” because it is

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 334 of 725

considered that the resulting SQL code is more readable. However, a “RIGHT JOIN”

is also useful on some cases.

For both “LEFT JOIN” and “RIGHT JOIN” the order of the output records is

unknown.

If you want to see the differences between Outer-Join operators and the other Join

operations, you may click “F.8.2 What are the Join operators?”.

I am explaining all the Join operators with an example based on the same two Tables,

so you can clearly see the differences between the results they produce. One Table is a

list of house owners and the other Table is a list of car owners. The field “ID” represents

a unique person identification number (e.g., Social Security) to avoid mistaking two

different persons that have the same name. The example Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

Imagine that you want a listing of all persons that own a house, also indicating their

car model (in case they own one). You can get this with a “LEFT JOIN”. The Query

code48 would be:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 LEFT JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID ;

The output record-list from this Query is:

F_Left_Join_1

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St.

Notice how the duplicated field names are qualified by prefixing each of them with

the name of the input record-list that originated it (and a separation period “.”

character). The first two field names are prefixed with “Houses.”, while field names

four and five are prefixed with “Cars.”. Notice also that these names were assigned to

the input record-lists of the Join operation using the SQL clause “AS” (click F.8.3).

Notice how the output records correspond to the ones of an “INNER JOIN”, plus, the

additional record:

48 This is the Query “F_Join_Left_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 335 of 725

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

14 Xi Liu 580 Beacon St.

This additional output record arises from joining the only non-matching left input

record “14-Xi Liu-580 Beacon St.” with a void right record.

The following picture graphically shows how the output records are produced:

These 3 output records were produced by joining 1 matching record from the left input

record-list with 1 matching record from the right input record-list, plus, 1 matching

record from the left input record-list with 1 matching record from the right input

record-list, plus, 1 non-matching record from the left input record-list with a void

right record. The colors of the term “matching” refer to the colors of the records in the

picture.

Based on the picture above, a trick to remind the difference between the Inner-Join and

the Outer-Joins is the following:

• Inner-Join only produces records inside the ones of the Cartesian product

(i.e., inside the ones of a Cross-Join).

• Outer-Joins may produce records outside the ones of the Cartesian product

(i.e., outside the ones of a Cross-Join).

Notice that in this example I wrote the Select operation to produce all the fields, and in

the same order, from its enclosed Join operation, but in the general case you can write

the Select operation with whatever output fields, each with its specific expression, as

you want.

Notice also that it is mandatory that each and every individual Boolean expression

within the “ON” Boolean expression contains qualified field names from both input

record-lists. Notice also that the “ON” Boolean expression may produce Null and/or

errors. If you want to know more about this, you may click “F.8.9 What is the “ON”

clause of “INNER JOIN” and Outer-Join (“LEFT JOIN” and “RIGHT JOIN”)?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 336 of 725

As another example, in case you wanted instead a listing of all persons that own a car,

also indicating their home address (in case they own a house). You can get this by

just exchanging the two input record-lists in the “LEFT JOIN”. However, notice that

I am not exchanging the output field names from the enclosing “SELECT” statement

(so the left/right colors are exchanged), nor the field names in the “ON” expression. The

resulting Query is 49:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_Car_owners AS Cars

 LEFT JOIN

 T_House_owners AS Houses

 ON Houses.ID = Cars.ID ;

The resulting output record-list is:

F_Join_Left_2

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

18 John Welsh Opel Zafira

23 Juan Perez Ford Mustang

Notice how the output records correspond to the ones of an “INNER JOIN”, plus, the

two additional records:

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

18 John Welsh Opel Zafira

23 Juan Perez Ford Mustang

These two additional output records arise from joining the 2 non-matching left input

records “18-John Welsh-Opel Zafira” and “23-Juan Perez-Ford Mustang” with a void

right record. Notice that the “SELECT” is changing the field order. Remind that Null

fields are displayed in MS-Access as blank fields.

F.8.7.3 How many output records does an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”) produce?

Knowing how many records an Outer-Join produces is very useful when debugging

your Queries, and also for better understanding how “LEFT JOIN” and

“RIGHT JOIN” work.

A “LEFT JOIN” produces:

 num(Lm1)*num(Rm1) + … + num(LmN)*num(RmN) + num(Lnm)

record.

A “RIGHT JOIN” produces:

 num(Lm1)*num(Rm1) + … + num(LmN)*num(RmN) + num(Rnm)

49 This is the Query “F_Join_Left_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 337 of 725

records.

Same as in “INNER JOIN”, each “Lmi” is a subset of “L” and each “Rmi” is a subset

of “R”, such that all records in “Lmi” match with all records in “Rmi”. The index “i”

goes from 1 to “N”. It is also required that the “N” (Lmi, Rmi) sets of record pairs

contain exactly the same record pairs as all the matching record pairs (lm, rm) between

“L” and “R”.

The non-matching left record-list “Lnm” includes all the non-matching records “lnm”

that do not match with any record in “R”.

The non-matching right record-list “Rnm” includes all the non-matching records “rnm”

that do not match with any record in “L”.

The function “num()” represents the number of records in the record-list provided as its

argument.

F.8.8 What is the output record-list of a Full-Outer-Join?

You may click:

• “F.8.8.1 What are the output field values of a Full-Outer-Join?”

• “F.8.8.2 What are the output records of a Full-Outer-Join?”

• “F.8.8.3 How many output records does a Full-Outer-Join produce?”

If you rather want to know what are the output fields of a Full-Outer-Join, you may

click “F.8.4 What are the output fields of a Join?”.

F.8.8.1 What are the output field values of a Full-Outer-Join?

The output record produced by joining (click F.8.1) the matching record pair (lm, rm)

has the field values (in the same order) from the left “lm” record followed by the field

values (in the same order) from the right “rm” record.

Remind that a record pair (lm, rm) matches when the field values of “lm” and “rm”

jointly produce True in the “ON” Boolean expression.

The output record produced by joining (click F.8.1) the non-matching record pair

(lnm, void) has the field values (in the same order) from the left “lnm” record followed

by the “SELECT” expressions of the right input record-list “R” with Null pointers to

all their Table fields.

The output record produced by joining (click F.8.1) the non-matching record pair

(void, rnm) has “SELECT” expressions of the left input record-list “L” will Null

pointers to all their Table fields followed by the field values (in the same order) from

the right “rnm” record.

The Null pointers to Table fields that are created in void fields may cause a “SELECT”

expression to crash, or to return an exception-value or a Null. You should therefore

carefully handle these created Null pointers (you may click “K.5 Why and how should

I carefully handle Nulls in my Queries?”).

F.8.8.2 What are the output records of a Full-Outer-Join?

A Full-Outer-Join joins all (lm, rm) matching pairs, plus, all the (lnm, void) and all the

(void, rnm) non-matching pairs.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 338 of 725

We say that that (lnm, void) is a non-matching pair when all pairs in the set (lnm, R) do

not match. This is, when the “lnm” record does not match with any record in “R”.

We say that that (void, rnm) is a non-matching pair when all pairs in the set (L, rnm) do

not match. This is, when the “rnm” record does not match with any record in “L”.

In other words, a Full-Outer-Join joins the same pairs as an “INNER JOIN”, plus, all

the additional (lnm, void) pairs of a “LEFT JOIN”, plus, all the additional (void, rnm)

pairs of a “RIGHT JOIN”.

A void record has all its fields void. A void field has Null pointers to all the Table

fields in its expanded “SELECT” expression.

The order of the output records is unknown.

MS-Access does not provide an operator to produce a Full-Outer-Join. However, I

am explaining Full-Outer-Join because it is an important concept, and on some cases

you may need to write an SQL piece of code for a Full-Outer-Join. If you want to know

more about the output record-list of a Full-Outer-Join, you may click “F.8.8 What is

the output record-list of a Full-Outer-Join?”. If you want to know how to code a Full-

Outer-Join, go the end of this section.

If you want to see the differences between a Full-Outer-Join and the other Join

operations, you may click “F.8.2 What are the Join operators?”.

I am explaining all the Join operators with an example based on the same two Tables,

so you can clearly see the differences between the results they produce. One Table is a

list of house owners and the other Table is a list of car owners. The field “ID” represents

a unique person identification number (e.g., Social Security) to avoid mistaking two

different persons that have the same name. The example Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

Imagine that you want a listing of persons that own a house or own a car, indicating

their house address (in case they own one) and their car model (in case they own one).

You can get this with a Full-Outer-Join. In case the “Full-Outer-Join” operator

existed, the Query code50 would be:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 Full-Outer-Join

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID ;

50 This is the Query “F_Join_Full_Outer” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 339 of 725

The output record-list from such a Query would be:

F_Full_Outer_Join

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St.

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

18 John Welsh Opel Zafira

23 Juan Perez Ford Mustang

Notice how the duplicated field names are qualified by prefixing each of them with

the name of the input record-list that originated it (and a separation period “.”

character). The first two field names are prefixed with “Houses.”, while field names

four and five are prefixed with “Cars.”. Notice also that these names were assigned to

the input record-lists of the Join operation using the SQL clause “AS” (click F.8.3).

Notice how the output records correspond to the ones of an “INNER JOIN”, plus, the

three additional records:

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

14 Xi Liu 580 Beacon St.

 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

The first additional output record arises from joining the 1 non-matching left input

record “14-Xi Liu-580 Beacon St.” with a void right record.

The last 2 additional output records arise from joining a void left record with the 2

non-matching right input records “18-John Welsh-Opel Zafira” and “23-Juan Perez-
Ford Mustang”.

Remind that Null fields are displayed in MS-Access as blank fields.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 340 of 725

The following picture graphically shows how the output records are produced:

Notice how these 5 output records were produced by joining 1 matching record from

the left input record-list with 1 matching record from the right input record-list, plus,

1 matching record from the left input record-list with 1 matching record from the right

input record-list, plus, 1 non-matching record from the left input record-list with a

void right record, plus, a void left record with 2 non-matching records from the right

input record-list. The colors of the term “matching” refer to the colors of the records

in the picture.

Based on the picture above, a trick to remind the difference between the Inner-Join and

the Outer-Joins is the following:

• Inner-Join only produces records inside the ones of the Cartesian product

(i.e., inside the ones of a Cross-Join).

• Outer-Joins may produce records outside the ones of the Cartesian product

(i.e., outside the ones of a Cross-Join).

Full-Outer-Join is considered undesirable because it creates Null pointers to Table

fields (that need to be handled properly) and weakens indexing (which results in worse

performance). Avoid Full-Outer-Join as much as possible. In many cases, what you

want is to “merge” two record-lists into a single one, and you can get this using

“UNION ALL” and “GROUP BY” instead of using a Full-Outer-Join. If you want to

know how to “merge” record-lists using “UNION ALL”, you may click “K.6.9 How do

I “merge” two record-lists?”. If you cannot avoid writing a Full-Outer-Join, you may

click “K.6.8 How do I write a Full-Outer-Join?” where I explain how to do it.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 341 of 725

F.8.8.3 How many output records does a Full-Outer-Join produce?

Knowing how many records a Full-Outer-Join produces is very useful when

debugging your Queries, and also for better understanding how a Full-Outer-Join

works.

A Full-Outer-Join produces:

 num(Lm1)*num(Rm1) + … + num(LmN)*num(RmN) + num(Lnm) + num(Rnm)

records.

Same as in “INNER JOIN”, each “Lmi” is a subset of “L” and each “Rmi” is a subset

“R”, such that all records in “Lmi” match with all records in “Rmi”. The index “i” goes

from 1 to “N”. It is also required that the “N” (Lmi, Rmi) sets of record pairs contain

exactly the same record pairs as all the matching record pairs (lm, rm) between “L”

and “R”.

The non-matching left record-list “Lnm” includes all the non-matching records “lnm”

that do not match with any record in “R”.

The non-matching right record-list “Rnm” includes all the non-matching records “lnm”

that do not match with any record in “L”.

The function “num()” represents the number of records in the record-list provided as its

argument.

F.8.9 What is the “ON” clause of “INNER JOIN” and Outer-Join

(“LEFT JOIN” and “RIGHT JOIN”)?

In an “INNER JOIN”, “LEFT JOIN” or “RIGHT JOIN” operation, the mandatory

“ON” clause indicates what are the left and right matching records, as follows:

 ON ON-Boolean-exp(Ind-ON-Boolean-exps(Left_name.x, Right_name.y, ...))

The “ON” clause contains the “ON” keyword, followed by a Boolean-expression

(denoted “ON-Boolean-exp()” in the code above). This “ON” Boolean-expression is

applied to the joint values of each and every pair of left and right input records of

the Join operator, to determine if the pair matches.

If the result of the “ON” Boolean expression is True, then the record pair matches, and

an output record is produced by joining the left and right input records in the pair.

If the result of the “ON” Boolean expression is False or Null, then the record pair does

not match, and it does not produce an output record.

If the “ON” Boolean-expression produces an exception value (e.g., divide by zero), the

Query will on most cases crash.

It is mandatory that the “ON” Boolean expression contains at least one individual

Boolean expression that includes at least one qualified field name from each of the

two input record-lists, such that if this Boolean expression is True, then the overall

“ON” Boolean expression is also True. If this is not fulfilled, MS-Access will not allow

you to save the Query code, and will typically present the error message:

“JOIN expression not supported.”

Remind that a qualified field name (click C.2.2) is a field name prefixed by the name

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 342 of 725

of the input record-list where it belongs with an intermediate period “.” character (e.g.,

“T_House_owners.Address”).

The above rule for an “ON” Boolean expression is not easy to apply, so my advice is

that to avoid problems you qualify all the field names that you use in the “ON” Boolean

expression. If MS-Access rejects an “ON” Boolean expression where all field names are

qualified, this is because you are using field names from only one of the two input

record-lists, and therefore this expression has to be taken to an inner “WHERE” clause

(see further below).

To clarify the rule to write an “ON” Boolean expression that I have indicated above,

check the following examples51 over the two Tables from subsection F.8.2.2 (and other

sections).

Four examples of correct “ON” Boolean expressions are:

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 ON (T_House_Owners.ID*Len(Address) > T_Car_Owners.ID)

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (T_House_Owners.Name <> T_Car_Owners.Name)

 -- This one is correct, but NOT advisable, because not all field names have

 -- been qualified

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 OR (Address <> Car)

Three examples of wrong “ON” Boolean expressions are:

 -- The "Right" field name is not qualified

 ON (Len(T_House_Owners.ID) > Len(Car)

 -- The second expression does not have a "Right" field name

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (T_House_Owners.ID < 30)

 -- The second expression has unqualified field names

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (Address <> Car)

Notice how the last correct (but not advisable) expression is almost the same as the

last wrong one, with the only difference that the correct one uses “OR” while the wrong

one uses “AND”.

The main reason why the “ON” Boolean expression must contain field names from both

input record-lists is efficiency. If you want to set a given condition (e.g., a Boolean

expression) over field names of only one of the input record-lists, it is much more

efficient to do it using a “WHERE” clause over the corresponding input record-list.

Therefore, an individual Boolean expression in an “ON” clause only makes sense if it

involves field names from both input record-lists.

To summarize these writing rules for the “ON” Boolean expression, in the SQL syntax

at the beginning of this section I have indicated that the elements used to build each

“Ind-ON-Boolean-exp()” must include “Left_name.x” and “Right_name.y”,

where “Left_name” and “Right_name” represent the names of the left and right

input record-list, and “x” and “y” represent field names from the left and right input

record-lists, respectively.

Changing topic, notice that a given “ON” Boolean expression may be commutative or

51 You can find them in Query “F_Join_ON_exp” in “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 343 of 725

not. If the expression is commutative, then you can exchange the qualified field names

from both input record-lists, and the Query result will be the same. If the expression is

not commutative and you exchange the qualified field names from both input record-

lists, then the Query result will be different. This is related to the question discussed in

“F.8.2.2 Are Join operations commutative?”.

A couple examples of commutative and non-commutative “ON” Boolean-expressions

are:

 ON (T_House_Owners.ID = T_Car_Owners.ID) -- Commutative

 ON (T_House_Owners.ID < T_Car_Owners.ID) –- Non-commutative

The “ON” clause cannot be used with the Cross-Join operator, and it must be used with

the “INNER JOIN”, “LEFT JOIN” and “RIGHT JOIN” operators.

If you want to know what is the output record-list of a Join operator using the “ON”

clause, you may click:

• “F.8.6 What is the output record-list of an “INNER JOIN”?”

• “F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

• “F.8.8 What is the output record-list of a Full-Outer-Join?”

If you want to write (syntax) a correct “ON” clause, you may click F.8.10.

F.8.10 How do I write a correct (syntax) Join?

You may click:

• “F.8.10.1 What is a syntax-example of a Join?”

• “F.8.10.2 What are the formal rules (syntax) to write a Join?”

• “F.8.10.3 How do I nest Joins?”

F.8.10.1 What is a syntax-example of a Join?

An illustrative example of a fairly complete Inner-Join operation52 is:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 INNER JOIN

 T_Car_owners AS Cars

 ON (Houses.Name = Cars.Name) AND (Houses.ID <> Cars.ID)

A Join operation may not be the outermost operation of a Query. For this reason, the

Join operation in this example is enclosed in a Select operation.

The Join operator in the example is “INNER JOIN”.

The two input record-lists (at both sides of the Join operator) are:

• The left input record-list is the Table name “T_House_owners”, to which I have

assigned the name “Houses” using the optional “AS” clause.

• The right input record-list is the Table name “T_Car_owners”, to which I have

52 This is the Query “F_Join_Syntax” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 344 of 725

assigned the name “Cars” using the optional “AS” clause.

There are two individual Boolean-expressions in the “ON” Boolean expression:

• “Houses.Name = Cars.Name”, which (as required) includes a qualified field

name from both the left and the right input record-lists.

• “Houses.ID <> Cars.ID”, which (as required) includes a qualified field name

from both the left and the right input record-lists.

• The two individual Boolean-expressions are connected with the “AND” Boolean

operator.

• Notice that if you remove any of the four qualifiers (i.e., one of the prefixes

“Houses.” or “Cars.”) in the “ON” Boolean expression, you will not be able to

save the Query and you will get a syntax error message.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.8.10.2 What are the formal rules (syntax) to write a Join?

A correct Join operation has to be written in the following way:

 { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Left-name]]

 or [({Select-opr or Union-opr }) AS Left-name]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

 {, or INNER JOIN or LEFT [OUTER] JOIN or RIGHT [OUTER] JOIN }

 { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Right-name]]

 or [({Select-opr or Union-opr }) AS Right-name]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

 [ON ON-Boolean-exp(Ind-ON-Boolean-exps(Left_name.x, Right_name.y, ...))]

Right after the green curly brace “{” you may see a bold comma “,” and some words

in bold font: all of them are SQL keywords. The parentheses enclosed in square

brackets “[]” are optional. The elements separated with “or” are alternative options.

Each list of alternative options for an element is enclosed between curly braces “{}”

when the element is not optional and between square brackets “[]” when the element

is optional. Some curly braces “{}” and square brackets “[]” are colored just to make

it easier to see which ones are paired.

All the terms above with a trailing “-opr” are SQL operations.

The elements in gray text are the ones I advise you do not use:

• I advise you do not use the optional “OUTER” keyword just for conciseness,

because this keyword does not add any semantics. The optional “OUTER” keyword

can be placed in the middle of “LEFT JOIN” or “RIGHT JOIN”, as you may see

above.

• I advise you do not use nested Join operations (except for the “,” Cross-Join

operator) because it makes your SQL code far less readable.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

I will now explain how to write the two parts of a Join operation.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 345 of 725

How do I write the two input record-lists?

The two input record-list of the Join operator are written at both sides of the Join

operator. The left (first) input record-list is written just before the Join operator, and

the right (second) input record-list is written just after it. I now explain more detail

about this.

Each of the two input record-lists can be written as either a Table name, a Query name,

a Select operation or a Union operation. The two input record-lists may be the same

record-list.

Notice that I have shaded above the Inner-Join and Outer-Join operations in gray

text because I advise you do not use them as an input record-list of another Join. If

you use either of them as the input record-list, the code becomes less readable and

parentheses rules become complex: these are reasons why I advise you do not use them.

If you want to do a Join operation over an Inner or Outer Join (which is quite frequent),

just enclose the Inner or Outer Join in a Select operation. Notice though that you can

nest Cross-Joins (i.e., do a Cross-Join of a Cross-Join) because the Cross-Join

operation is associative and is not enclosed between parentheses.

The rules for parentheses and the “AS” clause depend on what is the input record-list

after the “FROM” clause, as follows:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to assign

to it a new name, but it cannot have both: you cannot enclose it in parentheses,

and also have an “AS” clause. This writing rule is the same as the one of Select

and Transform operations.

• A Select operation or Union operation

It must be enclosed between parentheses and at least one of both must have an

“AS” clause to assign to it a name. This writing rule is different from the one of

Select, Transform and Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one of Select and Transform operations.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

clause. This writing rule is the same as the one of Select and Transform

operations.

How do I write the “ON” clause?

The “ON” clause is not optional: it cannot be used with the Cross-Join operator, and it

must be used with the “INNER JOIN”, “LEFT JOIN” and “RIGHT JOIN”

operators. If you want to know more about the “ON” clause, you may click “F.8.9 What

is the “ON” clause of “INNER JOIN” and Outer-Join (“LEFT JOIN” and

“RIGHT JOIN”)?”.

It is mandatory that the “ON” Boolean expression contains at least one Boolean

expression that includes at least one qualified field name from each of the two input

record-lists, such that if this Boolean expression is True, then the overall “ON” Boolean

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 346 of 725

expression is also True. If this is not fulfilled, MS-Access will not allow you to save the

Query code, and will typically present the error message:

“JOIN expression not supported.”

Remind that a qualified field name (click C.2.2) is a field name prefixed by the name

of the input record-list where it belongs with an intermediate period “.” character (e.g.,

“T_House_owners.Address”).

The above rule for an “ON” Boolean expression is not easy to apply, so my advice is

that to avoid problems you qualify all the field names that you use in the “ON” Boolean

expression. If MS-Access rejects an “ON” Boolean expression where all field names are

qualified, this is because you are using field names from only one of the two input

record-lists, and therefore this expression has to be taken to an inner “WHERE” clause.

To clarify the rule to write an “ON” Boolean expression I have indicated above, check

the following examples53 over the two Tables from subsection F.8.2.2.

Four examples of correct “ON” Boolean expressions are:

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 ON (T_House_Owners.ID*Len(Address) > T_Car_Owners.ID)

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (T_House_Owners.Name <> T_Car_Owners.Name)

 -- This one is correct, but NOT advisable, because not all field names have

 -- been qualified

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 OR (Address <> Car)

Three examples of wrong “ON” Boolean expressions are:

 -- The "right" field name is not qualified

 ON (Len(T_House_Owners.ID) > Len(Car)

 -- The second expression does not have a "right" field name

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (T_House_Owners.ID < 30)

 -- The second expression has unqualified field names

 ON (T_House_Owners.ID > T_Car_Owners.ID)

 AND (Address <> Car)

Notice how the last correct (but not advisable) expression is almost the same as the

last wrong one, with the only difference that the correct one uses “OR” while the wrong

one uses “AND”.

F.8.10.3 How do I nest Joins?

Although you can actually use a Join operation as an input record-list of the Join

operator (this is, nesting Joins), the code readability becomes poor, and it is very easy

to make a mistake with the parentheses. For these reasons, I advise you avoid nesting

Join operations. If you want to do a Join of a Join, just enclose the innermost join in a

Select operation. As an exception to this advice, you can do a Join of a Join if both

operators are a Cross-Join, because the Cross-Join operator is associative, and each

Cross-Join operation is not enclosed between parentheses.

Since the “,” Cross-Join operator is associative, it does not make any difference if you

add parentheses to enclose the individual Cross-Join operations. For this reason, the

individual Cross-Join operations are not enclosed in parentheses. A nested Cross-Join

53 You can find them in Query “F_Join_ON_exp” in “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 347 of 725

operation would therefore be usually written:

 { [[(] {Table-name or Query-name} [)] [AS Input-record-list-name_1]]

 or [({Select-opr or Union-opr }) AS Input-record-list-name_1 }

 ,
 { [[(] {Table-name or Query-name} [)] [AS Input-record-list-name_2]]

 or [({Select-opr or Union-opr }) AS Input-record-list-name_2 }

 ,
 ...

 ,
 { [[(] {Table-name or Query-name} [)] [AS Input-record-list-name_n]]

 or [({Select-opr or Union-opr }) AS Input-record-list-name_n }

Notice that every input record-list in the nested Cross-Join operation must have a

name, either because it is a Table or Query, or because it is explicitly named with an

“AS” clause.

The following is a concrete example of a nested Cross-Join operation54:

 SELECT T_House_Owners.Address, Cars.Car, Non_capital_cities, Capital

 FROM

 T_House_Owners

 ,

 (

 SELECT Car

 FROM T_Car_Owners

 WHERE ID > 0

) AS Cars

 ,

 F_Select_nested AS Q

 ,

 (

 SELECT Capital

 FROM T_Capital_Cities

) AS Capitals

Finally, remind that a Join operation cannot be the outermost operation in a Query. If

you have a series of nested Join operations, the outermost Join operation must be

enclosed in a Select operation.

F.9 What is a Union operation and how do I write it?

A Union operation is an SQL operation performed with a Union operator (click F.9.1)

plus its corresponding operands. Therefore, a Union operation is the complete SQL

code associated to the Union operator.

A simple example of a Union operation is:

 SELECT City

 FROM T_Cities_in_US

 UNION ALL

 SELECT City

 FROM T_Cities_in_EU

The output record-list of the above Union operation is all the cities in the

“T_Cities_in_US” plus all the cities in the Table “T_Cities_in_EU”.

A Union operation can be the outermost operation in a Query. However, in MS-Access

my advice is that you use a Select operation to enclose the outermost Union operation

54 This is the Query “F_Join_Cross_nested” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 348 of 725

in the Query. One reason for this is that MS-Access prevents you from configuring

field formatting in a Query with an outermost Union operation (click K.4.7).

If you want to know more about a Union operation, you may click:

• “F.9.1 What are the Union operators?”

• “F.9.2 What are the input record-lists of a Union?”

• “F.9.3 What are the output fields of a Union?”

• “F.9.4 What is the output record-list of a Union?”

• “F.9.5 How do I write a correct (syntax) Union?”

• “F.9.6 Why do I find misleading the names of the Union operators?”

F.9.1 What are the Union operators?

The Union operators are consulting (click F.6) operators that work over two input

record-lists.

A simplified view of writing (syntax) a Union operation is:

 Left-Input-record-list

 Union-Operator

 Right-Input-record-list

There are two Union operators: “UNION ALL” and “UNION”.

The “UNION ALL” operator produces an output record-list which is the mixing of its

two input record-lists. This is, the output record-list contains all the records from its

two input record-lists in an unknown order.

The “UNION” operator produces an output record-list in which its two input record-

lists are mixed, and only one record is produced from each set of duplicate records.

Therefore, in the output record-list of a “UNION” operator, you will never find any

duplicate records. Recall that for the purpose of discarding duplicate records Nulls are

considered the same value. Notice that “UNION” is the same as enclosing a

“UNION ALL” into a “SELECT DISTINCT *”.

For both “UNION ALL” and “UNION” it is mandatory that the two input record-lists

have the same number of fields. If the two input record-lists do not have the same

number of fields, the Union operation will crash.

As you may see, the only functional difference between both operators is that

“UNION ALL” preserves all duplicate records, while “UNION” removes all redundant

duplicate records. Notice that “UNION” is slower than “UNION ALL” because the

system has to check for duplicate records, and remove the redundant ones, before

producing the output record-list.

For the case in which its two input record-lists have the same field names,

“UNION ALL” and “UNION” operators are commutative. This is, if you exchange its

two input record-lists (that have the same field names), you get exactly the same

output record-list.

The “UNION ALL” operator is associative, and the “UNION” operator is also

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 349 of 725

associative55. However, the combination of “UNION ALL” and “UNION” is not

associative.

Notice that the Union operators do something different from the conventional union of

sets. I therefore consider that the name of Union operators is somehow misleading

(click F.9.6).

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.9.2 What are the input record-lists of a Union?

The two input record-list of the Union operators are written at both sides of the Union

operator. One of the input record-list is written just before the Union operator, and the

other one is written just after it, as follows:

 [(] { Union-opr or Select-opr } [)]

 { UNION ALL or UNION }

 [(] { Union-opr or Select-opr } [)]

Each of the two input record-lists can be written as either a Select operation or a

Union operation. The input record-lists cannot be a Table name, a Query name nor a

Join operation.

Notice that the two input record-lists of a Union operator may be the same record-

list.

The Select operation or Union operation may be enclosed between parentheses and

cannot have an “AS” clause. This writing rule is different in the Select/Transform and

Join operations.

It is mandatory that both input record-lists have the same number of fields.

Otherwise, the Query will crash.

However, the data/field types of the field pairs, field to field, in its two input record-

lists can be different. This may surprise you, because it seems odd that for example the

field type of field “i” in one input record-list is Number-Long, while the data/field type

of field “i” in the other input record-list is a Date or Date/Time and yet the Union

operation will produce a valid output record-list.

In fact, a valid output record-list is produced on most cases because MS-Access

performs a conversion of the data types, producing a correct output data/field type, and

correct output field values, for each of the input field pairs that have different data

types. If you want to know more about this, you may click “F.9.3 What are the output

fields of a Union?”.

F.9.3 What are the output fields of a Union?

The number of output fields of the Union operators is the same as the number of

input fields of either of its input record-lists.

What are the output field names of a Union?

The output field names of the Union operators are the same as the input field names

of its first (left) input record-list. The names of the second (right) input record-list are

55 There could be some type conversion combinations that make Union operators non-associative.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 350 of 725

ignored.

What is the output field order of a Union?

The output field order of the Union operators is the same as the input field order of

its first (left) input record-list.

What are the output data/field types of a Union?

If the two input fields in the same order position “i” in both input record-lists have the

same data/field type, then that same data/field type will be the one of the

corresponding output field in the same order position “i”.

However, if the two input fields “i” have a different data/field types, then the

data/field type of the corresponding output field “i” will be such that it can represent

the range of values of both input data/field types with the highest precision possible.

To clarify this, I will now present a listing of concrete cases of input data/field type

pairs, and its resulting output data/field type. Remind that in this Lightning Guide

“integer-like” data/field types are Boolean, Byte, Integer, Long and LongLong. The

listing of concrete cases is:

• Union of any combination of two integer-like data/field types:

Result is the integer-like data type, among the two, with a larger range of values.

Remind that a Boolean is stored in two bytes, this is, for this purpose it is equivalent

to an Integer.

• Union of Currency with any integer-like data type (except LongLong):

Result is Currency.

• Union of LongLong with Currency:

Result is Double.

• Union of any integer-like data type with Single:

Result is Single.

• Union of any integer-like data type with Double:

Result is Double.

• Union of Currency with Single:

Result is Double.

• Union of Double with any integer-like data type, Currency or Single

Result is Double.

• Union of String or Date with any other data type:

Result is String.

Date values are represented as a text string (e.g., the string “4/5/2003”). Numeric

values are represented as a text string (e.g., the strings “145” or “34.47”).

In all the cases above, when converting a Boolean value to a number or a string,

True/Yes/On or ticked is represented as the number “-1” or the text string “-1”,

respectively, and False/No/Off or unticked is represented as the number “0” or the text

string “0”, respectively.

What are the output field values and/or the output record-list of a Union?

If you want to know what are the output field values and/or what is the output record-

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 351 of 725

list of a Union, you may click “F.9.4 What is the output record-list of a Union?”.

F.9.4 What is the output record-list of a Union?

You may click:

• “F.9.4.1 What are the output field values of a Union?”

• “F.9.4.2 What are the output records of a Union?”

• “F.9.4.3 How many output records does a Union produce?”

If you rather want to know what are the output fields of Union, you may click

“F.9.3 What are the output fields of a Union?”.

F.9.4.1 What are the output field values of a Union?

The field values in each output record are exactly the same as the ones of its

corresponding input record, unless the data/field types of a given input field pair are

different.

If the data/field types of a given input field pair are different, the output data/field

type will be different to one, or both, input data/field types. This implies that data

type conversion will be performed over the values of the input field(s) whose data/field

type is different from its corresponding output field (click F.9.3).

When performing data type conversion, the field values on some output records may

be changed. If you want to know more about changed values arising from data type

conversion you may click “G.2.5 How do I force a value to belong to a specific data

type?”.

F.9.4.2 What are the output records of a Union?

The output records of the “UNION ALL” operator are the mixing of the records from

its two input record-lists. This is, the output record-list contains all the records from

its two input record-lists in an unknown order.

The output records of the “UNION” operator are the mixing of the records from its two

input record-lists, and only one record is produced from each set of duplicate records.

Therefore, in the output record-list of a “UNION” operator, you will never find any

duplicate records. Recall that for the purpose of discarding duplicate records Nulls are

considered the same value.

F.9.4.3 How many output records does a Union produce?

Knowing how many records a Union produces is very useful when debugging your

Queries.

A “UNION ALL” produces num(L)+num(R) records.

A “UNION” produces num(L)+num(R) minus the number of redundant duplicate

records.

In the expressions above, “L” is the left (first) input record-list, and “R” is the right

(second) input record-list.

The function “num()” represents the number of records in the record-list provided as its

argument.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 352 of 725

F.9.5 How do I write a correct (syntax) Union?

You may click:

• “F.9.5.1 What is a syntax-example of a Union?”

• “F.9.5.2 What are the formal rules (syntax) to write a Union?”

• “F.9.5.3 How do I nest Unions?”

F.9.5.1 What is a syntax-example of a Union?

An illustrative example of a fairly complete Union operation56 is:

 (

 (SELECT ID AS New_1, Name AS New_2, Address AS New_3

 FROM T_House_Owners)

 UNION

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

 UNION

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps

)

 UNION ALL

 (

 SELECT Capital, Cal_Year, Rainfall

 FROM T_Capital_Rainfall

 UNION ALL

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

 UNION ALL

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps

)

The first Select operation is enclosed between parentheses, but the other ones are not,

because parentheses are optional.

Remind that the “UNION” operator is associative, and the “UNION ALL” is also

associative (but their combination is not associative). For this reason, you can safely

write a series of Select operations connected with either “UNION” or “UNION ALL”

operators, as shown in this example.

Notice that each of the two series of “UNION” and “UNION ALL” operations in the

example above are enclosed between parentheses, and both series are connected with an

additional “UNION ALL” operator.

If you added or removed one field to/from any of the Select operations, the Query

would crash, because the number of fields must be the same in the two input record-

lists of the Union operators.

Notice that the data/field type of the fields placed in the same position is not the same.

For the 1st field, all data/field types are Short Text or String. However, for the 2nd field,

the fourth Select has field type Number-Double (field “Cal_Year”) while all the other

ones have field type Short Text. Also, for the 3rd field, the first Select has field type

Short Text, the second and fifth Select has data type Double and the remaining Selects

have field type Number-Long. This is perfectly accepted in a Union operation, and type

56 This is the Query “F_Union_Syntax” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 353 of 725

conversion will be performed (click F.9.3).

Finally, notice that the output field names from this Union operation will be “New_1”,

“New_2” and “New_3”, because these are the field names of the first (i.e., leftmost)

Select operation. See how I assigned these field names with the “AS” clause in the first

Select operation.

F.9.5.2 What are the formal rules (syntax) to write a Union?

A correct Union operation has to be written in the following way:

 [(] { Union-opr-A or Select-opr-A } [)]

 { UNION ALL or UNION }

 [(] { Union-opr-B or Select-opr-B } [)]

The words in bold font are SQL keywords. The parentheses enclosed in square brackets

“[]” are optional. The elements separated with “or” are alternative options. Each list

of alternative options for an element is enclosed between curly braces “{}” when the

element is not optional. Some curly braces “{}” are colored just to make it easier to

see which ones are paired.

All the terms above with a trailing “-opr” are SQL operations.

It is mandatory that both input records-lists have the same number of fields.

Otherwise, the Query will crash with a syntax error message.

Notice that the two input record-lists of a Union operator may be the same record-

list.

The outermost series of Union operations of a Query may be enclosed between

parentheses.

F.9.5.3 How do I nest Unions?

The Union operations can be nested, and you will very frequently write a Union

operation as a series of Select operations connected by means of “UNION” or

“UNION ALL” operators. Neither the interior Union operations, nor each of the Select

operations, have to be enclosed in parentheses. This means that the following Union

operation is correct:

 Select-opr-1

 UNION ALL

 Select-opr-2

 UNION ALL

 ...

 UNION ALL

 Select-opr-n

The output record-list from the above Union operation would be all the records

produced by all the Select operations 1 through n. The field names of the output

record-list are the ones of the first (leftmost) input record-list (i.e., the field names of

“Select-opr-1”). Therefore, the field names of the second and subsequent Select

operations are completely ignored.

You may combine both “UNION” or “UNION ALL” operators with a series of Select

operations in a row without parentheses. This means that the following Union operation

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 354 of 725

is correct.

 Select-opr-1

 UNION ALL

 Select-opr-2

 UNION

 Select-opr-3

 UNION ALL

 ...

 UNION

 Select-opr-n

However, in spite of this being a correct SQL piece of code, I strongly recommend

avoiding it. You may write a series of “UNION” operators in a row, or a series of

“UNION ALL” operators in a row, and this is not a problem because the “UNION”

operator is associative, and also the “UNION ALL” operator is associative57. However,

the combination of “UNION” and “UNION ALL” operators is not associative.

Therefore, if you combine “UNION” and “UNION ALL” without parentheses, you will

very likely make a mistake in your intended result, because the output record-list

depends on the evaluation order rules of the expression. If you combine “UNION” and

“UNION ALL” operators in a row, I strongly recommend that you add parentheses, to

indicate explicitly the evaluation order that you want.

F.9.6 Why do I find misleading the names of the Union operators?

I find misleading the names of the Union operators for two reasons.

On the one hand, the conventional mathematical union “U” operation defined between

sets produces all the elements from both sets, except the same elements in both sets,

that are not replicated in the result.

Neither “UNION ALL” nor “UNION” do this. Operator “UNION ALL” produces all

the records from its both operands, regardless of some records being the same in both

input record-lists. Operator “UNION” mixes all the records from its both operands, and

then removes all redundant duplicates. Therefore, “UNION” removes all redundant

duplicates between both input record-lists, but it also removes all redundant duplicates

from each of the input record-lists, even if they were not among its two input record-

lists. I am aware that in set theory, each of the sets cannot contain duplicate elements,

but this only reinforces the fact that the union operator is set theory is different from the

Union operators in SQL.

On the other hand, the “UNION” name contains nothing to remind/highlight that it

removes duplicates. It therefore happens now and then to mistakenly use “UNION”

instead of “UNION ALL”.

I think that naming them “MIX” and “MIX DISTINCT” instead of “UNION ALL” and

“UNION”, respectively, would have been a better choice.

F.10 What is a Transform operation and how do I write it?

This chapter also answers the questions:

• How do I create cross tables?

57 There could be some type conversion combinations that make Union operators non-associative.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 355 of 725

• What is a crosstab Query?

A Transform operation is an SQL operation performed with the Transform operator

(click F.10.1) plus its corresponding operands. Therefore, a Transform operation is the

complete SQL code associated to the Transform operator.

A Transform operation produces cross tables in a very flexible way. In its simplest

form, a Transform operation generates new field names from the values of the field

written in the “PIVOT” clause, and also, places the values of the expression written in

the “TRANSFORM” clause in the correct places under the newly generated field

names.

Transform is extremely useful to display your Query results as a cross table. Imagine

you have the following record-list (in this case it is a Table58, but most frequently it is a

Query result or an inner SQL operation):

T_Capital_Rainfall

Capital Cal_Year Rainfall

Beijing 2018 25

Beijing 2019 41

Washington 2018 22

Washington 2019 17

Beijing 2020 27

Beijing 2021 38

Washington 2020 26

Washington 2021 9

Now you want to display this information as a cross table, with fields “Capital”

(renamed to “Cap_City”), “2018”, “2019”, “2020” and “2021”, and the value of

“Rainfall” in the corresponding cell under the fields “2018”, “2019”, “2020” and

“2021”. In summary, what you want is:

F_Transform_1

Cap_City 2018 2019 2020 2021

Beijing 25 41 27 38

Washington 22 17 26 9

Then, this is exactly what you would get with the following Transform operation59:

 TRANSFORM First(Rainfall) AS GenVals

 SELECT Capital AS Cap_City

 FROM T_Capital_Rainfall

 GROUP BY Capital

 PIVOT Cal_Year ;

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

58 This is the Table “T_Capital_Rainfall” in file “Company_Database.accdb”.
59 This is the Query “F_Transform_1” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 356 of 725

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12). In

this example, we have one “SELECT” field (field name “Cap_City”) and four

“PIVOT” fields (with field names “2018”, “2019”, “2020” and “2021”).

Transform operations cannot be nested. The Transform operation must be the first

operation in a Query, and a Query cannot contain any other Transform operation.

Consequently, a Transform operation cannot be used as an input record-list in any

other Query or SQL operation. A Query that has a Transform operation cannot be used

in any other Query. The Transform operation can therefore only be the very last

operation over a record-list.

If you want to know more about a Transform operation, you may click:

• “F.10.1 What is the Transform operator?”

• “F.10.2 What is the input record-list (“FROM” clause) of a Transform?”

• “F.10.3 What are the output fields of a Transform?”

• “F.10.4 What is the output record-list of a Transform?”

• “F.10.5 Can I see an example of a Transform operation?”

• “F.10.6 What is the “TRANSFORM” clause of a Transform?”

• “F.10.7 What is the “SELECT” clause of a Transform?”

• “F.10.8 What is the “ORDER BY” clause of a Transform?”

• “F.10.9 What is the “WHERE” clause of a Transform?”

• “F.10.10 What is the “GROUP BY” clause of a Transform?”

• “F.10.11 What is the “PIVOT” clause of a Transform?”

• “F.10.12 What is the “IN” clause of a Transform?”

• “F.10.13 How do the clauses from Transform and Select compare?”

• “F.10.14 How do I write a correct (syntax) Transform?”

F.10.1 What is the Transform operator?

Transform is a consulting (click F.6) operator that works over one single input

record-list, plus other operands that are not record-lists.

The Transform operator includes the clauses “SELECT”, “DISTINCT” (optional and

irrelevant), “DISTINCTROW” (optional and not advisable), “FROM”, “WHERE”

(optional), “GROUP BY”, “ORDER BY” (optional) and “IN” (optional).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 357 of 725

A simplified view of writing (syntax) a Transform operation is:

 TRANSFORM PIVOT-field-values-expression()

 SELECT [DISTINCT] [DISTINCTROW] Output-expression() 1 to n

 FROM Input-record-list

 [WHERE Where-Boolean-expression(Input-field-names)]

 GROUP BY Group_by-expression(Input-field-names) 1 to k

 [ORDER BY Order_by-expression() 1 to w]

 PIVOT PIVOT-field-names-expression(Input-field-names) ;

 [IN (List-of-PIVOT-values)]

The clauses enclosed between square brackets “[]” are optional.

The following picture shows the output of the Transform operation:

The Transform operator creates a cross table by converting the distinct values of the

“PIVOT” expression (click F.10.11) into additional generated field names (i.e.,

“columns”) and presenting the results of the “TRANSFORM” expression (click F.10.6)

in the corresponding cells (row x column).

The Transform operator produces:

• The rows by doing record aggregation over the (mandatory) “GROUP BY”

expressions.

• The fixed leftmost columns (the “SELECT” fields names and values) with the

conventional “SELECT” expressions.

• The cross table column names (the “PIVOT” field names) by doing record

aggregation over the (mandatory) “PIVOT” expression,

• The cross table column values by doing record aggregation of the “TRANSFORM”

expression over the “GROUP BY” expressions jointly with the “PIVOT”

expression.

Remind that record aggregation produces only one value from each group of records.

I now explain the above bullet points in more detail.

The number of rows is determined by the 1 to k “GROUP BY” expressions

(click F.10.10). There will be as many rows as groups of (retained) input records (see

below). Each group contains the (retained) input records that produce the same

results in all the 1 to k “GROUP BY” expressions. Notice that the resulting arrays of

“k” results from the “GROUP BY” expressions are all distinct. Notice also that these

result arrays are not shown in the output of the Transform operation and are just

internal for its processing. The “GROUP BY” clause of a Transform works exactly the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 358 of 725

same as the “GROUP BY” clause (click F.7.9) of a Select.

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

The number of select columns “n”, their field names, the field order and the field

values are determined by the “SELECT” clause (click F.10.7) with the “GROUP BY”

clause (click F.10.10). The value of field “j” from the row “i” is produced by applying

the corresponding “SELECT” expression “j”, to all the records in the group “i” of

(retained) input records corresponding to this row. These groups of (retained) input

records are the same as the ones indicated in the previous paragraph.

The number of “PIVOT” columns and their field names are determined by the distinct

values returned by the “PIVOT” expression computed over all the (retained) input

records. The field order is (click F.10.3.3), left to right, ascending alphanumeric by

the value returned by the “PIVOT” expression. However, if the optional “IN” clause

is used, then the number of “PIVOT” columns, the field names and the field order are

all determined by the “IN” list (click F.10.12).

The field value of “PIVOT” field “j” from the row “i” is produced by applying the

“TRANSFORM” expression, to all the records in the group “(i, j)” of (retained) input

records corresponding to row “i” and column “j”. Each group “(i, j)” contains the

(retained) input records that produce the same results in all the 1 to k “GROUP BY”

expressions as the values in row “i” and the same result in the “PIVOT” expression

as the field name of column “j”. If there is a field name collision with a “SELECT”

field, or the “IN” clause is used, this becomes slightly more complex (click F.10.4.1).

The order of records is unknown, unless the optional “ORDER BY” clause

(click F.10.9) is used. The ordering works the same as the “ORDER BY” clause

(click F.7.12) from the Select operator, with just one restriction: the “ORDER BY”

expressions must be a list of any number of exactly the same “GROUP BY”

expressions or the “PIVOT” expression.

The “Input-record-list” is stated in the “FROM” clause. The “FROM” clause in the

Transform operator works exactly the same as the “FROM” clause (click F.7.4) in the

Select operators.

If the optional “WHERE” clause is used, the input records that produce True in the

“Where-Boolean-expression()” are retained, while the other ones are discarded.

The “WHERE” clause (click F.10.9) of a Transform operator works exactly the same as

the “WHERE” clause (click F.7.7) of a Select operator. If against my advice you use the

optional “DISTINCTROW” clause, you may click F.7.8.

Very important to highlight that if the input record-list is a Table name, no records will

be deleted from the Table, and the Table remains unmodified. This is so because all

the SQL consulting operators work over an image of Table’s records, and not over the

Table records themselves. Remind that the Transform operator is a consulting SQL

operator (i.e., one that can only consult Tables) and it is not a data-changing SQL

operator. If you want to actually modify your Table’s records, you may click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 359 of 725

“F.6.2 What are the SQL data-changing operators?”.

If you want to know more about Transform, you may click:

• “F.10.2 What is the input record-list (“FROM” clause) of a Transform?”

• “F.10.3 What are the output fields of a Transform?”

• “F.10.4 What is the output record-list of a Transform?”

• “F.10.5 Can I see an example of a Transform operation?”

• “F.10.13 How do the clauses from Transform and Select compare?”

• “F.10.14 How do I write a correct (syntax) Transform?”

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

F.10.2 What is the input record-list (“FROM” clause) of a Transform?

In a Transform operation (click F.10.1), the mandatory “FROM” clause indicates its

input record-list, as follows:

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

The input record-list is indicated in its “FROM” clause, exactly the same as the one

from the Select operation.

If you want to write (syntax) a correct “FROM” clause, you may click F.10.14.

F.10.3 What are the output fields of a Transform?

You may click:

• “F.10.3.1 What is the number of output fields of a Transform?”

• “F.10.3.2 What are the output field names of a Transform?”

• “F.10.3.3 What is the output field order of a Transform?”

• “F.10.3.4 What are the output data/field types of a Transform?”

• “F.10.4 What is the output record-list of a Transform?”

F.10.3.1 What is the number of output fields of a Transform?

In a Transform operation (click F.10.1), the number of output fields is indicated in

the “SELECT”, “PIVOT” and “IN” clauses as follows:

 TRANSFORM PIVOT-field-values-exp()

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(exp-elements) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(exp-elements) [AS Output-field-name_n]] }

 ...

 PIVOT PIVOT-field-names-exp(Input-field-names)

 [IN (List-of-PIVOT-values)]

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 360 of 725

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

What is the number of output “SELECT” fields of a Transform?

The number “n” of “SELECT” fields is the number of “SELECT” expressions. This

is exactly the same as in a Select operation (click F.7.5).

What is the number of output “PIVOT” fields of a Transform?

If the optional “IN” clause is not used, the number of “PIVOT” fields is the number

of distinct values returned by the “PIVOT” expression computed over all the (retained)

input records.

Else, if the optional “IN” clause is used, then the number of “PIVOT” fields is the

number of values in the “IN” list.

F.10.3.2 What are the output field names of a Transform?

In a Transform operation (click F.10.1), the output field names are indicated in the

“SELECT”, “PIVOT” and “IN” clauses as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(exp-elements) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(exp-elements) [AS Output-field-name_n]] }

 ...

 PIVOT PIVOT-field-names-exp(Input-field-names)

 [IN (List-of-PIVOT-values)]

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

What are the names of output “SELECT” fields of a Transform?

The names of the “n” “SELECT” fields are the identifiers “Output-field-name_i”

from the “SELECT” clause. This is exactly the same as in a Select operation

(click F.7.5).

What are the names of output “PIVOT” fields of a Transform?

Regarding the names of the “PIVOT” fields, we have the following three cases:

• The “IN” clause is not used, and the distinct value (converted to String) returned

by the “PIVOT” expression is different from all the “SELECT” field names.

Then, the name of this “PIVOT” field is the distinct value (converted to String)

returned by the “PIVOT” expression.

• The “IN” clause is used, and the value (converted to String) from the “IN” list is

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 361 of 725

different from all the “SELECT” field names.

Then, the name of this “PIVOT” field is the value (converted to String) from “IN”

list.

• The value (converted to String), which is either a distinct value returned by the

“PIVOT” expression or a value from the “IN” list, is the same as one of the

“SELECT” field names.

Then, the name of this “PIVOT” field is “FieldN”, where “N” is an integer value

assigned by MS-Access.

The data type of the “PIVOT” expression is usually String, but it can also be any other

data type. In case the data type of the expression is not String, then MS-Access will

convert its result to a String (to become a field name). The values True/Yes/On or

ticked and False/No/Off or unticked are converted to the field names “-1” and “0”,

respectively. An integer-like data type value is converted to the field name of the

equivalent String (e.g., “-12”, “14”). A Date value is converted to the field name of the

equivalent String (e.g., “04/05/2003”). A fractional data type is converted to the field

name of the equivalent String, but, replacing the period “.” with underscore “_”. The

reason for this is that names cannot contain a period “.” (click D.2.5). Therefore, the

number “-0.45” is converted to the field name “-0_45”.

In case that one or more input records make the expression in the “PIVOT” clause

produce Null, these Nulls will produce a valid “PIVOT” field name which is “<>”. I

strongly recommend that you avoid using the string “<>” in the “List-of-PIVOT-

values” of the “IN” clause, to avoid confusion with a “PIVOT” field arising from a

Null (which is most likely not intentional).

A Null, either returned by the “PIVOT” expression or written in the “IN” list, will

produce “<>” as the “PIVOT” field name. If both a Null and an explicit “<>” happen,

the field corresponding to Null will be named “<>”, while the field corresponding to

“<>” will be named “FieldN”, where “N” is an integer value assigned by MS-Access.

Field names cannot include the period “.” character (click D.2.5). For this reason, every

period “.” character in a value from the “PIVOT” expression or in a value from the

“IN” list, will be converted to the underscore “_” character in the resulting “PIVOT”

field name. For example, the returned values numeric “3.4” and string “Oh.No” from

the “PIVOT” expression produce the “PIVOT” field names “3_4” and “Oh_No”

respectively; likewise, the values “54.6” and “Hi.there” found in the “IN” list produce

the “PIVOT” field name “54_6” and “Hi.there”, respectively.

If you use the “IN” clause, the data type returned by the “PIVOT” expression must be

the same as the one of all the elements in the “IN” list, either directly or through type

conversion. Otherwise, the Query will crash. Curiously, a Null, either returned by the

“PIVOT” expression or explicitly written in “IN” list, is always considered as having

a compatible data type. I now present a few examples to clarify this paragraph:

• The following works, because “Cal_Year” is a number and all the elements in the

“IN” list are numbers, or can be converted to a number, or are Null.

 PIVOT Cal_Year

 IN (2016, 2020, "2018", "34", Null)

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 362 of 725

• The following crashes, because “Cal_Year” is a number and the string “Hello”

cannot be converted to a number.

 PIVOT Cal_Year

 IN (2016, 2020, "2018", "Hello", Null)

• The following works, because “Date_Time” is a Date/Time and all the elements in

the “IN” list are either Date/Time, or can be converted to a Date/Time, or are Null.

 PIVOT Date_Time

 IN (#2018-1-1#, "3/January/2020", Null)

• The following crashes, because “Date_Time” is a Date/Time and the string

“Hello” cannot be converted to a number.

 PIVOT Date_Time

 IN (#2018-1-1#, "Hello", Null)

F.10.3.3 What is the output field order of a Transform?

In a Transform operation (click F.10.1), the output field order is indicated in the

“SELECT”, “PIVOT” and “IN” clauses as follows:

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(exp-elements) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(exp-elements) [AS Output-field-name_n]] }

 ...

 PIVOT PIVOT-field-names-exp(Input-field-names)

 [IN (List-of-PIVOT-values)]

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

What is the order of output “SELECT” fields of a Transform?

The order of the “n” “SELECT” fields is the same as the one of the “SELECT”

expressions. This is exactly the same as in a Select operation (click F.7.5).

What is the order of output “PIVOT” fields of a Transform?

If the optional “IN” clause is not used, the order of “PIVOT” fields is, left to right,

ascending by the value produced by the “PIVOT” expression. Notice that if the

“PIVOT” expression produces a numeric value, the field ordering will be ascending

numeric, while if it produces a String value the field ordering will be ascending

alphabetical, which is different. You can easily change between both by enclosing the

“PIVOT” expression in a type conversion function (click G.2.5). If a Null is produced,

it will always be the first (leftmost) “PIVOT” field, with field name “<>”.

Else, if the optional “IN” clause is used, then the “PIVOT” field order is the one you

wrote in the “IN” list (click F.10.12).

Notice that the field order just described is maintained even when a “PIVOT” field

name (either converted from the “PIVOT” expression or from the “IN” list) is the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 363 of 725

same as a “SELECT” field name. In this case, the “PIVOT” field name is changed to

“FieldN”, but its position within the “PIVOT” fields is not changed.

The “PIVOT” field name corresponding to a Null value (i.e., the field name “<>”) can

also be reordered by including it in the “IN” list. I strongly recommend that you never

use the string “<>” neither as a “SELECT” field name, nor as a name in the “IN” list,

nor as a name produced by the “PIVOT” expression. If you use “<>” in either of these

three cases, you create the risk of mistaking that field with a “PIVOT” field arising

from Null (which is most likely not intentional).

F.10.3.4 What are the output data/field types of a Transform?

In a Transform operation (click F.10.1), the output data/field types are indicated in

the “TRANSFORM”, “SELECT”, “PIVOT” and “IN” clauses as follows:

 TRANSFORM PIVOT-field-values-exp()

 SELECT [DISTINCT] [TOP int [PERCENT]] [DISTINCTROW or ALL]

 { * or

 Output-exp_1(exp-elements) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(exp-elements) [AS Output-field-name_n]] }

 ...

 PIVOT PIVOT-field-names-exp(Input-field-names)

 [IN (List-of-PIVOT-values)]

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

What is the data/field type of output “SELECT” fields of a Transform?

The data/field type of the “n” “SELECT” fields are the ones of the corresponding

“SELECT” expressions. This is exactly the same as in a Select operation (click F.7.5).

What is the data/field type of output “PIVOT” fields of a Transform?

Regarding the data/field type of the “PIVOT” fields, we have the following three cases:

• The “IN” clause is not used, and the distinct value (converted to String) returned

by the “PIVOT” expression is different from all the “SELECT” field names.

Then, the data type of this “PIVOT” field is the one of the “TRANSFORM”

expression “PIVOT-field-values-exp()”.

• The “IN” clause is used, and the value (converted to String) from the “IN” list is

different from all the “SELECT” field names.

Then, the data type of this “PIVOT” field is unknown (and all this field’s values

are Null).

• The value (converted to String), which is either a distinct value returned by the

“PIVOT” expression or a value from the “IN” list, is the same as one of the

“SELECT” field names.

Then, the data type of this “PIVOT” field is the one of the same-name “SELECT”

field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 364 of 725

If you want to know what are the output field values and/or what is the output record-

list of a Transform, you may click “F.10.4 What is the output record-list of a

Transform?”.

F.10.4 What is the output record-list of a Transform?

You may click:

• “F.10.4.1 What are the output field values of a Transform?”

• “F.10.4.2 What are the output records of a Transform?”

• “F.10.4.3 How many output records does a Transform produce?”

F.10.4.1 What are the output field values of a Transform?

In a Transform, the output field values are determined by the “TRANSFORM”,

“SELECT”, “PIVOT” and “IN” clauses as follows:

TRANSFORM

 PIVOT-field-values-exp (Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_t11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_t1d(INOUT-field-names))

) [AS Output-values-Identifier]

 SELECT [DISTINCT] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

 ...

 PIVOT PIVOT-field-names-exp(Input-field-names)

 [IN (List-of-PIVOT-values)]

The “n” leftmost output fields of a Transform are called the “SELECT” fields,

because they are determined by the “SELECT” clause. The output fields placed to the

right of the “SELECT” fields are called the “PIVOT” fields, because they are

generated by converting to String the returned values of the “PIVOT” expression

(click F.10.11), subject to the modifications of the optional “IN” list (click F.10.12).

What are the values of output “SELECT” fields of a Transform?

The values of the “n” “SELECT” fields are the result of the “SELECT” expressions,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 365 of 725

computed over the groups of (retained) input records produced by the “GROUP BY”

expressions. This is the same as in a Select-group_by_aggreg operation

(click F.7.6.2), with only one difference. The one difference is that in a Transform, the

“SELECT” expressions 1 to n can also use as an element the “PIVOT” expression.

You may see this in the SQL code above. This is somehow surprising, because the

“PIVOT” expression produces multiple values (different in the general case) when

computed over the (retained) input records in the group corresponding to a given

output record (remind that we are using a “GROUP BY” clause). The way this works is

that when evaluating a “SELECT” expression that includes the “PIVOT” expression,

it returns the result as if the “PIVOT” expression was enclosed in the “Min()” SQL

aggregate function. This is, whenever you write the the “PIVOT” expression “PIVOT-

field-names-expression()” within a “SELECT” expression, it works as if you

had written “Min(PIVOT-field-names-expression())”.

Notice that if a “PIVOT” field is discarded because the “IN” clause is used, and the

corresponding result from the “PIVOT” expression is not in the “IN” list, the result

of using the “PIVOT” expression within the “SELECT” expression will remain

unaffected. This is, you will still get the “Min()” value over all the values produced,

even if the “Min()” value is not in the “IN” list.

Finally, as a rather strange case, if you use the “PIVOT” expression as an element of a

“SELECT” expression, and you also use the “IN” clause, the corresponding “SELECT”

expression will produce the exception value “#Error”. Curiously, if the “SELECT”

expression is exactly the same as the “PIVOT” expression, this works fine. This may

be an MS-Access bug.

What are the values of output “PIVOT” fields of a Transform?

Regarding the values of the “PIVOT” fields, we have the following three cases:

• The “IN” clause is not used, and the distinct value (converted to String) returned

by the “PIVOT” expression is different from all the “SELECT” field names.

Then, the value of this “PIVOT” field is the result of the “TRANSFORM” expression

computed over the groups of (retained) input records produced by the

“GROUP BY” expressions jointly with the “PIVOT” expression.

In more detail, the value of field “j” and row “i” is produced by applying the

“TRANSFORM” expression, to all the records in the group “(i, j)” of (retained)

input records corresponding to row “i” and column “j”. Each group “(i, j)”

contains the (retained) input records that produce the same results in all the 1 to k

“GROUP BY” expressions as the values in row “i” and the same result in the

“PIVOT” expression as the field name of column “j”. Since these groups of input

records depend on the result of the “PIVOT” expression, they will be different (in

the general case) for each “PIVOT” field, and therefore, the “TRANSFORM”

expression will produce different values (i.e., different columns of values) below

each of the “PIVOT” fields.

• The “IN” clause is used, and the value (converted to String) from the “IN” list is

different from all the “SELECT” field names.

Then, the value of this “PIVOT” field is Null in all the output records.

• The value (converted to String), which is either a distinct value returned by the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 366 of 725

“PIVOT” expression or a value from the “IN” list, is the same as one of the

“SELECT” field names.

Then, the value of this “PIVOT” field is the same as the one in the same-name

“SELECT” field in each and every output record. This is, the “column” of values

under this field is the same as the “column” of values under the same-name

“SELECT” field.

In the first bullet above, notice that it is not surprising to be able to use the “PIVOT”

expression as one of the elements of the “TRANSFORM” expression, because in this

case the “PIVOT” expression produces the same value in every record of each group.

However, in the explanation above in “What are the values of output “SELECT” fields

of a Transform?” it was surprising that you could use the “PIVOT” expression as an

element of the “SELECT” expressions, because in that case the “PIVOT” expression

may produce different values in the different records of each group.

Why does the same expression produce different values within the “SELECT” and

“TRANSFORM” expressions?

Because in a Transform, the “SELECT” expressions and the “TRANSFORM”

expression are computed over different groups of input records. The “SELECT”

expressions are computed over groups of input records that produce the same results

in all the “GROUP BY” expressions. However, the “TRANSFORM” expression is

computed over groups of input records that produce the same result in all the

“GROUP BY” expressions and also in the “PIVOT” expression.

Let me show this with an example over the Table “T_Capital_Rainfall_District”.

T_Capital_Rainfall_District

Capital District Cal_Year Rainfall

Beijing Dongcheng 2018 14

Beijing Xicheng 2018 11

Beijing Dongcheng 2019 18

Beijing Xicheng 2019 23

Washington Downtown 2018 10

Washington Bloomingdale 2018 12

Washington Downtown 2019 8

Washington Bloomingdale 2019 9

If you now run the Query60:

 TRANSFORM Sum(Rainfall) AS GenVals

 SELECT Capital AS Cap_City, Sum(Rainfall) AS Total

 FROM T_Capital_Rainfall_District

 GROUP BY Capital

 PIVOT Cal_Year ;

60 This is the Query “F_Transform_sum” from the “Company_Database.acccb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 367 of 725

you then get the result:

F_Transform_Sum

Cap_City Total 2018 2019

Beijing 32 14 18

Beijing 34 11 23

Washington 18 10 8

Washington 21 12 9

Notice how the “TRANSFORM” expression “Sum(Rainfall)” and the “SELECT”

expression “Sum(Rainfall)”, that are exactly the same, produce different results

under the field names “Total”, “2018” and “2019”. The reason is that the “SELECT”

expression “Sum(Rainfall)” is computed over the record groups produced by the

“GROUP BY” expressions, while the same “TRANSFORM” expression

“Sum(Rainfall)” is computed over the record groups produced by the “GROUP BY”

expressions jointly with the “PIVOT” expression. In other words, the “SELECT”

expression “Sum(Rainfall)” is the sum for each “Capital” (i.e., adding all

districts and all years) while the “TRANSFORM” expression “Sum(Rainfall)” is the

sum for each “Capital” and each “Cal_Year” (i.e., adding all districts). Notice how

the “TRANSFORM” expression produces a different column of values for each

“PIVOT” field (i.e., for “2018” and “2019”).

Since in this case we are using the “Sum()” aggregate function, the result under “Total”

is the addition of the results under “2018” and “2019”. However, notice that this does

not happen with some other SQL aggregate functions (see the last bullet point

of F.10.5).

F.10.4.2 What are the output records of a Transform?

In a Transform, the output records are determined by the optional “WHERE” clause,

the “GROUP BY” clause and the optional “ORDER BY” clause as follows:

[WHERE Where-Boolean-exp(Input-field-names)]

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

[ORDER BY Group_by-exp_x(Input-field-names) [DESC]

 [, ...

 , Group_by-exp_y(Input-field-names) [DESC]]]

Transform produces as many records as groups of (retained) input records from the

“GROUP BY” expressions. Each group contains the (retained) input records that

produce the same results in all the “GROUP BY” expressions. Notice that the resulting

field value arrays from “Group_by-expression()” 1 to k are all distinct. Notice

also that these resulting field value arrays are not shown in the result of the Transform

operation.

For each such output record its field values will be the ones indicated in the previous

subsection F.10.4.1.

The order of records is unknown, unless the optional “ORDER BY” clause

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 368 of 725

(click F.10.12) is used. The ordering works the same as the “ORDER BY” clause

(click F.7.12) from the Select operator, with just one restriction: the expressions in the

Transform “ORDER BY” clause must be a list of any number of exactly the same

“GROUP BY” expressions.

F.10.4.3 How many output records does a Transform produce?

Knowing how many records a Transform produces is very useful when debugging

your Queries.

A Transform produces as many records as groups of (retained) input records are

produced by the “GROUP BY” expressions. Each group contains the (retained) input

records that produce the same results in all the “GROUP BY” expressions.

Notice that the number of output records is determined only by the (retained) input

records (i.e., the “WHERE” Boolean expression) and the “GROUP BY” expressions.

F.10.5 Can I see an example of a Transform operation?

A simple but quite complete example of a Transform operation61 is:

 TRANSFORM StDev(Temp_Max) AS GenVals

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 , StDev(Temp_Max) AS StDev_T_Max_Year

 FROM T_Capital_temps

 GROUP BY Capital, Cal_Year

 PIVOT Quart

The Table “T_Capital_Temps” used in this example has the following structure and

values:

T_Capital_Temps

City District Cal_Year Quart Temp_max Temp_min

Beijing Dongcheng 2018 Q1 12.3 0

Beijing Dongcheng 2018 Q2 4 1

Beijing Dongcheng 2018 Q3 7.8 6.7

Beijing Dongcheng 2018 Q4 17 15

Beijing Xicheng 2018 Q1 2.26 -3.25

Beijing Xicheng 2018 Q2 5.6 -4.5

Beijing Xicheng 2018 Q3 30 25

Beijing Xicheng 2018 Q4 18 13

Brasilia Asa_Norte 2019 Q1 7.4 -0.96

Brasilia Asa_Norte 2019 Q2 7.57 -1.05

Brasilia Asa_Norte 2019 Q3 17.5 7.4

Brasilia Asa_Norte 2019 Q4 10.04 2.35

Brasilia Guara_I 2019 Q1 10.62 3.17

Brasilia Guara_I 2019 Q2 11.43 4.21

Brasilia Guara_I 2019 Q3 12.4 5.52

Brasilia Guara_I 2019 Q4 11.12 3.81

61 This is the Query “F_Transform_examp” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 369 of 725

T_Capital_Temps

City District Cal_Year Quart Temp_max Temp_min

Washington Anacostia 2018 Q1 6.67 -0.57

Washington Anacostia 2018 Q2 7.55 -1.24

Washington Anacostia 2018 Q3 7.65 -1.07

Washington Anacostia 2018 Q4 7.68 -0.95

Washington Downtown 2018 Q1 12.13 -9.55

Washington Downtown 2018 Q2 5.67 -3.25

Washington Downtown 2018 Q3 2.26 -4.3

Washington Downtown 2018 Q4 17.57 -2.23

Washington Bloomingdale 2018 Q1 3.15 2.13

Washington Bloomingdale 2018 Q2 7.16 -1.92

Washington Bloomingdale 2018 Q3 7.53 -1.58

Washington Bloomingdale 2018 Q4 8.85 -0.9

Then, the Transform operation above would produce the following output record-list:

F_Transform_examp

Cap_City C_Year StDev_T_Max_Year Q1 Q2 Q3 Q4

Beijing 2018 9.28 7.10 1.13 15.70 0.71

Brasilia 2019 3.17 2.28 2.73 3.61 0.76

Washington 2018 3.98 4.52 0.99 3.08 5.40

Let me explain in more detail why are you getting this output record-list.

What is the input record-list of this example?

The input record-list is the Table “T_Capital_Temps” in the “FROM” clause.

Since in this example there is no “WHERE” clause, the retained input records are all

the records in the Table “T_Capital_Temps”.

What is the output record-list of this example?

The output record-list of is determined by the “GROUP BY” clause. The “GROUP BY”

expressions are “Capital” and “Cal_Year”. Therefore, the output records

correspond to the distinct values produced by the (retained) input records in the

“GROUP BY” expressions “Capital” and “Cal_Year”. If you check the Table

“T_Capital_Temps” you will see that there are three distinct arrays of values for

“Capital” and “Cal_Year”:

Capital Cal_Year

Beijing 2018

Brasilia 2019

Washington 2018

What are the output field names of this example?

The names of the “SELECT” fields are “Cap_City”, “C_Year” and

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 370 of 725

“StDev_T_Max_Year”, as indicated in the “SELECT” clause.

The names of the “PIVOT” fields are “Q1”, “Q2”, “Q3” and “Q4”, because these are

the distinct results of the “PIVOT” expression “Quart”, when computed over all the

(retained) input records.

What is the output field order of this example?

The “SELECT” fields are produced in that order because this is how they appear in the

“SELECT” clause.

The “PIVOT” fields are produced in that order because the data type of the “PIVOT”

expression is Strings, and Strings are ordered in alphabetical order.

What are the output field values of this example?

The values of the “SELECT” fields are the result of the “SELECT” expressions

“Capital”, “Cal_Year” and “StDev(Temp_Max)” computed over the groups of

(retained) input records produced by the “GROUP BY” expressions.

The (retained) input records in each group are the ones that produce the same values

in the “GROUP BY” expressions. In this example, there are three groups, each

characterized by the results “(Beijing, 2018)”, “(Brasilia, 2019)” and “(Washington,

2018)”. You may check that the values of the “SELECT” fields above correspond to

the explanation I have just given.

The values of the “PIVOT” fields are the result of the “TRANSFORM” expression

“StDev(Temp_max)” computed over the groups of (retained) input records produced

by the “GROUP BY” expressions jointly with the “PIVOT” expression.

In more detail, the value of field “j” from the output record “i” is produced by applying

the “TRANSFORM” expression “Avg(Temp_max)”, to all the records in the group

“(i, j)” of (retained) input records corresponding to record “i” and field “j”. Each

group “(i, j)” contains the (retained) input records that produce the same results in all

the 1 to k “GROUP BY” expressions as the values in row “i” and the same result in

the “PIVOT” expression as the field name of column “j”.

I want to point out two relevant aspects from this example, that apply to all Transform

operations:

• Notice that the “SELECT” expression “StDev(Temp_Max)” is exactly the same

as the “TRANSFORM” expression “StDev(Temp_Max)”. However, being the

same expression it produces different results because it is computed over different

groups of (retained) input records. The “SELECT” expression is computed over

groups produced by the “GROUP BY” expressions, while the “TRANSFORM”

expression is computed over groups produced the “GROUP BY” expressions

jointly with the “PIVOT” expression.

• Notice that the field values of “StDev_T_Max_Year” are not the result of SQL

aggregate function “StDev()” over the values of fields “Q1”, “Q2”, “Q3” and

“Q4”, in each row. If they were computed like that, the result would be: “7.00”,

“1.19” and “1.93, which is different from the actual output of the Query: “9.28”,

“3.17” and “3.98”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 371 of 725

The reason is that the field values of “StDev_T_Max_Year” are the result of the

“SELECT” expression “StDev(Temp_Max)” computed over the groups of

(retained) input records produced by the “GROUP BY” expressions. In this

example, this means computing the function “StDev()” over all the values of

“Temp_Max” for each “Capital” and each “Cal_Year”.

F.10.6 What is the “TRANSFORM” clause of a Transform?

In a Transform operation (click F.10.1), the mandatory “TRANSFORM” clause

determines the “PIVOT” data/field types (click F.10.3.4) and the “PIVOT” field values

(click F.10.4.1), as follows:

 TRANSFORM PIVOT-field-values-expression()

If you want to write (syntax) a correct “TRANSFORM” clause, you may click F.10.14.

F.10.7 What is the “SELECT” clause of a Transform?

In a Transform operation (click F.10.1), the mandatory “SELECT” clause determines

the “SELECT” fields (click F.10.3), the “SELECT” field names (click F.10.3.2), the

“SELECT” field order (click F.10.3.3), the “SELECT” data/field types (click F.10.3.4)

and the “SELECT” field values (click F.10.4.1), as follows:

 SELECT Output-expression_1() [AS Output-field-name_1]

 [, ...

 , Output-expression_n() [AS Output-field-name_n]]

If you want to write (syntax) a correct “SELECT” clause, you may click F.10.14.

F.10.8 What is the “ORDER BY” clause of a Transform?

In a Transform operation (click F.10.1), the optional “ORDER BY” clause determines

the order of the output records, as follows:

 ORDER BY [Group_by-exp_x(Input-field-names) [DESC]

 , ...

 , Group_by-exp_y(Input-field-names) [DESC]]

 [[,] PIVOT-field-names-exp(Input-field-names) [DESC]]

Each “ORDER BY” expression must be exactly the same as one of the “GROUP BY”

expressions or as the “PIVOT” expression, which is a very strong restriction.

Aside from this restriction on the Transform “ORDER BY” expressions, the

“ORDER BY” of a Transform works exactly the same as the “ORDER BY” of a Select:

you may click “F.7.12 How do I use “ORDER BY” to order the output records of a

Select?”.

If you want to write (syntax) a correct “ORDER BY” clause, you may click F.10.14.

F.10.9 What is the “WHERE” clause of a Transform?

In a Transform operation (click F.10.1), the optional “WHERE” clause indicates what

are the retained input records, as follows:

 WHERE Where-Boolean-expression(Input-field-names)

The “WHERE” Boolean expression is built using the “Input-field-names”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 372 of 725

combining them with functions (excluding SQL aggregate), value operators and

constants.

The “WHERE” clause of a Transform works exactly the same as the “WHERE” clause

of a Select. You may see “F.7.7 What is the “WHERE” clause of a Select?”.

If you want to write (syntax) a correct “WHERE” clause, you may click F.10.14.

F.10.10 What is the “GROUP BY” clause of a Transform?

In a Transform operation (click F.10.1), the mandatory “GROUP BY” clause

determines the output records (click F.10.4.2), as follows:

 GROUP BY Group_by-expression_1(Input-field-names)

 [, ...

 , Group_by-expression_k(Input-field-names)]

Each “GROUP BY” expression is built using the “Input-field-names” combining

them with functions (excluding SQL aggregate), value operators and constants.

The “GROUP BY” of a Transform works exactly the same as the “GROUP BY” of a

Select. You may click “F.7.9 What is the “GROUP BY” clause of a Select-

group_by_aggreg?”.

There is also a very subtle, but very interesting, difference: the “GROUP BY” clause is

optional in a Select, but it is mandatory in a Transform. This is because you can only

do a cross table if there is only one value for each row and column. If you had several

values for each row and column, there would be no criterion to choose one of them to

be displayed. Therefore, the Transform operation guarantees that there is only one

value for each row and column. The way to guarantee this is producing the cross table

values from record aggregation of the rows and columns. Remind that record

aggregation produces only one value from each group of records.

If you want to write (syntax) a correct “GROUP BY” clause, you may click F.10.14.

F.10.11 What is the “PIVOT” clause of a Transform?

In a Transform operation (click F.10.1), the mandatory “PIVOT” clause determines

the “PIVOT” fields (click F.10.3), the “PIVOT” field names (click F.10.3.2) and the

“PIVOT” field order (click F.10.3.3), as follows:

 PIVOT PIVOT-field-names-expression(Input-field-names)

The “PIVOT” clause contains the expression that produces the “PIVOT” field names

(click F.10.3.2), unless the optional “IN” clause (click F.10.12) is used. If the optional

“IN” clause is used, then the “PIVOT” field names are produced by the list of values

in the “IN” clause.

The “PIVOT” expression is built using the “Input-field-names” combining them

with functions (excluding SQL aggregate), value operators and constants.

If you want to write (syntax) a correct “PIVOT” clause, you may click F.10.14.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 373 of 725

F.10.12 What is the “IN” clause of a Transform?

In a Transform operation (click F.10.1), the optional “IN” clause determines the

“PIVOT” fields, the “PIVOT” field names (click F.10.3.2) and the “PIVOT” field

order (click F.10.3.3), as follows:

 IN (List-of-PIVOT-values)

The “IN” keyword is followed by a list of constants. I will call this list the “IN” list.

The “IN” list is enclosed between parentheses and the constants are separated with

commas.

The “IN” clause is most frequently used to specify the order of the “PIVOT” fields

and/or to discard some of them. The way to do this is just by writing in the “IN” list

the “PIVOT” field names that you want (i.e., excluding some if you do not want them),

and writing them in the specific order that you want them.

In the general case, when the “IN” clause is used, the “PIVOT” fields, their field names

and their field order will be exactly the ones and with the same order as they appear

in the “IN” clause (except if they are the same as a “SELECT” field name). I now

explain the possible cases in more detail:

• If the “IN” list does not include a value that is produced by the “PIVOT”

expression, then the “PIVOT” field corresponding to that value does not appear in

the output of the Transform.

• If the “IN” list includes a value that is produced by the “PIVOT” expression, and

that value (converted to String) is not one of the “SELECT” field names, then the

corresponding “PIVOT” field will be in the output of the Transform, in the order

indicated in the “IN” list, with the corresponding field values produced by the

“TRANSFORM” expression.

• If the “IN” list includes a value that is not produced by the “PIVOT” expression,

and that value (converted to String) is not one of the “SELECT” field names, then

that value (converted to String) will be a “PIVOT” field, in the order indicated in

the “PIVOT” list, with all its values being Null.

• If the “IN” list includes a value that (converted to String) is one of the “SELECT”

field names, then a “PIVOT” field will be produced with the name “FieldN”, where

“N” is an integer value assigned by MS-Access. The order of that field is the one of

the corresponding value in the “IN” list. The values of this field will be exactly the

same ones as the ones of “SELECT” field whose name was the same.

The “PIVOT” field name corresponding to a Null value (i.e., “PIVOT” field name

“<>”) can also be reordered by including it in the “IN” clause. I strongly recommend

that you do not use a “PIVOT” expression that produces the string “<>”, to avoid

confusion with a “PIVOT” field name arising from Null (which most likely will be

unintentional).

The “IN” list cannot contain duplicated values: if it does, the Query will crash with a

syntax error message.

As I indicated at the beginning of this section, the “IN” clause is most frequently used

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 374 of 725

to specify the order of the “PIVOT” fields and/or to discard some of them. As I have

explained just above, the “IN” clause can also be used to add copies of “SELECT”

fields and/or to create new “PIVOT” fields. However, the two features in the previous

sentence do not seem very useful to me, because the added fields would have either

replicated values or Null (respectively), in all the output records.

If you want to write (syntax) a correct “IN” clause, you may click F.10.14.

F.10.13 How do the clauses from Transform and Select compare?

To better understand Select and Transform, I think it is useful to compare the

characteristics of the clauses of a Select operation and of a Transform operation:

• In the Transform (mandatory) “SELECT” clause, each “SELECT” expression may

include as its elements the “PIVOT” expression, in addition to the elements in the

(mandatory) “SELECT” clause of a Select-group_by_aggreg. This allows to use

the “PIVOT” field names in the “SELECT” expressions.

Remind that in a Select-group_by_aggreg, the “SELECT” expressions can contain

other “Output-field-names” (as long as you do not create a circular reference,

click F.7.14), any number of “GROUP BY” expressions, and any number of SQL

aggregate functions each having as argument its specific expression over the

“Input-field-names” and other “Output-field-names” (as long as you do

not create a circular reference, nor a nested SQL aggregate function, click F.7.14).

• The Transform (optional) “DISTINCT” clause does not produce any effect in the

results of the Transform operation, while in the Select operation the (optional)

“DISTINCT” clause removes all the redundant output duplicate records.

• The Transform (optional) “ORDER BY” clause can only use as its expressions the

“GROUP BY” expressions (over the Input-field-names) or the “PIVOT”

expression (over the Input-field-names). Aside from this, its functionality is

the same as the (optional) “GROUP BY” clause from a Select.

• Transform does not have the (optional) “HAVING” and “TOP” clauses, that the

Select operator has.

• Select does not have the (mandatory) “TRANSFORM” and “PIVOT” clauses nor the

(optional) “IN” clause, that the Transform operator has.

• Both Transform and Select have the (not advisable) (optional) “DISTINCTROW”

clause.

F.10.14 How do I write a correct (syntax) Transform?

You may click:

• “F.10.14.1 What is a syntax-example of a Transform?”

• “F.10.14.2 What are the formal rules (syntax) to write a Transform?”

• “F.10.14.3 Can I nest Transform operations?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 375 of 725

F.10.14.1 What is a syntax-example of a Transform?

An illustrative example of a fairly complete Transform operation62 is:

 TRANSFORM 5*Out_fld

 + Len("Q" & Quart)

 + Exp(Len(Capital))

 + Sum(1+Cal_Year) AS GenVals

 SELECT Log(2*Out_fld) AS Nonsense_1

 , Len("T" & ("Q" & Quart)) AS Nonsense_2

 , 5*(2*Cal_Year) AS Nonsense_3

 , 5*Max(Len(Quart & Capital)) AS Out_fld

 FROM T_Capital_temps

 GROUP BY Len(Capital), 2*Cal_Year

 ORDER BY 2*Cal_Year DESC, Len(Capital)

 PIVOT "Q" & Quart ;

The elements of the “TRANSFORM” expression are:

• The “SELECT” field name “Out_fld”.

• The “PIVOT” expression “"Q" & Quart”.

• The first “GROUP BY” expression “Len(Capital)”.

• The SQL aggregate function “Sum()” computed over an expression that includes

the input field name “Cal_Year”.

There are four “SELECT” expressions:

• Each of the four “SELECT” expressions is assigned a “SELECT” field name using

the optional “AS” clause. The four “SELECT” field names are “Nonsense_1”,

“Nonsense_2”, “Nonsense_3” and “Out_fld”.

• The “SELECT” expression of field “Nonsense_1” uses as an element the

“SELECT” field name “Out_fld”.

• The “SELECT” expression of field “Nonsense_2” uses as an element the

“PIVOT” expression “"Q" & Quart”.

• The “SELECT” expression of field “Nonsense_3” uses as an element the second

“GROUP BY” expression: “2*Cal_Year”.

• The “SELECT” expression of field “Out_fld” uses as an element the SQL

aggregate function “Max()” computed over an expression that includes the input

field names “Quart” and “Capital”.

The input record-list in the “FROM” clause is:

• The Table name “T_Capital_temps” (click F.10.5).

The two “GROUP BY” expressions are:

• “Len(Capital)”, that uses as an element the input field name “Capital”.

• “2*(Cal_Year)”, that uses as an element the input field name “Cal_Year”.

62 This is the Query “F_Transform_Syntax” from the “Company_Database.accdb” file.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 376 of 725

The two “ORDER BY” expressions are (left to right):

• “2*(Cal_Year)” using the keyword “DESC” to indicate descending order. This

expression is exactly the same as the second “GROUP BY” expression.

• “Len(Capital)” in ascending (default) order. This expression is exactly the

same as the first “GROUP BY” expression.

The elements of the “PIVOT” expression are:

• The input field name “Quart”.

Let me point out a few relevant issues:

• If you remove the parentheses enclosing the “PIVOT” expression in “"Q" &

Quart” from the second “SELECT” expression, the Query will produce a syntax

error. This is because without the parentheses, the evaluation order of the

expression evaluates first “"T" & "Q"”, and this causes that the “PIVOT”

expression is not recognized.

• If you modify in any way the “ORDER BY” expressions (e.g., by adding “+1”), the

Query will produce a syntax error. This is because each “ORDER BY” expression

must be exactly the same as one of the “GROUP BY” expressions.

• If you add the “SELECT” expression “Count(Out_fld)”, the Query will produce

a syntax error. This is because you are using the “Max()” SQL aggregate function

as an argument of the “Count()” SQL aggregate function, through the “SELECT”

field name “Out_fld”. You are therefore nesting SQL aggregate functions, which

is not allowed.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 377 of 725

F.10.14.2 What are the formal rules (syntax) to write a Transform?

A correct Transform operation has to be written in the following way:

 TRANSFORM

 PIVOT-field-values-exp (Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_t11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_t1d(INOUT-field-names))

) [AS Output-values-Identifier]

 SELECT [DISTINCT] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

[WHERE Where-Boolean-exp(Input-field-names)]

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

[ORDER BY [Group_by-exp_x(Input-field-names) [DESC]

 , ...

 , Group_by-exp_y(Input-field-names) [DESC]]

 [[,] PIVOT-field-names-exp(Input-field-names) [DESC]]]

 PIVOT PIVOT-field-names-exp(Input-field-names)

[IN (List-of-PIVOT-values)]

The words in bold font are SQL keywords. The elements enclosed in square brackets

“[]” are optional, and you may use each of these elements or not, depending on your

desired result from the Transform operation. The elements separated with “or” are

alternative options. Each list of alternative options for an element is enclosed between

curly braces “{}” when the element is not optional and between square brackets “[]”

when the element is optional. Some curly braces “{}” and square brackets “[]” are

colored just to make it easier to see which ones are paired.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 378 of 725

The elements in gray text are the ones I advise you do not use:

• I advise you do not use the optional “AS” clause for the “TRANSFORM” expression

because it does not have any effect.

• I advise you do not use the optional “DISTINCT” clause because it does not have

any effect.

• I advise you do not use the optional “DISTINCTROW” clause because it is not

compatible with SQL server, and because you can get its same functionality in an

easy way. If you want to know more, you may click “F.7.8 What is the

“DISTINCTROW” clause of a Select?”.

• I advise you do not use the optional “ALL” clause because it does not have any

effect.

All the terms above with a trailing “-exp” are expressions. The terms enclosed

between the parentheses of each expression are the elements that can be used to build

that specific expression, by combining these elements with functions (excluding SQL

aggregate), value operators and constants.

All the terms above with a trailing “-opr” are SQL operations.

The “Input-field-names” are all the input field names from the input record-list.

The “INOUT-field-names” are the 1 to v “Input-field-names” and/or the 1 to n

“Output-field-names”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

The Transform operation must be the first in a Query code, and a Query can only

contain this first Transform operation. A Transform operation cannot be used as an

input record-list in any other Query or expression. A Query that has a Transform

operation cannot be used in any other Query. A Transform operation is therefore the

last operation that can be performed over a record-list.

I will now explain how to write the different clauses of the Transform operation in the

order they appear in the SQL code, because I think this is more convenient for syntax

purposes.

How do I write the “TRANSFORM” clause?

TRANSFORM

 PIVOT-field-values-exp(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_t11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_t1d(INOUT-field-names))

) [AS Output-values-Identifier]

The “PIVOT-field-values-exp()” expression that you write after the

“TRANSFORM” keyword is built over the elements:

• “Output-field-names” 1 to n

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 379 of 725

• “PIVOT-field-names-exp(Input-field-names)”

This is, exactly the same “PIVOT” expression.

• “Group_by-exp(Input-field-names) 1 to k

This is, any number of exactly the same “GROUP BY” expressions.

• “SQL_agg_func(exp(INOUT-field-names))”

This is, any number of SQL aggregate functions (click F.7.18) each having as

argument its specific expression over “Input-field-names” and/or

“Output-field-names” (as long as you do not create a nested SQL

aggregate function, click F.7.14).

You cannot assign an identifier (with an “AS” clause) neither to individual

“GROUP BY” expressions, nor to the “PIVOT” expression. Therefore, you have to

write them as such when you use them as elements to build the “TRANSFORM”

expression. This may be cumbersome when a “GROUP BY” expression or the

“PIVOT” expression is large, but there is no way to avoid this.

When you use the “GROUP BY” expressions and/or the “PIVOT” expression as part

of a larger “TRANSFORM” expression, I strongly advise you to write each of the

“GROUP BY” expressions and/or the “PIVOT” expression between parentheses to

prevent that MS-Access rejects the larger “TRANSFORM” expression due to a different

evaluation order than the one you expected (see the example in F.7.16.1).

Although you can use the “Output-field-names” as elements for the

“TRANSFORM” expression and for the “SELECT” expressions, remind that you

cannot use them for the “ORDER BY” expressions.

How do I write the “SELECT” clause?

 SELECT [DISTINCT] [DISTINCTROW or ALL]

 Output-exp_1(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_o11(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_o1y(INOUT-field-names))

) [AS Output-field-name_1]

 [, ...

 , Output-exp_n(Output-field-names

 , PIVOT-field-names-exp(Input-field-names)

 , Group_by-exp_1(Input-field-names)

 , ...

 , Group_by-exp_k(Input-field-names)

 , SQL_agg_func(exp_on1(INOUT-field-names))

 , ...

 , SQL_agg_func(exp_onz(INOUT-field-names))

) [AS Output-field-name_n]]

The “SELECT” clause is written like in a Select-group_by_aggreg, but, using also the

“PIVOT” expression as an element for the “Output-exp_i()” expressions.

After the “SELECT” keyword you write the “SELECT” expressions “Output-

exp_i()” separated with commas “,”. Each “SELECT” expression that you write

produces one “SELECT” field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 380 of 725

Each “Output-exp_i()” is built over the same elements as the ones in the

“TRANSFORM” expression (see the “TRANSFORM” clause slightly above for an

explanation), with the additional restriction in this case that if using “Output-field-

names” you do not create a circular reference (click F.7.14). Remind also the advice

about enclosing each of the “GROUP BY” expressions and/or the “PIVOT” expression

between parentheses, to avoid problems with expression evaluation order (see the

example in F.7.16.1).

If you add after a “SELECT” expressions the keyword “AS” followed by a name, this

will be the name of this “SELECT” field. If you do not add this “AS” clause, then you

have two cases:

• If the “SELECT” expression consists exactly of a single input field name, then the

“SELECT” field name will be that same input field name.

• Otherwise, MS-Access will assign to that “SELECT” expression the field name

“ExprXXXX”, where “XXXX” is a four-digit integer number.

Be aware that an expression “exp_o()” that is the argument of a given SQL aggregate

function cannot contain any SQL aggregate function. This cannot happen in a direct

manner, nor through a reference to another “Output-field-name”.

How do I write the “FROM” clause?

 FROM { [[(] {Table-name or Query-name} [)]]

 or [{Table-name or Query-name} [AS Input-record-list-name]]

 or [({Select-opr or Union-opr }) [AS Input-record-list-name]]

 or [[(] Inner-or-Outer-Join-opr [)] or Cross-Join-opr] }

The writing rules are exactly the same as in the Select operation.

Right after the “FROM” keyword you write the input record-list. The input record-list

can be a Table name or a Query name or a Join operation or a Select operation or a

Union operation. Notice that this is different from the writing rules (syntax) of the Join

operation.

Let me clarify the rules on parentheses and “AS” clause, depending on what is the input

record-list after the “FROM” keyword:

• A Table name or Query name

It may be enclosed between parentheses, or, it may have an “AS” clause to

assign to it a new name, but it cannot have both: you cannot enclose it in

parentheses, and also have an “AS” clause. This writing rule is the same as the

one in the Join operation.

• A Select operation or Union operation

It must be enclosed between parentheses. It may also have an “AS” clause to

assign to it a name. This writing rule is different from the one of the Join and

Union operations.

• A Join operation other than a Cross-Join

It may be enclosed between parentheses, and it must not have an “AS” clause.

This writing rule is the same as the one in the Join operation.

• A Cross-Join operation

It must not be enclosed between parentheses, and it must not have an “AS”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 381 of 725

clause. This writing rule is the same as the one in the Join operation.

How do I write the “WHERE” clause?

 WHERE Where-Boolean-exp(Input-field-names)

The writing rules of the “WHERE” clause are exactly the same as in the Select operation.

The “Where-Boolean-exp()” expression that you write after the “WHERE” keyword

is built by combining the input field names with functions (excluding SQL aggregate),

value operators and constants.

How do I write the “GROUP BY” clause?

 GROUP BY Group_by-exp_1(Input-field-names)

 [, ...

 , Group_by-exp_k(Input-field-names)]

The writing rules of the “GROUP BY” clause are exactly the same as in the Select

operation.

Each of the expressions “Group_by-exp-i(Input-field-names)” that you write

after the “GROUP BY” keyword is built by combining the input field names with

functions (excluding SQL aggregate), value operators and constants.

How do I write the “ORDER BY” clause?

 ORDER BY [Group_by-exp_x(Input-field-names) [DESC]

 , ...

 , Group_by-exp_y(Input-field-names) [DESC]]

 [[,] PIVOT-field-names-exp(Input-field-names) [DESC]]

The “ORDER BY” keyword is followed by a list of expressions separated with commas.

Each expression may be followed by the optional keyword “DESC”. Each of the

expressions must be exactly the same as one of the “GROUP BY” expressions or as

the “PIVOT” expression.

You cannot assign an identifier (with an “AS” clause) neither to individual

“GROUP BY” expressions, nor to the “PIVOT” expression. Therefore, you have to

write them as such. This may be cumbersome when a “GROUP BY” expression or the

“PIVOT” expression is large, but there is no way to avoid this.

How do I write the “PIVOT” clause?

 PIVOT PIVOT-field-names-exp(Input-field-names)

The “PIVOT-field-names-exp()” expression that you write after the “PIVOT”

keyword is built by combining the input field names with functions (excluding SQL

aggregate), value operators and constants.

How do I write the “IN” clause?

 IN (List-of-PIVOT-values)

You write a “List-of-PIVOT-values” enclosed between parentheses after the “IN”

keyword. This list is composed of one or more constants separated with commas. You

can also include Null in the list. The data type of all the constants, either directly or

through type conversion, must be same as the data type of the “PIVOT” expression.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 382 of 725

Final remark

The Transform operation may be enclosed between parentheses.

F.10.14.3 Can I nest Transform operations?

Transform operations cannot be nested. The Transform operation must be the first

operation in a Query, and a Query cannot contain any other Transform operation.

Consequently, a Transform operation cannot be used as an input record-list in any

other Query or expression. A Query that has a Transform operation cannot be used in

any other Query. The Transform operator can therefore only be the very last operation

over a record-list.

F.11 What are the SQL clauses, their expression’s elements

and color codes?

You may click:

• “F.11.1 Given an SQL clause, what are its expression’s elements?”

• “F.11.2 What are the SQL color codes used in this Guide?”

F.11.1 Given an SQL clause, what are its expression’s elements?

I list here all the SQL clauses, and for each of them what are the elements that can be

combined with functions (excluding SQL aggregate), operators and constants to build

the expression(s) associated to the clause. I list all the SQL clauses in alphabetical order:

“ALL” clause

It does not have an expression. My advice is you do not use this clause because it has

no effect.

“DISTINCT” clause

It does not have an expression. You may click “F.7.11 What is the “DISTINCT” clause

of a Select?”.

“DISTINCTROW”

It does not have an expression. My advice is you do not use this clause. You may click

“F.7.8 What is the “DISTINCTROW” clause of a Select?”.

“FROM” clause

It does not have an expression (just the input record-list). You may click “F.7.4 What

is the input record-list (“FROM” clause) of a Select?”.

“GROUP BY” expressions

Their elements are the “Input-field-names”. You may click “F.7.9 What is the

“GROUP BY” clause of a Select-group_by_aggreg?”.

“HAVING” Boolean expression

This depends on the type of SQL operation where the “HAVING” clause is used, as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 383 of 725

follows:

• Select-total_aggreg:

The “HAVING” Boolean expression elements can be any number of SQL aggregate

functions each having as argument its specific expression over “Input-field-

names”.

• Select-group_by_aggreg:

The “HAVING” Boolean expression elements can be the “GROUP BY”

expressions (over “Input-field-names”) plus any number of SQL aggregate

functions each having as argument its specific expression over the “Input-

field-names”.

You may click “F.7.10 What is the “HAVING” clause of Select-group_by_aggreg or

Select-total_aggreg?”.

“IN” clause

It does not have an expression (just a list of values). You may click “F.10.12 What is

the “IN” clause of a Transform?”.

“ON” Boolean expression

It is composed of one or more individual Boolean expressions composed with Boolean

operators. Each individual Boolean expression must include at least one qualified

input field name from each of the two input record-lists. You may click “F.8.9 What

is the “ON” clause of “INNER JOIN” and Outer-Join (“LEFT JOIN” and

“RIGHT JOIN”)?”.

“ORDER BY” expressions

This depends on the type of SQL operation where the “ORDER BY” clause is used and

on the usage of the “DISTINCT” clause, as follows:

• Any Select with the “DISTINCT” clause:

Each “ORDER BY” expression must be exactly the same as one of the “SELECT”

expressions and cannot contain any “Output-field-name”.

• Select-no_aggreg without the “DISTINCT” clause:

Their elements can be the “Input-field-names.

• Select-group_by_aggreg without the “DISTINCT” clause:

Their elements can be any number of the “GROUP BY” expressions (over “Input-

field-names”) and any number of SQL aggregate functions each having as

argument its specific expression over the “Input-field-names”.

You may click “F.7.12 How do I use “ORDER BY” to order the output records of

a Select?”.

• Transform:

Each “ORDER BY” expression must be exactly the same as one of the

“GROUP BY” expressions (over “Input-field-names”). You may click

“F.10.8 What is the “ORDER BY” clause of a Transform?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 384 of 725

“PIVOT” expression

Its elements are the “Input-field-names”. You may click “F.10.11 What is the

“PIVOT” clause of a Transform?”.

“SELECT” expressions

This depends on the type of SQL operation where the “SELECT” clause is used, as

follows:

• Select-no_aggreg:

The “SELECT” expression elements can be the “Output-field-names” and the

“Input-field-names”. You may click “F.7.6.1 What are the output field values

of a Select-no_aggreg?”.

• Select-total_aggreg:

The “SELECT” expression elements can be the “Output-field-names” and any

number of SQL aggregate functions each having as argument its specific expression

over the “INOUT-field-names”. You may click “F.7.6.3 What are the output field

values of a Select-total_aggreg?”.

• Select-group_by_aggreg:

The “SELECT” expression elements can be the “Output-field-names”, the

“GROUP BY” expressions (over “Input-field-names”) and any number of

SQL aggregate functions each having as argument its specific expression over the

“INOUT-field-names”. You may click “F.7.6.2 What are the output field values

of a Select-group_by_aggreg?”.

• Transform:

The “SELECT” expression elements can be the “Output-field-names”, the

“GROUP BY” expressions (over “Input-field-names”), any number of SQL

aggregate functions each having as argument its specific expression over the

“INOUT-field-names” and the “PIVOT” expression (over “Input-field-

names”). You may click “F.10.3 What are the output fields of a Transform?”.

“TOP” or “TOP PERCENT” clause

It does not have an expression (just an integer value). You may click “F.7.13 What is

the “TOP” clause of a Select?”.

“TRANSFORM” expression

Its elements can be the “Output-field-names”, the “GROUP BY” expressions (over

“Input-field-names”), any number of SQL aggregate functions each having as

argument its specific expression over the “INOUT-field-names” and the “PIVOT”

expression (over “Input-field-names”). You may click “F.10.4 What is the output

record-list of a Transform?”.

“WHERE” Boolean expression

Its elements are the “Input-field-names”. You may click “F.7.7 What is the

“WHERE” clause of a Select?”.

If you want to know the SQL color codes used in this Lightning Guide, you may click

“F.11.2 What are the SQL color codes used in this Guide?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 385 of 725

F.11.2 What are the SQL color codes used in this Guide?

Along Part F I use color codes to better identify the elements used to build the

expressions in the different SQL clauses. These same color codes are also used in other

Parts of this Lightning Guide. However, be aware that along other Parts I may also

use the same colors for other purposes: I think that when this happens it is pretty clear

from context, but just in case I want to say it explicitly.

Each expression belonging to each specific SQL clause is built combining its

corresponding elements with functions (excluding SQL aggregate), operators and

constants.

The following list indicates, for each color, what are the elements depicted with that

color. Colors are listed in alphabetical order:

Blue (dark)

In Transform operations, the functions (excluding SQL aggregate), operators and

constants of the “TRANSFORM” expression, the name of the “TRANSFORM”

expression, and the values of the “PIVOT” fields. Notice that the elements of the

“TRANSFORM” expression will usually keep their own colors.

Blue (light)

In Join operations, the right input field names, the right input “Table-name”, the

right input “Query-name” and the right input record-list name.

In Union operations, the right input records and the keywords of the right input SQL

operation.

In Join and Union operations, the generic (i.e., neither left, nor right) input fields and

input records are colored partly in maroon and partly in light blue.

Brown

In all Select, Join and Union operations, the output fields, the “Output-field-

names”, the output records, the output record-lists, and also the functions (excluding

SQL aggregate), operators and constants of the “SELECT” expressions. Notice that

the individual elements of the “SELECT” expressions will usually keep their own color

codes.

In Transform operations, “SELECT” field names, and also the functions (excluding

SQL aggregate), operators and constants of the “SELECT” expressions. Notice that

the individual elements of the “SELECT” expressions will usually keep their own color

codes.

Fuchsia

In Select-group_by-aggreg, Select-total_aggreg and Transform operations, the SQL

aggregate functions.

Gold

The Query parameters, regardless of being declared or undeclared.

Green

In all Select and Transform operations, the input fields, the “Input-field-names”,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 386 of 725

the input records, the input record-lists, the input “Table-name”, the input “Query-

name” and the “Input-record-list-name” in the “FROM” clause.

In SQL code examples, the SQL “-- comments”.

Maroon

In Join operations, the left input field names, the left input “Table-name”, the left

input “Query-name” and the left input record-list name.

In Union operations, the left input records and the keywords of the left input SQL

operation.

In Join and Union operations, the generic (i.e., neither left, nor right) input fields and

the input records are colored partly in maroon and partly in light blue.

Orange

In Transform operations, the “PIVOT” expression, the “PIVOT” fields names and the

“List-of-PIVOT-values” in the “IN” clause. Notice that the color of the elements

of the “PIVOT” expression (which are the “Input-field-names”) depends on

context:

• In SQL code examples, the “Input-field-names” of the “PIVOT” expression

are also colored in orange, to make it easier to visually identify this expression

within other expressions of the Transform clauses.

• In “dummy” SQL code for syntax descriptions, the “Input-field-names” of the

“PIVOT” expression keep their green color, to highlight what are the allowed

elements for this expression.

Purple

In Select-group_by-aggreg and Transform operations, the “GROUP BY”

expressions. Notice that the color of the elements of the “GROUP BY” expressions

(which are the “Input-field-names”) depends on context:

• In SQL code examples, the “Input-field-names” of the “GROUP BY”

expressions are also colored in purple, to make it easier to visually identify these

expressions within other expressions of the Select-group_by-aggreg and

Transform clauses.

• In “dummy” SQL code for syntax descriptions, the “Input-field-names” of the

“GROUP BY” expressions keep their green color, to highlight what are the allowed

elements for these expressions.

Turquoise

In all consulting operations, the “INOUT-field-names”, which represent the

“Input-field-names” and/or the “Output-field-names”.

F.12 How do I add parameters (type-in variables) to my

Queries?

Just by using one or more variable name(s) as parameter(s). However, it is much

better practice to declare them explicitly using the “PARAMETERS” declaration.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 387 of 725

This is an example of a Query with the “PARAMETERS” declaration:

 PARAMETERS [Desired_City] Text(255), [Desired_District] Text(255) ;

 SELECT City, District, Cal_Year, Quart, Temp_min, Temp_max

 FROM T_Capital_Temps

 WHERE (City = Desired_City) AND (District = Desired_District)

In this Query, the values of the parameters “Desired_City” and

“Desired_District” are typed-in by the user each time that the Query is run, and

each appearance of each parameter in the Query code is replaced by the value that the

user typed-in. This Query would also work without the “PARAMETERS” declaration,

but it is much better SQL programming practice to always declare all the parameters

explicitly.

A parameter is a variable within the Query code whose value is typed-in by the user

each time that the Query is run. The Query can then behave in some different way

every time you run it. Parameters are to Queries like arguments to VBA functions, and

they are extremely useful. Imagine you have the Table of temperatures by capital city

and district (click F.10.5), but larger, with 150 cities, having 15 districts each, and over

12 years. This implies 150*15*12*4 records, which is 108,000 records. Going manually

through such a long Table may be tedious, so you want a Query to instantly provide you

the records from the city, district and calendar year that you want. This is trivial to do

with a parametrized Query.

The “PARAMETERS” declaration is the first statement of your Query code, and it is

followed by the list of variable names that you want to use as parameters, each

variable name followed by its data type, and ending the list with a semicolon “;”. Each

variable name must be enclosed in square brackets and followed by the data type of

the variable.

The correct way to write the “PARAMETERS” declaration is:

 PARAMETERS [Name_1] Data_Type_1, ..., [Name_n] Data_Type_n] ;

 {Select-operation or Transform-operation or Union-operation} ;

All the parameter names “Name_1”, ..., “Name_n” must be different, but the data

types may repeat as needed. Notice that in this particular case, the square brackets

are not used to denote optional or alternative elements, and the square brackets are

actually part of the syntax and are mandatory. For this reason, in this case I am using

curly braces to enclose optional or alternative elements. Text shaded in gray denotes

options that are valid but not recommended.

The data types you can assign to each variable of the “PARAMETERS” declaration are

neither the same as the Table field types, nor the same as the VBA data types,

although they are very similar. The following list presents the specific data types

(written in courier font) that you can assign to each parameter in the

“PARAMETERS” declaration, indicating for each of them its equivalent VBA data type

(written in bold italics, as usual).

• Text {(n)}: String VBA data type.

The part enclosed in curly braces is optional. The integer number “n” between

parentheses indicates the maximum number of characters that the text string may

have. Usual practice is to have n=255.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 388 of 725

• Bit: Boolean VBA data type

• Byte: Byte VBA data type

• Short or Int or Smallint: Integer VBA data type

• Integer or Long: Long VBA data type

• Real or Single: Single VBA data type

• Float or Double: Double VBA data type

• Date or Time or DateTime: Date VBA data type (i.e., date and time value)

• Binary: Binary encoded number.

MS-Access will check that the value you enter matches the corresponding data type. If

what you enter does not match the data type, MS-Access will show you an informative

message and will allow you to enter the parameter again. Examples of data type

mismatch are entering a string in a numeric parameter or entering a wrong date (e.g.,

30th of February) in a date parameter.

Notice there is no data type equivalent to Table field type Large Number, nor to VBA

LongLong data type.

In case you have different parameter names in two or more nested Queries (i.e.,

Queries that use one another), when running the outermost Query, the user will be

prompted to type-in all the different parameters from all the nested Queries.

In case you have the same parameter name, and with a compatible data type, in

several nested Queries (i.e., Queries that use one another) they will all be considered

the same parameter, and the user will be prompted only once for it.

In case you have the same parameter name, and with incompatible data types, in two

or more nested Queries (i.e., Queries that use one another) the Query will crash showing

the error message:

“Wrong data type for parameter '[Param_name]'.”

where “Param_name” is the name of the parameter causing the error.

In this context, the String data type is compatible only with the String data type, all

numeric-like data types are compatible among themselves, and the String data type is

not compatible with any of the numeric-like data types.

When you run a Query with parameters, typing-in the value of a parameter is similar

to typing-in the value of a Table field. If you want to know more about typing-in values,

you may click “E.2.2 How do I type-in a value in a field?”.

F.13 How do I write a Query that changes my Table data?

You may click:

• “F.13.1 What is a Delete operation and how do I write it?”

• “F.13.2 What is an Insert operation and how do I write it?”

• “F.13.3 What is an Update operation and how do I write it?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 389 of 725

• “F.13.4 Can I write a VBA function that deletes, inserts or updates Table records?”

• “F.13.5 When should I use SQL operations that change records from my Tables?”

F.13.1 What is a Delete operation and how do I write it?

This section also answers the question:

• How do I write a Query that deletes Table records?

A Delete operation deletes all the records from the Table “Table_name” that produce

True in its “WHERE” Boolean expression. The Delete operation must be the only

expression in the Query. The “WHERE” expression may make use of all the Table fields.

The way to write (syntax) a Delete operation is:

 DELETE [T_name.*]

 FROM Table_name

 WHERE Boolean-expression(Table_field_names) ;

The elements between square brackets “[]” are optional.

Let me show an example based on the Table “T_Capital_Rainfall_Q”:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

Copy this Table (right-click on it and click on “Copy” from the pop-up menu). Then

paste it (right-click anywhere on the “Navigation Pane” and click on “Paste” from the

pop-up menu), typing-in “T_Insert_Delete” as the Table name. You can then write the

following Query63:

 DELETE

 FROM T_Insert_Delete

 WHERE Capital="Beijing" ;

If you run this Query, it will delete all records where the value of Capital is “Beijing”

from the Table “T_Insert_Delete”.

F.13.2 What is an Insert operation and how do I write it?

This section also answers the question:

• How do I write a Query that inserts Table records?

63 This is the Query “F_Delete” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 390 of 725

You write a Query that inserts records into a Table using the “INSERT INTO” SQL

operator. There are two types of Query that can be written with the “INSERT” operator.

The first type allows to insert many Table records, taking their values from a Table, a

Query or a Join operation. This type is called the Insert-many-records operation:

• “F.13.2.1 How do I write a Query that inserts many Table records?”

The second type allows to insert only one record, with an explicit list of field values.

This type is called the Insert-one-record operation:

• “F.13.2.2 How do I write a Query that inserts only one Table record?”

In either case, the Insert operation must be the only SQL operation in the Query.

If you want additional information, you may click:

• “F.13.2.3 What are the common characteristics to all Insert operations?”

• “F.13.2.4 What is the summary of Insert operations?”

F.13.2.1 How do I write a Query that inserts many Table records?

The way to write (syntax) the Insert-many-records operation is:

 INSERT INTO target_T_name [(Targ_Table_field_name_1

 [, ...]

 [, Targ_Table_field_name_n])]

 [IN externaldatabase]

 <Select-operation>

The elements between square brackets “[]” are optional. The elements separated with

“or” are alternative options.

The term “<Select-operation>” represents a Select operation embedded in the

Insert-many-records operation. If you want to know the writing rules (syntax) of a

Select operation, you may click “F.7.14 How do I write a correct (syntax) Select?”.

The Insert-many-records operation attempts to insert into the target Table

“target_T_name” all the records produced by its embedded Select operation.

The Insert-many-records operation behaves differently depending on the inclusion,

or not, of the optional list of field names from the target Table. This optional list is the

list of field names that is placed after “target_T_name”.

• If you include the optional list of target Table field names

The matching of Select output values to the list of target Table field names is

based on their left to right ordering. This is, the leftmost Select value is assigned

to the leftmost field name in the list of target Table field names, and so on. The

number of Select values must be the same as the number of fields in the list of

target Table field names.

Notice that the order of field names in the list of target Table field names may be

completely different from the order of fields in the target Table.

Notice that the Select output field names have no effect and can be whatever you

want, or you can just not assign output field names.

• If you omit the optional list of target Table field names

The matching of Select output values to target Table field names is done based on

the field name. This is, each Select output value is assigned to the target Table field

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 391 of 725

name with its same field name. This implies that each and every Select output

field name must exist in the target Table: otherwise, the Query will crash showing

the error message:

“The INSERT INTO statement contains the following unknown field name:
'Field_name'. make sure you have typed the name correctly, and try the operation
again.”

where “Field_name” is the field name that caused the error.

The Select output fields must be a subset of, or equal to, the field names of the

target Table.

The order of Select output fields has no effect and can be whatever you want.

If the target Table has one, or more, fields that do not match the Select values, then all

the records to be inserted will have the default value in each of the non-matching

field(s). If one, or more, of the non-matching fields do(es) not have a default value,

then all the records to be inserted will have Null in these field(s).

Let me show an example of an Insert-many-records operation based on the same

Tables “T_Insert_Delete” and “T_Capital_Rainfall_Q” from F.13.1. You write the

following Query64:

 INSERT INTO T_Insert_Delete

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q

 WHERE Capital="Beijing" ;

You then manually delete all the records in “T_Insert_Delete”, and then you run

the above Query (“F_Insert”). You will see that the Query has inserted all the records

from “T_Capital_Rainfall_Q” where “Capital” is “Beijing”.

My advice is you always omit the list of target Table field names in the Insert-many-

records operation. The reason is that it is less error-prone to do the association of values

based on field name than doing it by their order in the list of target Table field names.

F.13.2.2 How do I write a Query that inserts only one Table record?

The way to write (syntax) the Insert-one-record operation is:

 INSERT INTO target_T_name [(Targ_Table_field_name_1

 [, ...]

 [, Targ_Table_field_name_n])]

 VALUES (exp_1() [, exp_2() [, exp_n()]])

The elements between square brackets “[]” are optional. The parentheses are not

optional.

The Insert-one-record operation attempts to insert into the target Table

“target_T_name” only one record whose field values are the ones returned by the

“VALUES” expressions (i.e., the expressions found after the “VALUES” keyword).

The Insert-one-record operation always performs the matching of the returned values

from its “VALUES” expressions based on their left to right position, regardless of using

or not the optional list of target Table field names. The effect of using or not the

64 This is the Query “F_Insert” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 392 of 725

optional list of target Table field names is the following:

• If you include the optional list of target Table field names

The result from the leftmost “VALUES” expression is assigned to the leftmost field

name from the list of target Table field names, and so on.

Target Table fields not included in the list of target Table field names do not match

any of the “VALUES” expressions. Therefore, all the records to be inserted will have

the default value in each of these target Table fields not included in the list. If one,

or more, of the non-included fields do(es) not have a default value, then all the

records to be inserted will have Null in these field(s).

• If you omit the list optional of target Table field names

The result from the leftmost “VALUES” expression is assigned to the leftmost field

name in the target Table, and so on.

The number of “VALUES” expressions must be the same as either the number of field

names in the optional list (when it exists), or the number of field names in the target

Table (when the optional list does not exist). If the number is not the same, MS-Access

does not allow you to save the Query, showing the syntax error message:

“Number of query values and destination fields are not the same.”

My advice is you always include the list of target Table field names in the Insert-

one-record operation. The reason is that it is less error-prone to do the association of

values based on the field name order in the list of target Table field names than on the

Table field order. Also, if you change the field order in the Table, the Insert operation

will work fine, while it will fail if you omit the optional list of target Table field names.

F.13.2.3 What are the common characteristics to all Insert operations?

All Insert operations share the following characteristics:

• An Insert operation must be the only SQL operation in the Query.

• If you use the optional list of target Table field names, then the field names

included in that list must be a subset of, or equal to, the target Table field names.

Otherwise, the Query will crash showing the syntax error message:

“The INSERT-INTO statement contains the following unknown field name:
'Field_name'. Make sure you have typed the name correctly, and try the
operation again.”

where “Field_name” is the field name included in the optional list of target Table

field names that is not one of the field names of the target Table.

• If you use the optional list of target Table field names, then the number of field

names in that list must be the same as either the number of Select values, or the

number of “VALUES” expressions. If the number is not the same, then MS-Access

does not allow you to save the Query, showing the syntax error message:

“Number of query values and destination fields are not the same.”

• If the data type of one, or more, field values to be inserted does not match the field

type of its corresponding target Table field, MS-Access will attempt to do a type

conversion. If a given type conversion is feasible (e.g., the text string “123” into a

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 393 of 725

Number field), the target field will have the corresponding value. If a given type

conversion is not feasible (e.g., the text string “Chicago” into a Number field), the

target field will have a Null (i.e., it will not have the default field value).

• If the number of values (either the number of Select values, or the number of

“VALUES” expressions) is less than the number of target Table fields, then each

non-matching target Table field will be set to its default value as configured in the

target Table. If any such field does not have a configured default value, it will be set

to Null. Remind that the Insert-one-record operation without the optional list of

target Table field names must always insert all the Table fields, while the other types

of Insert operation may insert less fields than the number of fields in the target

Table.

• If any expression returns Null or an exception-value, then Null is placed into the

corresponding field of the record to be inserted.

• MS-Access will perform, on each and every record to be inserted, the usual checks

(i.e., the field/record validation rules, indexing values, master field values and

Required fields). If you want to know more about the checks that MS-Access will

perform, you may click “E.6.1 What checks are done when saving a field value?

When you attempt to save (click Part E) a field value, MS-Access will always do the

following checks:

• Check that the value complies the field type and size

Click “L.4.2.1 How do I fix an invalid value”?”.

• If the field is configured as “Required=Yes” (click D.5.1.7), check that its value is

non-Null. Remind that all Key fields are always configured as “Required=Yes”.

Click “L.4.2.2 How do I fix trying to save Null in a “Required” field?”.

• If it is a Short Text field configured as “Allow Zero Length=No” (click D.5.2.1),

check that its value is not a string of zero length.

Click “L.4.2.3 How do I fix violating “Allow Zero Length=No”?”.

• If pasting a text string, check that the length of the string is lesser or equal than the

“Field Size” property of the Short Text field.

Click “L.4.2.4 How do I fix that I cannot paste a text string in full?”.

• If you chose the value using a drop-down menu configured to only accept values

from the menu (i.e., “Limit to List=Yes”), check that the value exists in the drop-

down menu. Notice that this check will not be done when pasting values.

Click “L.4.2.5 How do I fix a value rejected because it is not in the list?”.

• If the field has a validation rule (click D.5.1.5), check that its Boolean expression

does not return False. Recall from D.5.1.5 that if the Boolean expression returns

Null, the field value is considered valid.

Click “L.4.2.6 How do I fix a value violating a field validation rule?”.

If one or more of the above checks is wrong, MS-Access shows an error message

and/or requests you to fix the field value. The way MS-Access does this depends on

whether you are:

• Editing the record under edition or pasting over a rectangle of field values

over one record (click E.1).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 394 of 725

• Pasting several rows of values as new records or pasting over a rectangle of

field values over several records (click L.4.4).

• Searching and replacing data in records (click E.7.1).

• Cascade updating slave fields (click L.4.3.4).

• Inserting or updating records with an SQL Query.

• What checks are done when entering or modifying a record?”. Every record that

does not comply with one or more checks, will be dropped and will not be inserted

into the target Table. For example, if a Table field cannot take Null (e.g., because it

is a field configured as “Required=Yes”), the Query will work, but the records with

Null in that field will not be inserted.

• MS-Access will show a message indicating how many records have been inserted,

and how many have been discarded. Discarded records are not inserted in an

automatically created Table, as it happens with discarded records in a paste

operation, that are inserted in the “Paste Errors”·Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 395 of 725

F.13.2.4 What is the summary of Insert operations?

The following table summarizes the main characteristics of Insert operations:

Type of

Insert

operation

With list

of target Table field names

Without list

of target Table field names

Many-

records

Matching of Select values to

fields in the list done by order

Matching of Select values to

fields in the target Table done by

field name

Select output field names are

irrelevant

Select output field names must

be a subset of, or equal to, the

target Table field names

Order of Select values matters Order of Select values irrelevant

Same number of Select values as

fields in the list

Not applicable (No list of Table

field names)

Less than or equal number of Select values

as target Table field names

Non-matching target Table fields get default value or Null

One-

record

Matching of “VALUES” expressions to fields done by order

Order of “VALUES” expressions matters

Matching of “VALUES”

expressions to fields in the list

Matching of “VALUES”

expressions to fields in the target

Table

Cannot assign field names to “VALUES” expressions

Same number of “VALUES” expressions as fields in

either the list or the target Table

Target Table fields not in list get

default value or Null

All target Table fields must

match a “VALUES” expression

Both of

them

Must be the only SQL operation in the Query

Field names in list must be a

subset of, or equal to, the target

Table field names

Not applicable (No list of Table

field names)

Same number of either Select

values, or “VALUES” expressions,

as fields in the list

No common behavior.

Data type mismatch between the value to insert and the Table field

type causes the insertion of Null in the field.

Non-matching target Table fields get default value or Null

A “SELECT” or “VALUES” expression returning Null or exception

value results in Null in the corresponding target Table field

Records that do not comply with the Table properties are not inserted.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 396 of 725

F.13.3 What is an Update operation and how do I write it?

This section also answers the question:

• How do I write a Query that modifies Table records?

The Update operation is like a batch “search-and-replace” operation performed over

Table records.

The way to write (syntax) an Update operation is:

 UPDATE Table_name

 SET Field_name_1 = exp_1(Table_field_names)

 [...

 , Field_name_n = exp_n(Table_field_names)]

 WHERE Boolean-exp(Table_field_names) ;

The Update operation modifies the values of the fields “Field_name_1” to

“Field_name_n” from those records of the Table “Table_name” that produce True

in the “WHERE” Boolean expression. For every matching Table record, the current

value of each of its fields “Field_name_1” to “Field_name_n” is replaced by the

result of the corresponding expression “exp_i()” computed over all the field values

of the matching record.

F.13.4 Can I write a VBA function that deletes, inserts or updates Table

records?

You can invoke SQL code from your VBA functions and therefore, you can write VBA

functions that invoke Delete operations, Insert operations and/or Update operations.

Every time you invoke your user-defined VBA function, the corresponding operations

(Delete, Insert and/or Update) will be performed over your database Tables.

F.13.5 When should I use SQL operations that change records from my

Tables?

I advise you do not use SQL operations that change records over your “normal”

database Tables, because it is extremely risky. This applies both to using data-

changing SQL operations in a Query or in VBA function.

I advise you only use data-changing SQL operations over Tables whose content is

automatically generated by other data-changing SQL operations. These are typically

auxiliary Tables and/or temporal Tables used in your Queries.

F.14 How do I write and debug my SQL Queries?

If you want to know how to edit your SQL code, you may click “F.4.4 What SQL Query

editor should I use?”.

If you want to know how to correctly write your SQL Query code, you may click

“F.6 What are the SQL operators I use to write my Queries?” for a general overview of

SQL operators, and check chapters F.7 to F.13 for details on each of the SQL operators.

If you want to know some good practices on writing your SQL Query code, you may

click “K.4 What Query design principles should I follow?”.

If you want to know some good practices on handling Null in SQL Query code, you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 397 of 725

may click “K.5 Why and how should I carefully handle Nulls in my Queries?”.

If you want to know how to write a few useful Query models (like doing partials and

totals, or turning rows into columns), you may click “K.6 What are some useful models

of SQL code?”.

If you want to know how to write fast Queries, you may click “K.7 Why and how do I

design a fast database and fast Queries?”.

If you want to debug your Queries, you may click “Part J. Debugging my SQL

Queries”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 398 of 725

PART G. WRITING EXPRESSIONS

An expression is a mathematical formula composed of variables combined with

constants, operators and/or functions that has parts of it enclosed between

parentheses. If you want to know more, you may click to read “C.2.9 What is an

expression?” and then return here (you return by simultaneously pressing the “Alt” and

“” keys).

MS-Access has three different expression scopes, and within each scope the rules to

write expressions (variables, constants, operators, functions, etc.), are not the same.

The three MS-Access expression scopes are:

• Expressions in SQL code (within user-defined Queries).

• Expressions in VBA code (within user-defined functions).

• Expressions in Table “Design View” (within record/field validation rules, field

default values, calculated fields and “Lookup” property).

An expression is written by combining constants, variables, operators, built-in

functions and user-defined VBA functions. Parentheses are used in the expression to

indicate the desired operator evaluation order.

If you want to know the main differences between the writing rules (syntax) of the

three expression scopes, you may click:

• “G.1 What are the main differences between the three expression scopes?”

If you want to know different aspects of writing expressions, while explicitly indicating

the existing differences between the three expression scopes, you may click:

• “G.2 How do I manage VBA data types and Table field types-sizes?”

• “G.3 What is the data type returned by an expression?”

• “G.4 How do I write a constant?”

• “G.5 How do I use value operators in an expression?”

• “G.6 How do I use functions in an expression?”

• “G.7 What is the evaluation order of an expression?”

• “G.8 How do I use an SQL operation in an expression?”

• “G.9 How are numeric-like values internally represented and processed?”

G.1 What are the main differences between the three

expression scopes?

The three MS-Access expression scopes are:

• Expressions in SQL code (within user-defined Queries).

• Expressions in VBA code (within user-defined functions).

• Expressions in Table “Design View” (within record/field validation rules, field

default values, calculated fields and “Lookup” property).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 399 of 725

If you want to know, element by element, the main differences between writing

expressions in these three expression scopes, you may click:

• “G.1.1 How available field names depend on expression scopes?”

• “G.1.2 How writing field names depends on expression scopes?”

• “G.1.3 How data types depend on expression scopes?”

• “G.1.4 How constants depend on expression scopes?”

• “G.1.5 How value operators depend on expression scopes?”

• “G.1.6 How non-aggregate built-in functions depend on expression scopes?”

• “G.1.7 How domain aggregate functions depend on expression scopes?”

• “G.1.8 How SQL aggregate functions depend on expression scopes?”

• “G.1.9 How user-defined functions depend on the expression scopes?”

• “G.1.10 How using SQL operations (“Subqueries”) depends on the expression

scopes?”

G.1.1 How available field names depend on expression scopes?

• SQL expressions:

You may use any field name available in the SQL operation that encloses the

expression. Remind that SQL expressions may have specific restrictions depending

on the clause (“SELECT” expression, “GROUP BY” expression, …) and the SQL

operation (Select, Join or Transform). For example, in a “GROUP BY” expression,

you may not use output field names. If you want to know more about this, you may

click “F.11.1 Given an SQL clause, what are its expression’s elements?”.

• VBA expressions:

You may only use field names for assigning the result of an SQL operation to an

VBA variable (click K.9.3) and as arguments to domain aggregate functions

(click G.6.2).

• Table “Design View” expressions:

This depends on the specific element in Table “Design View”:

o Field default value: cannot use any field name.

o Field validation rule: can only use the field name to which the validation rule

is associated.

o Calculated fields and record validation rule: all the Table’s field names can

be used.

o “Lookup” property in Table/Form drop-down menus: all the Table’s field

names can be used in the expressions. Notice that you can also write a Query,

in which case you can access, through the Query, all fields from all Tables. If

you want to know more about drop-down menus you may click “D.11 How do

I configure the way to enter data (e.g., a drop-down menu) in a Table/Form

field?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 400 of 725

G.1.2 How writing field names depends on expression scopes?

• SQL expressions:

You may write field names enclosed in square brackets “[]”, and in some cases the

square brackets are mandatory (click D.2.5). You must qualify (click C.2.2) field

names in some cases (click F.8).

• VBA expressions:

This only applies to assigning the result of an SQL operation to an VBA variable

(click G.8.5). In this case, the rules for SQL code apply (click F.6).

• Table “Design View” expressions:

You must write them enclosed in square brackets “[]”. You do not qualify them.

G.1.3 How data types depend on expression scopes?

Data type aspects do not depend on expression scopes.

If you want to know more about data type aspects, you may click:

• “G.2 How do I manage VBA data types and Table field types-sizes?”

• “G.3 What is the data type returned by an expression?”

G.1.4 How constants depend on expression scopes?

• SQL expressions and Table “Design View” expressions:

You may write True, Yes, On and False, No, Off (all without quotes) as Boolean

constants. You may also write Null (without quotes) as a constant. If you are using

a foreign-language version, these constant names will be translated, as well as

month names in dates.

• VBA expressions:

You may only write True and False (both without quotes) as Boolean constants.

You may also write Null (without quotes) as a constant.

If you want to know more about this, you may click “G.4 How do I write a constant?”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

G.1.5 How value operators depend on expression scopes?

• SQL expressions:

You may use all the value operators (click G.5).

• VBA expressions:

You may use all the value operators (click G.5) except “ALIKE”, “IS NULL”,

“NOT IS NULL”, “IN” and “NOT IN”.

• Table “Design View” expressions:

You may use all the value operators (click G.5) except “ALIKE”, “IS NULL”, and

“NOT IS NULL”.

To check which value operators you can use in Table “Design View” expressions,

go to the “Expression Builder” box and click on “Operators”: this will show the

available operators grouped by category. Remind that the “Expression Builder” box

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 401 of 725

is shown by clicking in the three-period “ ” icon placed at the rightmost side of the

properties “Validation Rule”, “Default Value” and “Expression” of the “General”

Tab of field properties (the last one only for Calculated fields).

If you are using a foreign-language version, some (not all) named operators in this

scope have translated names. For example, in the Spanish version the operators

“AND”, “OR”, “XOR”, “BETWEEN AND” and “NOT IN” become “Y”, “O”, “OEx”,

“ENTRE Y” and “NoEs IN”, while the operators, “Mod”, “Imp”, “Eqv”, “IN”

and “Like” are not translated and stay with the same name.

The separation character between values in the lists of “IN” and “NOT IN”

operators is semicolon “;” and not comma “,”. For example, you must write:

 Quart IN ("Q1" ; "Q2" ; "Q3" ; "Q4")

If you want to know more about this, you may click “G.5 How do I use value operators

in an expression?”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

G.1.6 How non-aggregate built-in functions depend on expression

scopes?

• SQL expressions and VBA expressions:

You may use almost all the non-aggregate built-in functions in both scopes.

Click Part M for a list of the available built-in functions, indicating for each of them

if it can be used in SQL expressions and/or in VBA expressions.

• Table “Design View” expressions:

The separation character between function arguments is semicolon “;”, and not

comma “,”. For example, you must write:
 Left([Quart] ; 1)

You may use almost the same non-aggregate built-in functions as in the other two

scopes. To know which non-aggregate built-in functions you can use in Table

“Design View” expressions, go to the “Expression Builder” box, click on

“functions” and then click on “Built-in functions”: this will show the available built-

in functions grouped by category. Remind that the “Expression Builder” box can be

shown by clicking in the three-period “ ” icon placed at the rightmost side of the

properties “Validation Rule”, “Default Value” and “Expression” of the “General”

Tab of field properties (the last one only for Calculated fields).

If you are using a foreign-language version, most built-in functions have translated

names in this scope. For example, in the Spanish version the function names

“Left()”, “Right()”, and “Len()” become “Izq()”, “Der()” and “Longitud()” in this

scope.

If you want to know more about this, you may click “G.6.1 How do I use non-aggregate

built-in functions in an expression?”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 402 of 725

G.1.7 How domain aggregate functions depend on expression scopes?

• SQL expressions and VBA expressions:

You may use all the domain aggregate functions in both scopes.

• Table “Design View” expressions:

You cannot use domain aggregate functions.

If you want to know more about this, you may click “G.6.3 How do I use SQL aggregate

functions in an expression?”.

G.1.8 How SQL aggregate functions depend on expression scopes?

• SQL expressions:

You may use any SQL aggregate function subject to the restrictions of the specific

expression (“SELECT” expression, “HAVING” expression, …) within the specific

SQL operator (Select-group_by_aggreg, Select-total_aggreg or Transform). For

example, you cannot use them in “WHERE” expressions. If you want to know more

about this, you may click “F.11.1 Given an SQL clause, what are its expression’s

elements?”.

• VBA expressions and Table “Design View” expressions:

You cannot use SQL aggregate functions.

If you want to know more about this, you may click “F.7.18 What is an SQL aggregate

function?”.

G.1.9 How user-defined functions depend on the expression scopes?

• SQL expressions and VBA expressions:

You may use user-defined VBA functions.

• Table “Design View” expressions:

You cannot use user-defined VBA functions.

If you want to know more about this, you may click “K.9 How do I write my user-defined

VBA functions and database Subroutines?”.

G.1.10 How using SQL operations (“Subqueries”) depends on the

expression scopes?

• SQL expressions:

You may use a Select operation, enclosed between parentheses, as a value

(click G.8).

• VBA expressions:

This only applies to assigning the result of an SQL operation to an VBA variable

(click G.8.5). In this case, the rules for SQL code apply (click F.6).

• Table “Design View” expressions:

You cannot use an SQL operation in field/record validation rule expressions,

default field value expressions nor calculated field expressions. However, you can

use an SQL operation in the “Lookup” property expressions of a Table/Form

(click D.11.1.1).

If you want to know more about this, you may click “G8 How do I use an SQL operation

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 403 of 725

in an expression?”.

G.2 How do I manage VBA data types and Table field types-

sizes?

This chapter also answers the question:

• What are the data types used in expressions?

A Table field type-size is the data type (and the field size for Number data type) of

each field that is defined in Table design (see “D.4 How do I configure a Table field

data type and size?”).

The VBA data types are the data types defined in the programming language VBA.

The data types returned by operators and functions used in the three expression

scopes are the VBA data types.

VBA expressions only include VBA data types.

SQL expressions and Table “Design View” expressions may include Table fields and

VBA function/operator results, so they may include both VBA data types and Table

field types-sizes. Therefore, there is a clear interrelation between VBA data types and

Table field types-sizes.

Unfortunately, the Table field types-sizes and the VBA data types are not exactly the

same. Luckily, most Table field type-sizes and VBA data types are pairwise

equivalent, so you can cross assign them between Table fields and expression without

any problem.

A value from a Table field type-size and a value from its equivalent VBA data type

may be cross assigned between expression variables and Table’s fields as if they were

of the same type. Therefore, you can assign a value from a VBA data type to a Table

field that has its equivalent field type-size. Conversely, you can use a value from a

Table field type-size as an operand of a VBA operator or as an argument of a VBA

function that has its equivalent VBA data type. Even if both data types are not

equivalent, you can do cross assignments, because MS-Access automatically

performs type conversions, although doing this may cause some problems

(click G.2.6).

If you want to know more about this, you may click:

• “G.2.1 What VBA data types vs. Table field types-sizes are equivalent?”

• “G.2.2 What VBA data types vs. Table field types-sizes are not equivalent?”

• “G.2.3 What is the result of combining different data/field types in expressions?”

• “G.2.4 How are data/field types grouped for easier reference?”

• “G.2.5 How do I force a value to belong to a specific data type?”

• “G.2.6 Why should I force a value into a specific data type?”

G.2.1 What VBA data types vs. Table field types-sizes are equivalent?

The following table shows what Table field types-sizes (i.e., the field type plus the

“Field Size” property for the Number field type) and what VBA data types are

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 404 of 725

equivalent. The table also indicates the details about storage space, range of values and

precision:

Table VBA

Field
Type

Field Size
(property)

Data

Type

Storage

(Bytes)

Range of Values

and Precision

Number

Byte Byte 1
0 to 255

Precision: 3 significant decimal digits

Integer Integer 2
-32,768 (-(215)) to 32,767 (215-1)

Precision: 5 significant decimal digits

Long
Integer

Long 4

 -2,147,483,648 -(231)

to 2,147,483,647 (231-1)

Precision: 10 significant decimal digits

Single Single 4
Approx.: ±1.17*10-38 to ±3.40*1038

Precision: 6 to 9 significant decimal digits

Double Double 8

Approx.: ±9.881*10-324

 to ±1.797*10308

Precision: 15 to 17 significant decimal digits

Yes/No Boolean 2 True or False (numeric -1 or 0)

Currency Currency 8

 -922,337,203,685,477.5808 -(263)/104

 to 922,337,203,685,477.5807 (263-1)/104

Precision: 19 signif. dec. digits (4 decimals)

Date/Time Date 8
 January 1, 100 00:00:00

 to December 31, 9999 23:59:59

Short Text String Variable
Short Text is 0 to 255 chars

String is 0 to 65,400 chars

Long Text String Variable 0 to 65,400 chars

AutoNumber Long 4 -2,147,483,648 to 2,147,483,648

OLE Object Object 4 Object

Hyperlink String Variable 1 to ~65,400 chars

Large Number
LongLong

(only 64b)
8

 -9,223,372,036,854,775,808 -(263)

 to: 9,223,372,036,854,775,807 (263-1)

Precision: 19 significant decimal digits

Notice that Large Number Table field type is available in 32bit version of MS-Access

while LongLong VBA data type is not available: the LongLong VBA data type is only

available on a 64bit version of MS-Access.

For the case of equivalent data types, you may check the way VBA values are stored in

Tables by checking the corresponding Table field types-sizes in “D.4 How do I

configure a Table field data type and size?”.

You may check the official Microsoft site for complementary information on MS-

Access data types:

https://docs.microsoft.com/en-us/office/vba/access/concepts/error-codes/comparison-

of-data-types

G.2.2 What VBA data types vs. Table field types-sizes are not

equivalent?

The Date/Time extended, Attachment and Number-Replication ID Table field types-

https://docs.microsoft.com/en-us/office/vba/access/concepts/error-codes/comparison-of-data-types
https://docs.microsoft.com/en-us/office/vba/access/concepts/error-codes/comparison-of-data-types

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 405 of 725

sizes do not have an equivalent data type in VBA. The following table shows these Table

field types-sizes with their characteristics:

Table VBA

Field Type Field Size
Data

Type

Storage

(Bytes)
Range of Values

Number
Replication

ID
N/A 16

Globally unique identifier required for

replication

Date/Time
extended

N/A 42
 January 1, 1 00:00:00

 to December 31, 9999 23:59:59.9999999

Attachment N/A N/A N/A

In VBA you have other data types that have no equivalent in MS-Access SQL, like for

example arrays. In VBA you can also define your own custom data types, that will

usually have no equivalence to any MS-Access SQL field type.

It is important to mention the VBA Variant data type because it is frequently used for

the arguments of user-defined functions, in order to prevent errors caused by data type

mismatch when the function is invoked. The VBA Variant data type is something like

a “wildcard” data type that will accept values from most other data types. The Variant

data type is compatible with a value from almost any other data type.

G.2.3 What is the result of combining different data/field types in

expressions?

A rough summary of the result of combining values from different data/field types is:

• True is interpreted as -1 and False is interpreted as 0.

• 0 is interpreted as False and any other number is interpreted as True.

• Dates are interpreted as their numerical internal representation. Days are integers

where 0 represents 30-December-1899. Time are fractions of an integer, where

1/24 is one hour and so on. There are some tricky issues, so you may want to

click “D.4.5 What is the “Date/Time” field type?” for a detailed explanation.

• The resulting data/field type from Boolean operators is always Boolean.

• The resulting numeric-like data/field type from an operation that combines two

different numeric-like data/field types is the largest data/field type, unless it

cannot hold the resulting value. In this case, the resulting data/field type is the

smallest numeric data/field type that can hold the resulting value.

• Numeric-like aggregate functions (click F.7.18.7) work over numeric-like

data/field types. They return a value of numeric-like data type.

• Calculation aggregate functions (click F.7.18.7) work over string or numeric-

like data/field types. They return a value of the same data/field type as the

expression of the function argument.

• “First()”, “DFirst()”, “DLookup(), “Last()” and “DLast()”

(click F.7.18.7) work over any data/field type and return an integer.

• “Count()”, “DCount()”, “Count(*) and “DCount("*")” (click F.7.18.7)

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 406 of 725

work over any data/field type, and return an integer.

If you want to know more about how Table field/size values are internally represented,

and therefore, how will they be interpreted when combining them, you may check the

different sections from “D.4 How do I configure a Table field data type and size?”. In

particular, you may want to know how Date/Time values are internally represented

clicking “D.4.5 What is the “Date/Time” field type?”.

If you want to know more about the range of values and the precision you may have

with each data/field type, you may check the summary tables from:

• “G.2.1 What VBA data types vs. Table field types-sizes are equivalent?”

• “G.2.2 What VBA data types vs. Table field types-sizes are not equivalent?”

If you want to know more about how operators interpret values from different data/field

types, you may click “G.5 How do I use value operators in an expression?”.

If you want to know more about what specific data type is returned by operators

combining different data/field types, you may click “G.3 What is the data type returned

by an expression?”.

If you want to know more about the data type of constants, you may click “G.3.1 What

is the data type of a constant?”.

If you want to know more about how to force a value into a specific data type, you may

click “G.2.5 How do I force a value to belong to a specific data type?”.

If you want to know details on decimal to binary conversion, you may click “G.9.2 What

is decimal/binary conversion?”.

If you want to know details about rounding errors arising from decimal to binary

conversion, you may click “G.9.3 What are decimal/binary conversion rounding

errors?”.

G.2.4 How are data/field types grouped for easier reference?

I have established the following groups of VBA data types and Table field type-sizes,

according to their similar properties, to make it easier referencing them:

Integer data/field types

I will jointly call “integer” data/field types to the VBA data types Byte, Integer, Long,

and LongLong, plus their equivalent Table field types-sizes Number-Byte, Number-
Integer, Number-Long Integer and Large Number.

Values from different integer data/field types can be combined in most operators

functions and expressions.

Integer-like data/field types

I will jointly call “integer-like” data/field types to the integer data/field types plus

Boolean and Yes/No data/field types.

Therefore, the integer-like data/field types are the VBA data types Boolean, Byte,

Integer, Long, and LongLong, plus their equivalent Table field types-sizes Yes/No,

Number-Byte, Number-Integer, Number-Long Integer and Large Number.

Notice that Boolean and Yes/No values are represented as the integer “-1” for

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 407 of 725

True/Yes/On or ticked and the integer “0” for False/No/Off or unticked.

Notice also that number “0” is interpreted as False, and any non-zero number (even

negative and/or fractional numbers) is interpreted as True, by most Boolean operators.

Values from different integer-like data/field types can be combined in most operators

functions and expressions.

Fractional data/field types

I will jointly call “fractional” data/field types to the VBA data types Currency, Single

and Double, plus their equivalent Table field types-sizes Currency, Number-Single and

Number-Double.

Values from different fractional data/field types can be combined in most operators

functions and expressions.

Fractional-like data/field types

I will jointly call “fractional-like” data/field types to the fractional data/field types plus

Date and Date/Time.

Therefore, the fractional-like data/field types are the VBA data types Currency, Single,

Double and Date, plus their equivalent Table field types-sizes Currency, Number-
Single, Number-Double and Date/Time.

If you find strange that I included Date and Date/Time recall that Date and Date/Time

values are internally represented using a double data/field type (click D.4.5). Notice

also that the Variant-Decimal and Decimal data/field types are not included. This is so

because the Variant-Decimal and Decimal data/field types have substantial drawbacks,

and my advice is you do not use them (click K.8).

Values from different fractional-like data/field types can be combined in most

operators functions and expressions.

Numeric data/field types

I will jointly call “numeric” data/field types to the integer data/field types plus the

fractional data/field types.

Therefore, the numeric data/field types are the VBA data types Byte, Integer, Long,

LongLong, Currency, Single and Double, plus their equivalent Table field types-sizes

Number-Byte, Number-Integer, Number-Long Integer, Large Number, Currency,

Number-Single and Number-Double.

Values from different numeric data/field types can be combined in most operators

functions and expressions.

Numeric-like data/field types

I will jointly call “numeric-like” data/field types to the integer-like data/field types

plus the fractional-like data/field types.

Therefore, the numeric-like data/field types are the VBA data types Boolean, Byte,

Integer, Long, LongLong, Currency, Single, Double and Date, plus their equivalent

field types-sizes: Yes/No, Number-Byte, Number-Integer, Number-Long Integer,
Large Number, Currency, Number-Single, Number-Double and Date/Time.

Values from different numeric-like data/field types can be combined in most operators

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 408 of 725

functions and expressions.

Boolean data/field types

I will jointly call “Boolean” data/field types to the VBA data type Boolean plus its

equivalent Table field type Yes/No.

Currency data/field types

I will jointly call “currency” data/field types to the VBA data type Currency plus its

equivalent Table field type Currency.

String data/field types

I will jointly call “string” data/field types to the VBA data type String plus its

equivalent Table field type Short Text.

Date/time data/field types

I will jointly call “datetime” data/field types to the VBA data type Date plus its

equivalent Table field type Date/Time.

Long data/field types

I will jointly call “long” data/field types to the VBA data type Long plus its equivalent

Table field type-size Number-Long.

Single data/field types

I will jointly call “single” data/field types to the VBA data type Single plus its

equivalent Table field type-size Number-Single.

Double data/field types

I will jointly call “double” data/field types to the VBA data type Double plus its

equivalent Table field type-size Number-Double.

G.2.5 How do I force a value to belong to a specific data type?

You implicitly force a value (either a plain constant or an expression) into a specific

data type every time you:

• Type-in a value in a Table field.

• Assign a default value to a Table field.

• Write a constant or expression in your SQL code.

• Assign a value to a VBA variable (including a function argument when you

invoke the function).

You can also explicitly force a value (either a plain constant or a more complex

expression) into a specific data type using a “type conversion” function. You just

enclose the value you want to force into a data type as the argument of the type

conversion function corresponding to the data type that you want. You can use type

conversion functions over a whole expression, or at as many places that you want

within an expression. You can use the following built-in type conversion functions, all

of which take only one argument of Variant data type:

• CStr(): returns the argument as a String data type.

• CDate(): returns the argument as a Date data type.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 409 of 725

• CBool(): returns the argument as a Boolean data type.

• CByte(): returns the argument as a Byte data type.

• CInt(): returns the argument as an Integer data type.

• CLng(): returns the argument as a Long data type.

• CCur(): returns the argument as a Currency data type.

• CSng(): returns the argument as a Single data type.

• CDbl(): returns the argument as a Double data type.

• CVar(): returns the argument as a Variant data type.

The built-in type conversion function “CLngLng()” can only be used in 64bit versions

of MS-Access and only in your VBA code. It can never be used in the SQL code,

although you may write a user-defined VBA function that invokes it in VBA, and the

user-defined function can be used in SQL.

Whenever you force a value, implicitly or explicitly, into a data type, the value is

frequently changed because it must be approximated to the closest value that can be

represented with the binary format of the corresponding data type. Some examples of

values being changed are:

• Cbyte(6.12335) or Cint(6.12335): return 6, because Byte and Integer data types

can only represent integer numbers.

• CSng(6.12335): returns 6.12335014343262 because this is the closest value to

6. 12335 that can be represented with a Single data type.

• CCur(6.12335): returns 6.1234 because it is rounded-half to even (banker’s

rounding) to four decimal places, because the Currency data type can only have

four decimal places.

• CDbl(6.12335): returns exactly 6.12335 because a Double data type can store

6.12335 with sufficient precision. In this case the value is not changed.

G.2.6 Why should I force a value into a specific data type?

In case of mixing different data types, it is much better that you do an explicit type

conversion, so it is clear in your code that you that are mixing values with different data

types. Also, when you do explicit type conversion you have more control on how it is

done, and you avoid possible errors caused by MS-Access doing type conversion on his

own.

You can perform explicit type conversion using the built-in type conversion functions

from VBA: “CBool()”, “CByte()”, “CCur()”, “CDate()”, “CDbl()”, “CInt()”,

“CLng()”, “CSng()”, “CStr()”, and “CVar()”. Each of these functions takes an

argument from any data type and produces a result belonging to the specific data type

of the function (function names are self-explanatory). If you want to know more about

type conversion functions, you may click “G.2.5 How do I force a value to belong to a

specific data type?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 410 of 725

G.3 What is the data type returned by an expression?

The data type returned by an expression is the one returned by the last operator or

function that is evaluated in the expression. If the expression consists of only one

constant or variable, then the data type is the one of the constant or variable

(respectively).

Trusting your knowledge of the data type rules of MS-Access to determine what will be

the data type returned by an expression is quite risky. If for some reason you need that

an expression returns a specific data type, the best is that you enclose the expression in

the corresponding data type conversion function (click G.2.5). Even if the expression is

just a plain constant or variable, it is recommended to enclose it in a data type conversion

function because in some cases (e.g., Union operations) MS-Access may for example

interpret a number constant as a String.

You may also click:

• “G.3.1 What is the data type of a constant?”

• “G.3.2 What is the data type returned by a non-arithmetic operator?”

• “G.3.3 What is the data type returned by an arithmetic operator?”

• “G.3.4 What is the data type returned by a function?”

G.3.1 What is the data type of a constant?

Constants True/Yes/On or ticked and False/No/Off or unticked are VBA Boolean data

type.

Text string constants are VBA String data type.

Zero-time, zero-date and date-and-time constants are VBA Date data type.

Most number constants do not belong to any specific data type65. Notice that the

constants -5.6, -4, 0, 4 and 5.6 can be interpreted by each operator as a Boolean, Byte,

Integer, Long, LongLong, Currency, Single, Double or Date data types.

If you want a number constant to surely belong to a specific data type, you can enclose

it as an argument of the type conversion function “CBool()”, “CByte()”, “CInt()”,

“CLng()”, “CCur()”, “CSng()” or “CDbl()” that forces the data type that you want.

If you want more information on type conversion functions, you may click “G.2.5 How

do I force a value to belong to a specific data type?”.

G.3.2 What is the data type returned by a non-arithmetic operator?

Logical, comparison and miscellaneous operators always return a Boolean data type.

They can also return Null or an exception-value (most frequently type-error

“#Type!”).

Text string operators always return a String data type or Null. They can produce the

exception value type-error if there is a data type mismatch. They can also produce

number-overflow if the size of the string is larger than the processing range.

65 On very few exception cases, if the specific value of a constant can only fit in one data type, then the

constant can be univocally bound to that data type.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 411 of 725

If you want more information about operators, you may click “G.5 How do I use value

operators in an expression?”.

If you want to know more about exception-values, you may click “J.15 What exception-

value bugs can I get?”.

G.3.3 What is the data type returned by an arithmetic operator?

It depends on the specific operator and on the data types of its operands. Arithmetic

operators can also return Null or an exception-value.

There are many combinations of data types and arithmetic operators, so instead of listing

each case one by one I will summarize the way this works:

• The division “/” operator always returns a Double.

• The integer division “\” and modulo “Mod” operators always return a Long (or

LongLong).

• The change sign operator “-” over an integer-like data type returns an Integer data

type and over a fractional data type returns a fractional data type.

• The remaining arithmetic operators (^, *, +, and -) return a Long (or LongLong)

if both operands are either Boolean or an integer-like data type, and return a Double

if one (or both) operands are either Date or a fractional data type.

If you want to know more about operators, you may click “G.5 How do I use value

operators in an expression?”.

If you want to know more about exception-values, you may click “J.15 What exception-

value bugs can I get?”.

G.3.4 What is the data type returned by a function?

User-defined functions return the data type defined by the programmer.

Non-aggregate built-in functions return a data type specific for each function. If you

want to know more about this, you may click “Part M. List of built-in functions”.

If you want to know the data-type returned by aggregate functions, you may click

“F.7.18.7 What is a summary and grouping of aggregate functions?”.

G.4 How do I write a constant?

A constant is a concrete fixed value. You can have constants of different VBA data

types. The constants you can write in an SQL expression, in a VBA expression, and

in a Table “Design View” expression have some differences. I will point out the

differences between the said expression scopes when required. Constants are written in

a very similar way to, but with some differences, typing-in a value into a Table/Form

field in “Datasheet View” (click E.2.2).

Notice that in Table “Design View” expressions and in VBA expression, MS-Access

will change the format of some constants that you type-in and rewrite them in its own

standard format. For example, if in the VBA editor you type-in a zero-time constant

corresponding to 30-December-1899 at 0:00:00, the VBA editor will rewrite it as

“#12:00:00 AM#”, because this is numeric date 0 and numeric time 0. As another

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 412 of 725

example, the VBA editor will rewrite every zero-time constant that you type-in into the

format: “#month_number-day_number-4_digit_year_number#”

You can use the Null constant in any expression by writing “Null” (without quotes).

Depending on the constant you want to write, you may click:

• “G.4.1 How do I write Boolean constants?”

• “G.4.2 How do I write String constants?”

• “G.4.3 How do I write Byte, Integer, Long Integer, LongLong, Currency, Single and

Double constants?”

• “G.4.4 How do I write Date constants?”

I explain some additional restrictions when writing constants in VBA code in the

section:

• “G.4.5 What are the restrictions when writing constants in VBA expressions?”

G.4.1 How do I write Boolean constants?

Boolean constants are written differently depending on the scope of the expression:

• SQL expressions or Table “Design View” expressions

You write the constants True, Yes, On or False, No, Off (all without quotes).

• VBA expressions

You write the constants True and False (all without quotes). You cannot write the

constants Yes, No, On nor Off.

If you are using a foreign-language version of MS-Access, in Table “Design View”

expressions you have to write the translated constant names. For example, in the

Spanish version you have to write Verdadero, Sí, Activado or Falso, No, Desactivado

(always without quotes). You may want to click “L.8.12 How do I fix foreign-language

issues of MS-Access?”.

G.4.2 How do I write String constants?

A string of alphanumeric characters enclosed between quotes.

• SQL expressions or Table “Design View” expressions

You can use either double quotes or single quotes to enclose the text string.

• In VBA expressions

You can only use double quotes to enclose the text string.

You can include double quote characters in a string enclosed in single quotes and vice-

versa. In case you want to include a single (or double) quote character within a string

enclosed in single (or double, respectively) quotes, you only need to duplicate the

quote character within the string.

Some examples of SQL and Table “Design View” string constants are: “ "Overlap
dates" ”, “ 'US-Cities' ”, “ "Single ' in double" ”, “ 'Double " in single' ”, “ "Double "" in
double" ”, “ 'Single '' in single' ” (notice it is two single quotes and not one double

quote).

Some examples of VBA string constants are: “ "Overlap dates" ”, “ "Engine_Parts" ”,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 413 of 725

“ "Single ' in double" ”, and “ "Delivery-Date" ”.

Remind that MS-Access is case insensitive, and therefore, for processing purposes the

case will be ignored.

G.4.3 How do I write Byte, Integer, Long Integer, LongLong, Currency,

Single and Double constants?

For any of these data types, constants are written as positive and negative (except Byte)

numbers in conventional decimal notation or in scientific notation. You cannot write a

character for separation of thousands.

Some examples of integer number constants are: 123, -4564785, 0, 456E+12, and -15.

Some examples of fractional number constants are: 4.0346, 730, -325.234, 235.67E26,

.258E-15 and -12.87E+25.

If you are using a foreign-language version of MS-Access, in Table “Design View”

expressions you have to write the translated decimal separator. For example, in the

Spanish version you have to write “3,5” instead of “3.5”. You may want to click

“L.8.12 How do I fix foreign-language issues of MS-Access?”.

G.4.4 How do I write Date constants?

The way to write Date constants is the same as the way to type-in a value in a

Date/Time Table field, but enclosing the value between “#” characters. If you want to

know how to type-in a value in a Date/Time Table field, you may click:

• “E.2.2.4 How do I type-in a value in a Date/Time field?”

Like it happens when typing-in a value in a Date/Time Table field, a Date constant

always represents both a date and a time. Even if you write a zero-time constant (i.e.,

a constant with only a date-part) or a zero-date constant (i.e., a constant with only a

time-part), it represents both a date-part and a time-part. If you use a zero-time

constant in an expression, it has the time-part 0:00:00. If you use a zero-date constant,

in an expression, it has the date-part 30-december-1899.

Notice that in Table “Design View” expressions and in VBA expressions, MS-Access

will change the format of Date constants that you type-in and rewrite them in its own

standard format. For example, if in the VBA editor you type-in a zero-time constant

corresponding to 30-December-1899 at 0:00:00, the VBA editor will rewrite it as

“#12:00:00 AM#”, because this is numeric date 0 and numeric time 0. As another

example, the VBA editor will rewrite every zero-time constant you type-in into the

format: “#month_number-day_number-4_digit_year_number#”

G.4.5 What are the restrictions when writing constants in VBA

expressions?

In VBA expressions it is not possible to write some constants that you can write in

SQL expressions and Table “Design View” expressions. The solution to this is

building the constant value you want in a variable, writing operations over other

constants.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 414 of 725

For example, if you type-in in VBA the largest Currency constant:

 922337203685477.5807

the VBA editor will rewrite it (this may be an MS-Access bug) as:

 922337203685478#

The way you can get the actual value you want is by doing:

 Curr_Var_A = 922337203685477#

 Curr_Var_A = Curr_Var_A + 0.5807

and now the variable “Curr_Var_A” stores the value 922337203685477.5807 that you

can use as you please in your VBA code.

As another example, if you type-in the following VBA constant:

 9.781E-324

the VBA editor will rewrite it to:

 9.88131291682493E-324

Because the decimal number “9.781E-324” cannot be represented in the binary format

of a Double variable.

If you want to know more about data type formats and/or decimal to binary conversion,

you may click:

• “G.2 How do I manage VBA data types and Table field types-sizes?”.

• “G.9 How are numeric-like values internally represented and processed?”

G.5 How do I use value operators in an expression?

The value operators in your SQL expressions, VBA expressions and Table “Design
View” expressions are almost the same, but they are not exactly the same. I will explain

them together in this chapter, pointing out the slight differences between the three

expression scopes when required.

Value operators are classified in the following groups:

• Arithmetic operators: “^”, “-” (change sign), “*”, “/”, “\”, “Mod”, “+” and “-”

(minus)

You may click “G.5.1 What are the Arithmetic operators?”.

• Text string operators: “&” and “+”

You may click “G.5.2 What are the Text string operators?”.

• Comparison operators: “=”, “<>”, “<”, “>”, “<=” and “>=”

You may click “G.5.3 What are the Comparison operators?”.

• Pattern operators: “LIKE” and “ALIKE”

You may click “G.5.4 What are the Pattern operators?”.

• Logical (Boolean) operators: “NOT”, “AND”, “OR”, “XOR”, “Eqv” and “Imp”

You may click “G.5.5 What are the Logical (Boolean) operators?”.

• Miscellaneous operators: “IS NULL”, “IS NOT NULL”, “IN”, “NOT IN”,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 415 of 725

“BETWEEN AND” and “NOT BETWEEN AND”.

Notice that Miscellaneous operators are not available in the three scopes. You may

click:

• “G.5.6 What are the “IS NULL” and “IS NOT NULL” Miscellaneous

operators?”.

• “G.5.7 What are the “IN” and “NOT IN” Miscellaneous operators?”.

• “G.5.8 What are the “BETWEEN AND” and “NOT BETWEEN AND”

Miscellaneous operators?”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

G.5.1 What are the Arithmetic operators?

Arithmetic operators are also called “mathematic” or “numeric” operators. You can use

the following Arithmetic operators:

• Arithmetic operators with one operand: “-” (change sign).

• Arithmetic operators with two operands: “^” (exponential), “*” (multiply), “/”

(divide), “\” (integer division), “Mod” (modulo), “+” (plus) and “-” (minus).

Notice the symbol “-” used for the “change sign” operator and the “minus” operator is

the same, but in spite of this they are two different operators.

The meaning of the above Arithmetic operators is obvious, except integer division and

modulo:

• Integer Division: A \ B is the integer obtained from the expression.
 Round_towards_zero(Round(A) / Round(B))

• Modulo: A Mod B is the integer remaining amount after diving Round(A) by

Round(B).

Remind that the “Round()” built-in function performs round-half to even (banker’s

rounding). If you want to know more about rounding types, you may click “J.11.20 How

do I fix a Query making rounding errors?”.

Arithmetic operators and data/field types

Arithmetic operators work with operands of numeric-like data/field type, even if both

operands are of a different data/field type. When both operands are of a different

data/field type, then type conversion is applied if required. True/Yes/On or ticked is

converted to the integer-like value “-1” while False/No/Off or unticked is converted

to “0”. Date and Date/Time values are converted to the corresponding Double value

(click D.4.5). Integer-like values may be converted to the fractional data type.

The data types returned by Arithmetic operators are:

• The division “/” operator always returns a Double.

• The integer division “\” and modulo “Mod” operators always return a Long (or

LongLong).

• The change sign operator “-” over an integer-like data type returns an Integer data

type and over a fractional-like data type returns a fractional-like data type.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 416 of 725

• The remaining arithmetic operators (^, *, +, and -) return a Long (or LongLong)

if both operands are either Boolean or an integer-like data type, and return a Double

if one (or both) operands are Date or a fractional data type.

Arithmetic operators and Null

If one (or both) operand(s) is/are Null, Arithmetic operators will return Null.

Arithmetic operators and exception-values

If you use a String value as one, or both, operands the Arithmetic operators will return

the exception-value type-error (shown as “#Error”). Notice though that using two text

strings as the operands of the “+” operator will work well. The reason is that there are

two “+” operators: one is the Arithmetic “+” operator (described in this subsection) and

the other one is the “+” Text string operator (described in the next subsection G.5.2).

Therefore, if you use two text string operands with the “+” operator, it will be interpreted

as the “+” Text string operator, and it will work well.

An arithmetic operation that causes overflow returns the exception-value number-

overflow (shown as “#Num!”). The operations that cause overflow are:

• Adding, subtracting or multiplying two Byte, Integer or Long values such that

the result is out of range (positive or negative) of the Long data type.

• Adding, subtracting or multiplying a Single value with another Single value,

or with any integer-like value, such that the result is out of range (positive or

negative) of the Double data type.

• Adding, subtracting or multiplying a plain Double constant (i.e., a Double

constant not enclosed in a “CDbl()” function) with any integer-like or Single

value such that the result is out of range (positive or negative) of the Double data

type.

• Adding, subtracting or multiplying a Variant-Decimal value with any

numeric data type value such that the result is out of range (positive or negative)

of the Variant-Decimal data type.

• Raising a number to a power such that the result is out of range (positive or

negative) of the output data type.

• Dividing 0 by 0: “0/0”, “0\0” or “0 Mod 0”.

Dividing non-zero by zero with either of the operators “/”, “\” or “Mod” returns the

exception-value divide-by-zero (shown as “#Div/0!”).

An exception-value as an operand of an Arithmetic operator returns the same

exception-value.

G.5.2 What are the Text string operators?

You can use the following Text string operators:

• Text string operators with two input operands: “&” and “+”

The “&” operator produces as output one text string composed of the first operand

followed (concatenated) by the second operand. Leading or trailing spaces, other

invisible characters or control characters are not ignored and all of them are

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 417 of 725

concatenated.

Text string operators and data/field types

The “&” operator works with operands of numeric-like and string data/field types, even

if both operands are of a different data/field type. When an operand is of numeric-like

data/field types, its value is converted to a text strings as follows:

• In VBA code: True and False are converted to the text strings “True” and

“False”

• In SQL and Table “Design View”: True/Yes/On or ticked is converted to the

text string “-1” and False/No/Off or unticked is converted to the text string

“0”

• Integer-like values and fractional values are converted to the text string that

represents the number.

• Date and Date/Time values are converted to the text string that represents its

date-part and/or its time-part.

The “+” Text string operator only works when both its operands are of string

data/field types. Provided that both operands are of string data/field types, the “+” Text

string operator returns the same value as the “&” operator.

The output data type of Text string operators is String (except when returning Null or

an exception-value).

Text string operators and Null

If one of the operands of the “&” operator is Null and the other is a valid text string, it

will return the valid text string. If both operands of the “&” operator are Null, it will

return Null.

If one (or both) operand(s) of the “+” operator is Null, it will return Null.

Text-string operators and exception-values

Text-string operators never return an exception-value as long as none of its operands

is an exception-value. Specifically, concatenating text strings resulting in a text string

longer than 255 characters does not produce overflow. Actually, you can handle

extremely long text strings (longer than 3,000 characters) in your expressions.

An exception-value as an operand of a Text-string operator returns the same exception-

value.

G.5.3 What are the Comparison operators?

You can use the following Comparison operators:

• Comparison operators with two operands: “=” (equal to), “<>” (different from), “<”

(less than), “>” (greater than), “<=” (less than or equal to) and “>=” (greater than

or equal to)

All Comparison operators ignore trailing spaces in their text string operands. This

means that a given text string, and the same text string followed by any number of spaces

produces exactly the same result in any comparison operator. Leading spaces and

trailing invisible characters other than spaces (e.g., tabs or new-line characters) are

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 418 of 725

not ignored and will be taken into account by all the Comparison operators.

Remind that MS-Access is case insensitive, and therefore text strings are compared

without taking into account the case. For example, the expression:

 "PaRiS" = "pArIs"

is evaluated to True.

Comparison operators and data/field types

Comparison operators work with either both operands of numeric-like data/field type

or both operands of string data/field type.

When the two operands are of a different numeric-like data/field type, type conversion

will take place if required. The value True/Yes/On or ticked is converted to the

integer-like value “-1” while False/No/Off or unticked is converted to integer-like

value “0”. Date and Date/Time values are converted to the corresponding Double value

(click D.4.5). Integer-like values may be converted to fractional values.

The output data type of Comparison operators is Boolean (except when returning Null

or an exception-value).

Comparison operators and Null

If one (or both) operand(s) is/are Null, all Comparison operators return Null.

Comparison operators and exception-values

If one operand is a string and the other operand is of other data type, the result is the

exception-value type-error (shown as “#Error”).

An exception-value as an operand of a Comparison operator returns the same

exception-value.

G.5.4 What are the Pattern operators?

The “ALIKE” operator does not exist in VBA scope, nor in Table “Design View”

scope, but you can use the “LIKE” operator in the three scopes.

The “LIKE” operator is much more flexible than the “ALIKE” operator. Using both on

my view only introduces confusion. I advise you only use the “LIKE” operator, and for

this reason I will not explain the “ALIKE” operator.

The “LIKE” operator returns True if its first operand matches the pattern indicated in

its second operand.

The second operand of the “LIKE” operator is a text string that indicates the pattern

to be matched. The following table lists the semantics of the different pattern characters

that you can use to compose a pattern text string:

Kind of match Pattern
Match

(returns
True)

No match
(returns

False)

Multiple
characters

a*a
aa, aBa,
aBBBa

aBC

ab
abc, AABB,
Xab

aZb, bac

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 419 of 725

Kind of match Pattern
Match

(returns
True)

No match
(returns

False)

Special character a[*]a a*a Aaa

Multiple
characters

ab* abcdefg, abc cab, aab

Single character a?a aaa, a3a, aBa aBBBa

Single digit a#a a0a, a1a, a2a aaa, a10a

Range of
characters

[a-z] f, p, j 2, &

Outside a range [!a-z] 9, &, % b, a

Not a digit [!0-9] A, a, &, ~ 0, 1, 9

Combined a[!b-m]# An9, az0, a99 abc, aj0

Pattern operators and data/field types

The “LIKE” operator works with operands of any numeric-like and string data/field

type, even if the two operands are of different data/field types. If the second operand is

not string, its value will be converted to a text string value.

The output data type of the “LIKE” operator is Boolean (except when returning Null

or an exception-value).

Pattern operators and Null

If one (or both) operand(s) is/are Null, the “LIKE” operator returns Null.

Pattern operators and exception-values

The “LIKE” operator never returns an exception-value, as long as none of its

operands is an exception-value.

An exception-value as an operand of a the “LIKE” operator returns the same exception-

value.

G.5.5 What are the Logical (Boolean) operators?

You can use the following Logical operators:

• Logical operator with one operand: “NOT” (change Boolean value).

• Logical operators with two operands: “AND” (logical “and”), “OR” (logical “or”),

“XOR” (exclusive “or”), “Eqv” (logical equality) and “Imp” (logical implication).

If you are using a foreign-language version, in Table “Design View” expressions the

“NOT”, “AND”, “OR” and “XOR” operators may be translated. For example, in the

Spanish version they become “NoEs”, “Y”, “O” and “OEx”. If you want to know more

about this, you may click “L.8.12 How do I fix foreign-language issues of MS-Access?”.

Logical operators and data/field types

The operands of the Logical operators can be of any numeric-like or string data/field

type, even if the two operands are of different data/field types.

The numeric value “0” is interpreted as False, and any other numeric value is

interpreted as True. The datetime value “30-dec-1899 0:00:00” (which is numeric zero,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 420 of 725

click D.4.5) is interpreted as False, and any other datetime value is interpreted as True.

The text string “0” is interpreted as False, and any other text string (including the zero-

length string) is interpreted as True.

The output data type of Logical operators is Boolean (except when returning Null or an

exception-value).

Logical operators and Null

If one (or both) operand(s) is/are Null, Logical operators returns Null, except in the

following cases:

• “False AND Null” and “Null AND False” return “False”

• “True OR Null” and “Null OR True” return “True”

• “False Imp Null” returns “True”

• “Null Imp True” returns “True”

Notice that the results in the cases above is what you would expect if Null is replaced

by “unknown” or by a variable X.

Logical operators and exception-values

Logical operators do not return an exception-value, unless one (or both) of its

operands is an exception-value.

An exception-value as an operand of a Logical operator returns the same exception-

value.

G.5.6 What are the “IS NULL” and “IS NOT NULL” Miscellaneous

operators?

Operators “IS NULL” and “IS NOT NULL” do not exist in VBA scope, nor in Table

“Design View” scope (but you can use the “IsNull()” function).

“IS NULL” returns True if its operand is Null and otherwise returns False.

“IS NOT NULL” returns False if its operand is Null and otherwise returns True.

Notice that for the operators “IS NULL” and “IS NOT NULL”, the operand goes

before the operator (i.e., the operand is to the left of the operator). This on my view

makes their readability somehow poor.

Operators “IS NULL” and “IS NOT NULL” and data/field types

Operators “IS NULL” and “IS NOT NULL” work with and operand of any numeric-

like or string data/field type.

The output data type of “IS NULL” and “IS NOT NULL” operators is Boolean

(except when returning an exception-value).

Operators “IS NULL” and “IS NOT NULL” and Null

Operators “IS NULL” and “IS NOT NULL” never return Null.

Operators “IS NULL” and “IS NOT NULL” and exception-values

Operators “IS NULL” and “IS NOT NULL” do not return an exception-value,

unless its operand is an exception-value.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 421 of 725

An exception-value as an operand of “IS NULL” or “IS NOT NULL” operators

returns the same exception-value.

G.5.7 What are the “IN” and “NOT IN” Miscellaneous operators?

Operators “IN” and “NOT IN” do not exist in VBA scope.

Operators “IN” and “NOT IN” exist in Table “Design View” scope, but in this scope

the separator character between values in the list is semicolon “;” and is not comma

“,”.

Operator “A IN S_list” returns True if the searched value “A” is one of the values in

the searched list “S_list” and returns False otherwise. Operator “A NOT IN S_list”

returns the opposite. The list of values in the searched list “S_list” has to be enclosed

in parentheses and individual values are separated with a comma “,”. I want to highlight

that text strings are compared without taking into account the case (i.e., case insensitive).

For example, the following expression:

 "New Dehli" IN ("new dehli", "other_value")

is evaluated to True.

If you are using a foreign-language version, in Table “Design View” expressions the

“IN” and “NOT IN” operators may be translated. For example, in the Spanish version

“NOT IN” becomes “NoEs IN”. If you want to know more about this, you may click

“L.8.12 How do I fix foreign-language issues of MS-Access?”.

Operators “IN” and “NOT IN” and data/field types

The following combinations of operand data/field types work:

• If searched value is a numeric-like data/field type, then, the searched list

“S_list” may contain values from any numeric-like data/field type, even if they

are different.

• If searched value is a string, then, the searched list “S_list” may contain values

from string, Boolean and datetime data/field types, even if they are different.

• If searched value is a datetime, then, the searched list “S_list” may contain

values from any numeric-like and string data/field types, even if they are

different.

If an “IN” or “NOT IN” operator does not comply with the three data/field type rules

above, the Query will crash, with the error message:

“Data type mismatch in criteria expression.”

As an exception, if the searched value is found (left to right) in the searched list before

having reached the value with the data type mismatch, then the operator will not crash,

and it will return the corresponding Boolean value.

The output data type of “IN” and “NOT IN” operators is Boolean (except when

returning Null).

Operators “IN” and “NOT IN” and Null

If the searched value is Null, the operators will return Null.

If the searched list “S_list” contains one or more Null they will be ignored, and the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 422 of 725

operator will work normally.

Operators “IN” and “NOT IN” and exception-values

The “IN” and “NOT IN” operators never return an exception-value.

An exception-value as an operand of operators “IN” or “NOT IN” will cause the

following:

• If the exception-value is the searched value, the Query will crash.

• If the exception-value is one of the values in the searched list, and also, the

searched value is not to its left in the list (i.e., the exception-value is reached

before having found the searched value), the Query will crash.

• Otherwise, a correct value will be returned by the “IN” or “NOT IN” operators.

G.5.8 What are the “BETWEEN AND” and “NOT BETWEEN AND”

Miscellaneous operators?

Operators “BETWEEN AND” and “NOT BETWEEN AND” do not exist in VBA scope.

Operator “B BETWEEN A AND C” returns True if “A” is less than or equal to “B”, and

also, “B” is less than or equal to “C”. This is equivalent to:

 ((A <= B) AND (B <= C))

Operator “X NOT BETWEEN A AND C” returns True if “X” is less than “B”, and/or,

“C” is less than “X”. This is equivalent to:

 ((X < B) OR (C < X))

Notice that these operators are conceptually comparison operators, but they are most

frequently categorized as Miscellaneous.

If you are using a foreign-language version, in Table “Design View” expressions the

“BETWEEN AND” and “NOT BETWEEN AND” operators may be translated. For

example, in the Spanish version they become “Entre Y” and “NoEs Entre Y”. If

you want to know more about this, you may click “L.8.12 How do I fix foreign-language

issues of MS-Access?”.

Operators “BETWEEN AND” and “NOT BETWEEN AND” and data/field types

Operators “BETWEEN AND” and “NOT BETWEEN AND” work with operands of any

numeric-like or string data/field type, even if its three operands are of different

data/field types, with one exception. The exception is if you combine string operand(s)

with integer-like and/or fractional operand(s): this will return the exception-value

type-error (shown as “#Error”).

If you combine datetime operand(s) with string operand(s), the datetime operand(s)

is(are) converted to a string. If you combine datetime operand(s) with integer-like

and/or fractional operand(s), the datetime operand(s) is(are) interpreted as its numeric

representation (click D.4.5).

The output data type of “IS NULL” and “IS NOT NULL” operators is Boolean

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 423 of 725

(except when returning Null or an exception-value).

Operators “BETWEEN AND” and “NOT BETWEEN AND” and Null

If one (or more) operand(s) is/are Null, the operators “BETWEEN AND” and “NOT

BETWEEN AND” return Null.

Operators “BETWEEN AND” and “NOT BETWEEN AND” and exception-values

Operators “BETWEEN AND” and “NOT BETWEEN AND” return the exception-value

type-error (shown as “#Error”) if you combine string operand(s) with integer-like

and/or fractional operand(s).

An exception-value as an operand of “BETWEEN AND” or “NOT BETWEEN AND”

operators returns the same exception-value.

G.6 How do I use functions in an expression?

A function is a named mathematical computation that takes some variables as input and

produces one single output value as a result. Each time you invoke the function with

some concrete input values, the function is computed, and it returns one single concrete

output value. The input variables of a function are usually called “arguments”.

Functions (with very few exceptions) are deterministic and do not have memory. This

means that every time you run a function over the same arguments, you get the same

result.

Most functions belong to one data type, corresponding to the data type of the value that

the function returns. For example, Boolean functions are the ones that produce a

Boolean value, and Integer functions are the ones that produce an Integer value. Some

examples of functions, and their data type are:

 Round(Floating_variable, 0) (returns an Integer)

 Is_Null(Input_Variable) (returns a Boolean)

 Iif(Age>0,(Height/Age)^2, "Error") (returns a Variant)

The arguments of a function may belong to different data types. You may check the

three example functions above and see that they contain arguments of different data

types. Most functions have a fixed number of arguments. Most functions have

arguments each of them belonging to a specific data type.

Notice however that there are some functions that return a Variant (click G.2.2) and/or

that have one or more arguments of Variant data type. It is also possible to have

functions with a variable number of arguments.

The way to use (also called “invoke” or “instantiate”) a function is by writing its name

followed by its arguments separated by commas (except in Table “Design View”, that

uses semicolons) and enclosing all the arguments between parentheses. Some examples

are:

 Round(10.45, 2)

 Is_Null("Ford_Mustang")

 Overlap_dates(#3/1/1980#, #6/23/1982#, #1/1/1981#, #12/31/1981#)

Depending on the type of function you want to use, you may click:

• “G.6.1 How do I use non-aggregate built-in functions in an expression?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 424 of 725

• “G.6.2 How do I use domain aggregate functions in an expression?”

• “G.6.3 How do I use SQL aggregate functions in an expression?”

• “G.6.4 How do I use user-defined VBA functions in an expression?”

G.6.1 How do I use non-aggregate built-in functions in an expression?

Non-aggregate built-in functions can be used in the following scopes:

• SQL expressions and VBA expressions:

You may use almost all the non-aggregate built-in functions in both scopes.

Click Part M for a list of the available built-in functions, indicating for each of them

if it can be used in SQL expressions and/or VBA expressions.

• Table “Design View” expressions:

The separation character between function arguments is semicolon “;”, and not

comma “,”. For example, you must write:

 Left([Quart] ; 1)

You may use almost the same non-aggregate built-in functions as in the other two

scopes. To know which non-aggregate built-in functions you can use in Table

“Design View” expressions, go to the “Expression Builder” box, click on

“functions” and then click on “Built-in functions”: this will show the available built-

in functions grouped by category. Remind that the “Expression Builder” box can be

shown by clicking in the three-period “ ” icon placed at the rightmost side of the

properties “Validation Rule”, “Default Value” and “Expression” of the “General”

Tab of field properties (the last one only for Calculated fields).

If you are using a foreign-language version, most built-in functions have translated

names in this scope. For example, in the Spanish version the function names

“Left()”, “Right()”, and “Len()” become “Izq()”, “Der()” and “Longitud()” in this

scope.

Among all the built-in functions, I want to mention here the following ones that I believe

are used very frequently:

• Iif(Boolean_exp, output_exp_1, output_exp_2)

If its argument Boolean expression “Boolean_exp” evaluates to True, “Iif()” returns

the value of the expression “output_exp_1”, and otherwise it returns the value of the

expression “output_exp_2”. Notice that if “Boolean_exp” is evaluated to Null, the

value of “output_exp_2” is returned.

Important remark: the output expression that is not returned is not evaluated, and

therefore, in case it is erroneous, the function will not crash. However, the

“Switch()”, “Choose()” and “Nz()” functions evaluate all the expressions in their

arguments, regardless of which one is returned. In this sense, the “Iif()” function is

more efficient and in particular, is much safer than the “Switch()”, “Choose()” or

“Nz()” functions.

Important warning! if both output expressions are of a numeric-like data type,

the returned result will be of numeric-like data/field type. However, if either (or

both) output expressions is a string, the returned result will be a String.

https://support.office.com/en-us/article/iif-function-32436ecf-c629-48a3-9900-647539c764e3

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 425 of 725

• Switch(Bexp-1, Oexp-1 [, Bexp-2, Oexp-2] … [, Bexp-n, Oexp-n])

Its arguments consist of a list of pairs, each pair being one Boolean expression plus

one output expression. The function returns the result of the output expression

associated to the leftmost Boolean expression that evaluates to True.

If one or more Boolean expressions evaluates to Null the function works normally,

and the only effect is that the associated output expression is not returned.

If none of the Boolean expression evaluates to True, then Null is returned.

Important Warning! the “Switch()” function evaluates all the Boolean expression

and all the expressions in its arguments, regardless of which one is returned. This

implies that if any of the expressions crashes (e.g., 0/0, 4/0, ...), even if that

expression is to the right of the returned value, the “Switch()” function will also

crash. This does not happen with the “Iif()” function, that in this sense is much

safer.

Important warning! if all output expressions are of a numeric-like data/field type,

the returned result will be of numeric-like data type. However, if one (or more)

output expressions is a string, the returned result will be a String.

• Choose(index_exp, output_exp_1, [output_exp_2], ...)

It returns the result of one of the expressions output_exp_n based on the resulting

value of its first argument “index_exp” expression. If “index_exp” evaluates to 1,

it returns the result of “output_exp_1”; if “index_exp” evaluates to 2, it returns the

result of “output_exp_2”, and so on. If “index_exp” evaluates to a fractional value,

it is rounded down.

If the rounded result of “index_exp” is less than 1 or greater than the number of

“output_exp” arguments, then Null is returned.

Important warning! the “Choose()” function evaluates all the expressions in its

arguments, regardless of which one is returned. This implies that if any of the

expressions crashes (e.g., 0/0, 4/0, ...), even if that expression is not the returned

value, the “Choose()” function will also crash. This does not happen with the Iif()

function, that in this sense is much safer.

Important warning! if all the output expressions are of a numeric-like data/field

type, the returned result will be of numeric data type. However, if one (or more)

output expressions is a string, the returned result will be a String.

• IsNull(input_exp)

Returns True if its argument expression “input_exp” evaluates to Null, and

otherwise returns False.

• Nz(input_output_exp, output_exp_if_Null)

If its argument expression “input_output_exp” is evaluated to a non-Null value, it

returns that value, and otherwise returns the result of “output_exp_if_Null”.

Important warning! even if the first argument evaluates to a non-Null value, the

expression in the second argument will be evaluated. For example, the following

function invocation will crash: “Nz(5, 0/0)”. This does not happen with the “Iif()”

function, that in this sense is much safer.

Important warning! when used in an SQL operation, “Nz()” always returns a

String, regardless of the data type of its arguments. If you want it to return a

https://support.office.com/en-us/article/switch-function-d750c10d-0c8e-444c-9e63-f47504f9e379
https://support.office.com/en-us/article/choose-function-76230415-910f-463a-a799-cf7e90aa7fd4
https://support.office.com/en-us/article/isnull-function-f963233b-1c1e-4b0c-8bc3-3e8c0ea67c61
https://support.office.com/en-us/article/nz-function-8ef85549-cc9c-438b-860a-7fd9f4c69b6c

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 426 of 725

number or a date, enclose “Nz()” in the corresponding type-conversion function

(e.g., “Cdbl(Nz(X, 0))”).

• Format(input_exp [, format_string] [, firstdayofweek] [, firstweekofyear])

Returns the value of the expression input_exp formatted as a text string using the

format indicated by the optional argument format_string. The other two optional

arguments are related to options in Date formatting. If you want to know more about

the different formatting you can get depending on the value of format_string, you

may click “H.6.2 How do I configure custom column formatting in a

Table/Query/Form?”.

• Date()

Returns the current date with zero-time. It is frequently used as the default value of

Table fields with Date/Time field type.

• DateSerial(year, month, day)

With integer-like arguments, it returns the date (with zero-time) corresponding to

the year, month and day in its arguments.

Notice that the month argument can be zero, negative, or larger than 12. Month 0 is

December of previous year. Month -1 is November of previous year, and so on

modulus 12. Month 13 is January of next year. Month 14 is February of next year,

and so on modulus 12.

Notice that the day argument can be zero, negative, or larger than the month length.

Day 0 is last day of previous month (and previous year, if applicable). Day -1 is last

but one day of previous month (and previous year, if applicable). Day -364 is first

day of month, one year earlier (assuming it is not a leap year). Day 366 is first day

of month, one year later (assuming it is not a leap year). The same applies if you use

day number smaller than -364 or larger than 366. Month durations are always

computed correctly, taking into account the month duration and the leap years.

The day or month arguments can also be fractional. In this case, the function will

round them to an integer-like value using round-half to even. If you want to know

more about rounding types, you may click “J.11.20 How do I fix a Query making

rounding errors?”.

If you want more detail about any of these functions, you can click on the function title

in the bullets above and your navigator will open on the corresponding function

description in the official Microsoft support web site.66

G.6.2 How do I use domain aggregate functions in an expression?

Domain aggregate functions are one of the groups of built-in functions (click Part M).

They are somehow special because they can extract aggregate data from your

database Tables. Domain aggregate functions can be used in the following scopes:

• SQL expressions and VBA expressions:

You may use all the domain aggregate functions in both scopes.

• Table “Design View” expressions:

You cannot use domain aggregate functions.

66 Notice that the web pages in the Microsoft support site may have changed since this book was released,

and these links may not work.

https://support.office.com/en-us/article/format-function-6f29d87b-8761-408d-81d3-63b9cd842530
https://support.office.com/en-us/article/date-function-dd7a1f27-d957-4969-ab35-01e0bfbfed76
https://support.office.com/en-us/article/dateserial-function-a0128476-83a0-407c-831a-93f2b046f503

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 427 of 725

A domain aggregate function returns the same result as a Select-total_aggreg with its

dual SQL aggregate function (click F.7.18.7) over a single Table/Query. A simple

example of the “DCount()” domain aggregate function is:

 DCount("City", "T_Capital_Temps", "Temp_Max > 4")

This domain aggregate function returns exactly the same result as the following Select-

total_aggreg:

 SELECT Count(City) FROM T_Capital_Temps WHERE Temp_Max > 4

Domain aggregate functions can be directly used in your user-defined VBA functions

and subroutines, in your macros, in the expressions within your SQL code and in your

calculated controls. You can even use domain aggregate functions in the expressions

that are the arguments of a domain aggregate function, although using the quotes

correctly gets difficult.

Notice that domain aggregate functions have the same basic functionality as SQL

aggregate functions (click F.7.18 and G.6.3). However, they also have relevant

differences. One such difference is that SQL aggregate functions can only be used in

some expressions within a Select-group_by_aggreg, within a Select-total_aggreg or

within a Transform operation. Conversely, domain aggregate functions can be

directly used in your user-defined VBA functions and subroutines, in your macros, in

any expression within your SQL code and in your calculated controls.

The correct way to write (syntax) a domain aggregate function is:

 DAgg_func("exp(In-flds)", "Table-name or Query-name" [, "Where-bool-exp()"])

The first argument is a text string containing an expression over the fields of the input

record-list, this is, over the fields of the Table or Query in the second argument. This

expression cannot contain a domain aggregate function.

The second argument is a text string containing a Table name or a Query name over

which the domain aggregate function will be applied. In case you use a Query name,

that Query cannot have parameters.

The third argument is enclosed in square brackets to indicate that it is optional. If it

exists, the third argument is a text string containing a Boolean expression that the

records of the Table or Query must match (i.e., produce True) in order to serve as input

to the domain aggregate function. If this third argument does not exist, the input record-

list is the complete record-list of the Table or Query in the second argument.

The domain aggregate function above returns exactly the same result as the following

Select operation:

 SELECT Agg_func(exp(In-flds))

 FROM Table-name or Query-name

 [WHERE Where-bool-exp()]

where “Agg_func()” represents the corresponding dual SQL aggregate function to the

generic domain aggregate function “DAgg_func()” above.

In case you need to use text strings in the expression “exp()” and/or in the Boolean

expression “Where-bool-exp()”, you must enclose each text string in single quotes

(and not in double quotes). For example:

 DCount("City & 'Temp'", "T_Capital_Temps", "City <> 'Chicago'"

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 428 of 725

For each SQL aggregate function (click F.7.18) there is one dual domain aggregate

function that has its same name prefixed by “D”. For example, the “Count()” SQL

aggregate function is dual to the “DCount()” domain aggregate function, and the

“Avg()” SQL aggregate function is dual to the “DAvg()” domain aggregate function.

The two dual aggregate functions in each pair have the same basic functionality.

Therefore, MS-Access offers the following domain aggregate functions:

• DCount(“*”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.1 for a description of its functionality.

• DCount(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.2 for a description of its functionality.

• DFirst, DLast(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.3 for a description of their functionality.

• DMin, DMax(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.4 for a description of their functionality.

• DSum, DAvg(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.5 for a description of their functionality.

• DStDev, DStDevP, DVar,

DVarP(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

Click F.7.18.6 for a description of their functionality.

In addition to providing the previous domain aggregate functions (one for each dual

SQL aggregate function), MS-Access provides the following additional domain

aggregate function:

DLookup(“exp()”, “Table-name or Query-name” [, “Bool-exp()”])

The function “DLookup()” returns the result of the expression “exp()” computed over

the first record from the Table/Query. If the optional third argument exists, then the

result will be computed over the first record among the ones that produce True in

“Bool-exp()”.

What I just said seems to be the same functionality as the “DFirst()” domain aggregate

function, but there is a very important difference between both functions. “DFirst()”

selects the first record according to the internal record ordering of MS-Access, which

means returning one arbitrary record. However, “DLookup()” returns the first record

according to the “ORDER BY” record ordering of its input record-list!

Aside from this important difference, the functionality of “DLookup()” is similar to

the one of “DFirst()”, which in turn, is similar to the one of “First()” (click F.7.18.3).

G.6.3 How do I use SQL aggregate functions in an expression?

SQL aggregate functions can be used in the following scopes:

• SQL expressions:

You may use any SQL aggregate function subject to the restrictions of the specific

expression (“SELECT” expression, “HAVING” expression, …) within the specific

SQL operator (Select-group_by_aggreg, Select-total_aggreg or Transform). For

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 429 of 725

example, you cannot use them in “WHERE” expressions. If you want to know more

about this, you may click “F.11.1 Given an SQL clause, what are its expression’s

elements?”.

• VBA expressions and Table “Design View” expressions:

You cannot use SQL aggregate functions.

If you want to know more about this, you may click “F.7.18 What is an SQL aggregate

function?”.

G.6.4 How do I use user-defined VBA functions in an expression?

User-defined VBA functions can be used in the following scopes:

• SQL expressions and VBA expressions:

You may use user-defined VBA functions.

• Table “Design View” expressions:

You cannot use user-defined VBA functions.

If you want to know more about this, you may click “K.9 How do I write my user-defined

VBA functions and database Subroutines?”.

G.7 What is the evaluation order of an expression?

An expression produces different results depending on the evaluation order (also

called “computation” order) of the operators within the expression. For example, the

expression “3*4+2” produces 14 but it produces 18 if you add parentheses to make it

“3*(4+2)”.

The evaluation order of an expression is determined by the following rules:

1. Expressions between parentheses are always evaluated first. If there are nested

parentheses, the innermost expressions between parentheses are evaluated first.

2. In an expression without parentheses the operators with highest precedence are

evaluated first.

3. In an expression without parentheses, and with operators of the same

precedence, the expression is evaluated left to right.

The operator category precedence is the following:

1. Arithmetic operators (highest precedence => evaluated first)

2. Text string operators

3. Comparison operators

4. Pattern operators

5. Logical operators (lowest precedence => evaluated last)

Within each operator category above, the individual operator precedence is the

following:

1. Arithmetic operators:

1. “^” (exponential) (highest precedence => evaluated first)

2. “-” (change sign)

3. “/” and “*”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 430 of 725

4. “\”

5. Mod (modulo)

6. “+” and “-” (minus) (lowest precedence => evaluated last)

2. Text string operators

1. “&” and “+”

3. Comparison operators:

1. = (highest precedence => evaluated first)

2. <>

3. <

4. >

5. <=

6. >= (lowest precedence => evaluated last)

4. Pattern operators:

1. “LIKE”

5. Logical operators:

1. “NOT” (highest precedence => evaluated first)

2. “AND”

3. “OR”

4. “XOR”

5. “Eqv”

6. “Imp” (lowest precedence => evaluated last)

My advice is that, unless you are very sure of the evaluation rules for an expression,

you should write parentheses to indicate explicitly the evaluation order that you want

for it.

G.8 How do I use an SQL operation in an expression?

This chapter also answers the question:

• What is a Subquery?

SQL operations (“Subqueries”) can be used in the following scopes:

• SQL expressions:

You may use a Select operation (click F.7), enclosed between parentheses, as a

value.

• VBA expressions:

This only applies to assigning the result of a SQL operation to an VBA variable

(click G.8.5). To do it you can use special VBA built-in functions that allow to run

SQL code. In this case, the rules for SQL code apply (click F.6).

• Table “Design View” expressions:

You cannot use an SQL operation in field/record validation rule expressions,

default field value expressions nor calculated field expressions. However, you can

use an SQL operation in the “Lookup” property expressions of a Table/Form

(click D.11.4).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 431 of 725

You can use a Select operation as a value within an SQL expression as long as the

Select produces one single record with one single field, and the data type of the field

matches the data type required in the expression (plus a few other conditions). For

example, if you write a Select operation that produces one single Integer value (i.e., one

single record, with one single Integer field), it can be used in an expression in your

SQL code as if it were an Integer value.

A Subquery is therefore a Select operation enclosed between parentheses that can be

used as a value in an SQL expression. A Subquery cannot be a Union operation

(although the Select operation may have an internal Union operation), nor a Join

operation, nor a Transform operation.

When the Subquery is a Select-total_aggreg over only one Table or Query, a good

alternative may be to use a domain aggregate function: if you want to know more

about them, you may click “G.6.2 How do I use domain aggregate functions in an

expression?”.

If you want more detail about Subqueries, you may click:

• “G.8.1 How do I use a Subquery in an SQL expression?”

• “G.8.2 What are the “EXISTS”, “ANY” and “ALL” Subquery operators?”

• “G.8.3 What is a correlated Subquery?”

• “G.8.4 What is an uncorrelated Subquery?”

G.8.1 How do I use a Subquery in an SQL expression?

Let me show you a simple example67 of a Subquery over the Tables

“T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, District, Cal_year, Quart, Temp_Max

 FROM T_Capital_Temps

 WHERE Capital = (SELECT First(Capital) FROM T_Capital_Rainfall_Q)

You may see that the Subquery is highlighted in bold font, with maroon keywords and

enclosed between maroon parentheses. This Subquery returns only one record, with

only one field of data type String. This is a clear case in which the returned record-list

is equivalent to a variable of data type String, which is what the expression is requiring.

In addition to requiring data type matching, using Subqueries has some other

characteristics. Let me summarize the most relevant characteristics of Subqueries:

• A Subquery can only be a Select operation. A Subquery cannot be a Union

operation, nor a Transform operation nor a Join operation.

• The Subquery Select operation can contain an interior Union operation, Join

operation or another Select operation.

• The Subquery Select operation must be enclosed in parentheses.

• The data type of the Select operation result must match the data type expected by

the expression or by the Subquery operator (click G.8.2).

• If the data type required by the expression is just one value (Boolean, Double,

67 This is the Query “G_Subquery” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 432 of 725

String, ...), the Select operation must return only one record, with only one field,

with an equivalent or compatible field type.

• If the data type required by the expression is a list of values (e.g., to be used with

the “IN” operator), the Select operation must return a record-list with only one

field, having an equivalent or compatible field type.

• If the data type required by the expression is a list of values (e.g., to be used with

the “IN” value operator), the Select operation cannot return one record with

several fields.

• The Select operation of a Subquery can have parameters, with or without a

“PARAMETERS” clause.

• According to the Microsoft documentation, you may nest up to 31 Subqueries. On

my view, going beyond three makes readability quite poor.

Uncorrelated Subqueries (click “G.8.4 What is an uncorrelated Subquery?”) are

extremely useful to restrict the record-list that you extract from your Tables, to be further

processed in your Queries.

If you want to know more about this, you may click “K.7.3.2 Why should I consider

using uncorrelated Subqueries and/or domain aggregate functions in “WHERE”

expressions over Tables?”.

G.8.2 What are the “EXISTS”, “ANY” and “ALL” Subquery

operators?

You may click:

• “G.8.2.1 What is the “EXISTS” Subquery operator?”

• “G.8.2.2 What is the “ANY” Subquery operator?”

• “G.8.2.3 What is the “ALL” Subquery operator?”

G.8.2.1 What is the “EXISTS” Subquery operator?

The “EXISTS” Subquery operator takes a Subquery as its operand and returns True if

the output record-list of the Subquery has one or more records. It returns False if the

output record-list has no records.

The way to write (syntax) the “EXISTS” operator is:

 EXISTS Subquery

Let me show you a simple example68 of the “EXISTS” Subquery operator over the

Tables “T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q AS CRF

 WHERE EXISTS (SELECT Capital

 FROM T_Capital_Temps

 WHERE Capital = CRF.Capital) ;

You may see that the Subquery is highlighted with maroon keywords and enclosed

68 This is the Query “G_Subquery_EXISTS” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 433 of 725

between maroon parentheses. This Query returns the records from

“T_Capital_Rainfall_Q” whose value of the field “Capital” exists in the

“Capital” field value-list in the Table “T_Capital_Temps”.

G.8.2.2 What is the “ANY” Subquery operator?

The “ANY” Subquery operator must be jointly used with a Comparison operator. The

“ANY” operator and the Comparison operator jointly perform a comparison between

one value and each of the values returned by the Subquery. The joint result of “ANY”

plus the Comparison operator is True when the Comparison operator returns True for

one of the values returned by the Subquery. The joint result is False if the Comparison

operator returns False for all the values returned by the Subquery.

The way to write (syntax) the “ANY” Subquery operator is:

 expression() Comparison_Operator ANY Subquery

Let me show you a simple example69 of the “ANY” Subquery operator over the Tables

“T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q

 WHERE Quart_Rainfall > ANY (SELECT Temp_Max FROM T_Capital_Temps) ;

You may see that the Subquery is highlighted in bold font, with maroon keywords and

enclosed between maroon parentheses. This Query returns the records from

“T_Capital_Rainfall_Q” whose value of the field “Quart_Rainfall” is larger

than at least one value in the “Quart_Rainfall” field value-list in the Table

“T_Capital_Temps”.

G.8.2.3 What is the “ALL” Subquery operator?

The “ALL” Subquery operator must be jointly used with a Comparison operator. The

“ALL” operator and the Comparison operator jointly perform a comparison between

one value and each of the values returned by the Subquery. The joint result of “ALL”

plus the comparison operator is False when the Comparison operator returns False for

one of the values returned by the Subquery. The joint result is True if the Comparison

operator returns True for all the values returned by the Subquery.

The way to write (syntax) the “ALL” Subquery operator is:

 expression() Comparison_Operator ALL Subquery

Let me show you a simple example70 of the “ALL” Subquery operator over the Tables

“T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q

 WHERE Quart_Rainfall > ALL (SELECT Temp_Max FROM T_Capital_Temps) ;

You may see that the Subquery is highlighted in bold font, with maroon keywords and

enclosed between maroon parentheses. This Query returns the records from

“T_Capital_Rainfall_Q” whose value of the field “Quart_Rainfall” is larger

69 This is the Query “G_Subquery_ANY” from file “Company_Database.accdb”.
70 This is the Query “G_Subqueries_ALL” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 434 of 725

than all the values in the “Quart_Rainfall_Q” field value-list in the Table

“T_Capital_Temps”.

G.8.3 What is a correlated Subquery?

A correlated Subquery is the one that uses a value from the enclosing Select operation

in the Subquery Select operation.

Let me show you a simple example71 of a correlated Subquery over the Tables

“T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q AS CRF

 WHERE EXISTS (SELECT Capital

 FROM T_Capital_Temps

 WHERE Capital = CRF.Capital) ;

You may see that the Subquery is highlighted in bold font, with maroon keywords and

enclosed between maroon parentheses. In this Query, the value “CRF.Capital” from

the enclosing Select operation is being used in the Select operation of the Subquery.

When the “WHERE” Boolean expression of the enclosing Select operation is being

evaluated for each of its records, the variable “CRF.Capital” is replaced by the

value it has in the record from the enclosing Select operation that is being evaluated.

This implies that the Subquery has to be evaluated as many times as the number of

input records of its enclosing Select operation. Correlated Subqueries are therefore

considerably slower than uncorrelated Subqueries.

G.8.4 What is an uncorrelated Subquery?

An uncorrelated Subquery is the one that does not use any value from the enclosing

Select operation in the Subquery Select operation.

Let me show you a simple example72 of a uncorrelated Subquery over the Tables

“T_Capital_Rainfall_Q” from D.6.5 and “T_Capital_Temps” from F.10.5:

 SELECT Capital, Cal_Year, Quart, Quart_Rainfall

 FROM T_Capital_Rainfall_Q

 WHERE Quart_Rainfall >= (SELECT Max(Temp_Min) FROM T_Capital_Temps)

You may see the Subquery is highlighted in bold font, with maroon keywords and

enclosed between maroon parentheses. This Query produces the records from

“T_Capital_Rainfall_Q” that have a value of “Quart_Rainfall” greater than the

maximum value of “Temp_Min” from the Table “T_Capital_Temps”.

Notice that contrary to what happens with correlated Subqueries, this uncorrelated

Subquery is evaluated only once, and its result is used many times. Correlated

Subqueries are therefore considerably slower than uncorrelated Subqueries.

G.8.5 How do I use an SQL operation in a VBA variable assignment?

You cannot use an SQL operation as a variable in a VBA expression. However, you

can assign the result of an SQL operation to a VBA variable, and then use the variable

in any VBA expression. This provides basically the same functionality as using an SQL

operation as a variable in a VBA expression. If you want to know more about this, you

71 This is the Query “G_Subquery_corr” from file “Company_Database.accdb”.
72 This is the Query “G_Subquery_uncorr” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 435 of 725

may click “K.9.3 How do I write a VBA function that reads database records?”.

Also, you can use a domain aggregate function in a VBA expression. If you want more

to know more about domain aggregate functions, you may click “G.6.2 How do I use

domain aggregate functions in an expression?”.

G.9 How are numeric-like values internally represented and

processed?

G.9.1 How are numeric-like values internally represented?

Values from integer-like data/field types (click G.2.4) are internally represented by the

computer as binary integers. Values from currency data/field types (click G.2.4) are

internally represented by the computer as binary fixed-point numbers. Values from

fractional-like data/field types (click G.2.4) other than currency are internally

represented by the computer as binary floating-point numbers.

If you want to know more about internal representation of data/field type values, such

as number of bytes, range of values or precision, you may check the tables in:

• “G.2.1 What VBA data types vs. Table field types-sizes are equivalent?”

• “G.2.2 What VBA data types vs. Table field types-sizes are not equivalent?”

If you want an individual description of Table field types-sizes, you may click:

• “D.4 How do I configure a Table field data type and size?”.

In summary, values from numeric-like data/field types (click G.2.4) are internally

represented by the computer as binary integers, binary floating-point numbers or

binary fixed-point values. This implies that when you type-in a value it is required to

do decimal to binary conversion, and when the computer displays a value it has to do

binary to decimal conversion. If you want to know more about decimal/binary

conversion, you may check the next section.

G.9.2 What is decimal/binary conversion?

It is the process done by the computer to convert from/to the decimal numbers that you

use to/from the binary numbers that the computer uses internally.

When you write a number, the usual form is using decimal numbering:

 ...DCBA.abc...

where each letter represents a decimal digit (i.e., an integer number from 0 to 9). The

value it represents is:

 ...D*103 + C*102 + B*101 + A*100 + a*10-1 + b*10-2 + c*10-3...

The above is a decimal or base 10 number, because as you may see, the value is

represented as the addition of powers of 10, each multiplied by a decimal coefficient.

It is also possible to use the same approach to represent a number with different values

of the base. In particular, computers represent internally all the information they

process as bits, this is, either a 1 or a 0. They also represent numbers (in most formats)

as powers of two, this is in “base 2” or “binary” format. A number represented as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 436 of 725

powers of two takes the form:

 ...DCBA.abc...

where each letter represents a binary digit (i.e., either a 0 or a 1). The value it represents

is:

 ...D*23 + C*22 + B*21 + A*20 + a*2-1 + b*2-2 + c*2-3...

The above is a binary or base 2 number, because as you may see, the value is

represented as the addition of powers of 2, each multiplied by a binary coefficient.

A relevant advantage of binary representation is faster number computations because

the computer can process operations in hardware, using the Arithmetic and Logic Unit

(“ALU”) of the processor.

G.9.3 What are decimal/binary conversion rounding errors?

They are rounding errors caused by decimal/binary conversion.

Only the floating-point data/field types Single, Double, Number-Single and Number-
Double cause rounding errors of decimal/binary conversion. The other data/field types

do not have this problem.

The following table shows some examples of the results you will get when you try to

store some large integer numbers into single data/field types:

G_Decimal_Binary_1

expression Result

CSng(2147483583) 2147483520

CSng(2147483584) 2147483648

CSng(2147483776) 2147483648

CSng(2147483777) 2147483904

as you may see, the actual stored value is different from the value you wrote!

You may check the above results writing the following Query73:

 SELECT "CSng(2147483583)" AS expression, CSng(2147483583) AS Result

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "CSng(2147483584)" AS expression, CSng(2147483584) AS Result

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "CSng(2147483776)" AS expression, CSng(2147483776) AS Result

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "CSng(2147483777)" AS expression, CSng(2147483777) AS Result

 FROM T_Numbers WHERE Num=1

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

Another example of decimal/binary conversion rounding errors is when you want to

represent decimal fractional numbers in binary. The following table shows some

examples of the rounded results you will get when you store fractional numbers in

73 This is the Query “G_Decimal_Binary_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 437 of 725

single data/field types:

G_Decimal_Binary_2

expression Result

CSng(.1) 0,100000001490116

CSng(.01) 9,99999977648258E-03

CSng(.001) 1,00000004749745E-03

You may check the above results writing the following Query74:

 SELECT "CSng(.1)" AS expression, CSng(.1) AS Result

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "CSng(.01)" AS expression, CSng(.01) AS Result

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "CSng(.001)" AS expression, CSng(.001) AS Result

 FROM T_Numbers WHERE Num=1

The Double and Number-Double data/field types also have rounding errors, but their

precision is much higher than the one of Single and Number-Single. Therefore, it is

easier to notice the rounding errors with single data/field types than with double ones.

Another interesting example. If I ask you what is the result of the following Query75:

 SELECT Iif(5/10 - 4/10 - 1/10 = 0, "CORRECT", "WRONG!") AS Result_1

 , Iif(.5 - .4 - .1 = 0 , "CORRECT", "WRONG!") AS Result_2

 FROM T_Numbers WHERE Num=1

you will most likely answer that it will be two “CORRECT”, if you are not aware of how

decimal/binary rounding errors work, or two “WRONG!”, if you are aware of how

decimal/binary rounding errors work. However, the result of the Query is “WRONG!” in

field “Result_1” and “CORRECT” in field “Result_2”. The result “WRONG!” happens

precisely because of decimal/binary rounding errors. The result “CORRECT” happens

because the expression only has constants, and therefore it is correctly evaluated by the

optimizer without losing precision.

If you want to know the cause of decimal/binary conversion rounding errors, you may

check the next section.

G.9.4 What is the cause of decimal/binary conversion rounding errors?

The cause of decimal/binary conversion rounding errors is that the floating-point values

you can represent in decimal notation and the floating-point values you can represent

in binary notation are not exactly the same.

For integer values, if you want to store a large integer number in a single precision

floating point data type, you cannot represent some values when you reach the

maximum precision supported by single.

For fractional values, a fractional value that has an exact (finite) decimal representation

may have a repeating (infinite) binary representation and vice versa. For example, the

fraction 1/10 is an exact value in decimal (being “.1”), but in binary it is the repeating

74 This is the Query “G_Decimal_Binary_2” from file “Company_Database.accdb”.
75 This is the Query “G_Decimal_Binary_3” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 438 of 725

number:

 0.000110011...0011... (where the binary digits “0011” repeat infinite times)

Since the number of bits to store each value in a computer is obviously finite, the

computer is forced to round the repeating representation of the value to the number of

bits available in the data type that you are using to store it. This implies in practice that

the computer is changing the value, and it is introducing a conversion rounding error.

If you store “.1” decimal as a double, the conversion rounding error is in the order of -

2.8E-17, which is very small. I spite of being very small, this error is enough so that

some calculations (e.g., comparison operators) will not produce the result that you

expect.

Using the double format used in MS-Access and VBA (under standard IEEE 754), the

value “.1” decimal would be encoded as:

• Sign (1 bit): 0 (positive)

• Exponent (11 bits): 01111111 011

(this is the value “-4” decimal encoded as 1019 in binary because of the exponent

bias of 1023)

• Mantissa (phantom bit plus 52 actual bits. Only actual bits are shown):

.10011001 10011001 10011001 10011001 10011001 10011001 1001

 (notice the leftmost “1” is missing, because it is the phantom bit)

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 439 of 725

PART H. CUSTOMIZING THE APPEARANCE OF A

QUERY/TABLE/FORM IN “DATASHEET VIEW”

Customizing the appearance of a Table/Query/Form in “Datasheet View” does not

affect stored data, nor data results from Queries, in any way.

Customizing the appearance only changes the way data is displayed in a

Table/Query/Form in “Datasheet View”.

You may click:

• “H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form?”

• “H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form?”

• “H.3 How do I change the order of columns that I see in a Table/Query/Form?”

• “H.4 How do I hide/unhide columns in a Table/Query/Form?”

• “H.5 How do I change the column headings in a Table/Query/Form?”

• “H.6 How do I configure the formatting of column values in a Table/Query/Form?”

• “H.7 How do I configure the column text alignment in a Table/Query/Form?”

• “H.8 How do I show aggregate values (e.g., totals) in a Table/Query/Form?”

• “H.9 How do I configure colors, fonts and other features of a Table/Query/Form?”

H.1 How do I change the column width, or freeze/unfreeze the

columns in a Table/Query/Form?

You may click:

• “H.1.1 How do I change the column width in a Table/Query/Form?”

• “H.1.2 How do I freeze/unfreeze the columns in a Table/Query/Form?”

H.1.1 How do I change the column width in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

You can then change the width of column(s) in either of the following ways:

• Place the mouse over the column name row, right on the division line between two

column name cells, and the mouse pointer will change to the horizonal drag “ ”

icon. While the horizontal drag “ ” icon is shown, you click-and-drag, and you

can make the column to the left of the icon narrower or wider.

You can change the width of several contiguous columns in one shot by first

selecting several contiguous columns (click B.5.2) and then doing the same as

indicated in the previous paragraph in one of the selected columns. The column

width of all the selected columns will be changed to the width of the one you have

dragged.

• Place the mouse on the column name cell of the column you want to change width,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 440 of 725

right-click on it, and click on “Field Width” from the pop-up menu. This will open

a box showing the current column width in “point” units. You can type-in the value

you want or tick the checkbox “Standard Width”. When you are done, click on “OK”

and the width of the column will be set to the value that you typed-in.

You can change the width of several contiguous columns in one shot by first

selecting several contiguous columns (click B.5.2) and then right-clicking on any

place of the selected columns. Avoid doing the right-click when the mouse pointer

has changed to a white cross “ ”, because if you do it, the column range will be

de-selected, the current cell will be selected, and a different pop-up menu will

appear.

After right-clicking, select “Field Width” from the pop-up menu. This will open a

box showing the current column width in “point” units. You can type-in the value

you want or tick the checkbox “Standard Width”. When you are done, click on “OK”

and the width of all the columns that you had selected will be set to the value that

you typed-in.

In case the formatted representation of a value does not fit in the cell (because the

formatted representation is larger than the cell’s width and height), then MS-Access will

not show the value and will instead show the cell filled with “#” characters (e.g.,

“#########”). This is a nice feature, to avoid you “reading” a wrong field value just

because it is partially hidden. This does not apply to Short Text nor String values: if a

Short Text or String value is larger than the cell size, and cannot be shown as a whole,

MS-Access will show the part of the text string that fits in the cell size. The reason is

that Short Text or String values do not usually fit in the cell size, but still is very useful

to see them partially.

If you wanted to see the columns in a different width for just a while, you can discard

all your changes by not saving the Table/Query layout. When you close the

Table/Query without having saved it, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you click on “No”. If you want to keep the current column width permanently,

either previously save the Table/Query layout (click B.4.1.6) or click “Yes” upon the

question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you will have to manually revert them before closing

the Form.

Changing the width of columns does not affect stored data and has no side effects.

H.1.2 How do I freeze/unfreeze the columns in a Table/Query/Form?

Freezing columns in “Datasheet View” consists of showing them permanently by not

making them subject to the horizontal scroll of columns. This is similar to freezing

panels in Excel, in case you are familiar with it. All the frozen columns must be

contiguously placed in the leftmost side of the Table.

Freezing columns is extremely useful when you cannot see all the columns in your MS-

Access window, because it allows to show the one(s) that identify each record. I explain

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 441 of 725

this in the following two subsections:

• “H.1.2.1 How do I freeze the columns in a Table/Query/Form?”

• “H.1.2.2 How do I unfreeze all the columns in a Table/Query/Form?”

H.1.2.1 How do I freeze the columns in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

Place the mouse on the column name cell of the column you want to freeze, right-click

on it, and click on “Freeze Fields” from the pop-up menu. The column will be moved

to the rightmost side of the Table/Query/Form and will be frozen.

You can freeze several contiguous columns in one shot by first selecting several

contiguous columns (click B.5.2) and then right-clicking on any place of the selected

columns. Avoid right-clicking when the mouse pointer has changed to a white cross “

”, because if you do it, the column range will be de-selected, the current cell will be

selected, and a different pop-up menu will appear.

After right-clicking, select “Freeze Fields” from the pop-up menu and of all the columns

you had selected will be moved to the rightmost side of the Table and will be frozen.

You will normally want to keep the frozen columns permanently, so you have to save

the Table/Query (click B.4.1.6). If you forgot to save the Table/Query and you close it,

MS-Access will ask:

 “Do you want to save changes to the layout of table 'Table_Name'?”

and you should click on “Yes”. If you just wanted to freeze the columns for a while, do

not save the Table/Query and click on “No” upon the question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you will have to manually revert them before closing

the Form.

Freezing columns does not affect stored data, has no side effects and is considered a

very good practice.

H.1.2.2 How do I unfreeze all the columns in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

Right-click over any column name cell and click on “Unfreeze All Fields” from the pop-

up menu. This will unfreeze all fields. However, it will not move them back to the

position they had before you froze them (in case you froze fields that were not placed

on the leftmost side of the Table/Query/Form).

If you wanted to unfreeze the columns just for a while, you can discard all your changes

by not saving the Table/Query layout. When you close the Table/Query without having

saved its layout, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the columns permanently unfrozen,

either previously save the Table/Query layout (click B.4.1.6) or click “Yes” upon the

question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 442 of 725

wanted the changes for a while, you will have to manually revert them before closing

the Form.

Unfreezing columns does not affect stored data and has no side effects.

H.2 How do I change row height, hide rows or change row

order in a Table/Query/Form?

You may click:

• “H.2.1 How do I change the height of all the rows in a Table/Query/Form?”

• “H.2.2 How do I hide rows in a Table/Query/Form?”

• “H.2.3 How do I change the sorting of rows in a Table/Query/Form?”

H.2.1 How do I change the height of all the rows in a

Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

You can change the height of all the rows in a Table/Query/Form in either of the

following ways:

• Place the mouse over the gray column to the left of the first field column, right on

the division line between two rows, and the mouse pointer will change to the vertical

drag “ ” icon. While the vertical drag “ ” icon is shown, you click-and-drag, and

you can make all the rows in the Table/Query/Form narrower or wider.

• Place the mouse on the gray column just to the left of the first field column, right-

click on it, and click on “Row Height” from the pop-up menu. This will open a box

showing the current row height in “point” units. You can type-in the value you want

or tick the checkbox “Standard Height”. When you are done click on “OK” and the

height of all the rows will be changed to the value you typed-in.

If you wanted to see the rows in a different height for just a while, you can discard all

your changes by not saving the Table/Query layout. When you close the Table/Query

without having saved the layout, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current row height permanently,

either previously save the Table/Query (click B.4.1.6) or click “Yes” upon the question

above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you will have to manually revert them before closing

the Form.

In case the formatted representation of a value does not fit in the cell (because the

formatted representation is larger than the cell’s width and height), then MS-Access will

not show the value and will instead show the cell filled with “#” characters (e.g.,

“#########”). This does not apply to Short Text values: if a Short Text value is larger

than the cell size, and cannot be shown as a whole, MS-Access will show the part of the

text string that fits in the cells size.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 443 of 725

Changing the height of rows does not affect stored data and has no side effects.

H.2.2 How do I hide rows in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

Then, configure filters to hide the records you want. To configure a filter, click on either

of the icons “ ”, “ ” or “ ” from the “Sort & Filter” Ribbon group

in the “Home” Ribbon. You can configure simple filters, just based on a matching or

not_matching value, and also filters based on complex expressions.

You can alternate between applying and not applying the filter in either of the following

ways:

• Clicking on either the “Filtered”/“No Filter” toggle icons in the “Navigation Bar”,

which is located at the bottom of the Table/Query/Form pane. When the filter is

being applied, the Filtered “ ” icon is shown, and when the filter is not

being applied the Unfiltered “ ” icon is shown. Clicking on either icon

will toggle between applying/not-applying the filter. If there is no filter set, the icon

shown is “ ”.

• Clicking on the Toggle Filter icons from the “Sort & Filter” Ribbon group from the

Home Ribbon. When the filter is being applied, the “ ” icon is shown,

and when the filter is not being applied the “ ” icon is shown. Clicking

on either icon will toggle between applying/not-applying the filter. If there is no

filter set, the icon shown is “ ”.

If you wanted to use the filters just for a while, you can discard all your changes by not

saving the Table/Query layout. When you close the Table/Query without having saved

its layout, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current filter permanently, either

previously save the Table/Query layout (click B.4.1.6) or click “Yes” upon the question

above. Notice that when you open the Table/Query in “Datasheet View” it always starts

with the filter not being applied.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you have to manually revert them before closing the

Form.

Hiding/unhiding rows (i.e., applying filters) in “Datasheet View” does not affect stored

data and has no side effects.

H.2.3 How do I change the sorting of rows in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

MS-Access allows you to sort the rows on ascending (or descending) order of the values

of one, or more columns.

To sort the rows on the values of one column, you can do it in either of the following

ways:

• Right-click anywhere in the column and then click on the sorting type you want from

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 444 of 725

the pop-up menu.

• Select the column by clicking on its header, and then click on a sorting icon

(ascending order “ ” or descending order “ ”) from the

“Sort & Filter” Ribbon group in the “Home” Ribbon.

• Click on the sorting “ ” icon placed on the right side of the column header (e.g., the

icon on the right side of “ ”) and then click on the sorting type that you want

from the pop-up menu. Notice that this way of sorting will not work on crosstab

Queries (Queries with a Transform operation).

Regardless of the way you configure sorting, you can revert it by click on the Remove

Sorting “ ” icon from the “Sort & Filter” Ribbon group in “Home” Ribbon.

Ascending sorting means that rows are sorted, top to bottom, a/A to z/Z in text fields,

smallest (negative numbers) to largest in integer and fractional fields, True/Yes/On

or ticked to False/No/Off or unticked in Yes/No or Boolean fields, and oldest to most

recent in Date/Time or Date fields. Descending sorting means the opposite. If you want

to know more detail about sorting criteria, you may click “F.7.12.1 How are the

different data/field types ordered by the “ORDER BY” clause?”.

To sort the rows based on the values of several columns, you should sort the rows in

reverse column order. This is, if you want the rows to be sorted first on the values of

column A, then on the values of B, and finally on the values of C, you first sort on the

values of C, then on B and finally on A: the resulting sorting is what you wanted.

Regardless of the way you sort the rows, every column heading you have used to sort

the rows will show a vertical arrow on its rightmost side indicating if that column has

been configured as ascending order (upward arrow “ ”) or descending order

(downward arrow “ ”).

If you wanted to see the rows with this sorting just for a while, you can discard all your

changes by not saving the Table/Query layout. When you close the Table/Query

without having saved the layout, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current row sorting permanently,

either previously save the Table/Query layout (click B.4.1.6) or click “Yes” upon the

question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you have to manually revert them before closing the

Form.

Changing the sorting of Query rows in “Datasheet View” and then saving the Query

causes a problem in MS-Access, in case the Query has parameters. The problem is

that the Query parameters will be requested twice (or more times), creating confusion

and potential for errors. My advice is you never save the row sorting you have done

in a Query in “Datasheet View”. If you want to change permanently the sorting or

rows, do it with an “ORDER BY” clause in the SQL code of the Query (click F.7.12). If

you want to know more about the problem of requesting a parameter twice, you may

click “J.11.8 How do I fix a Query requesting the same parameter twice (or more

times)?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 445 of 725

Changing the sorting of rows in “Datasheet View” does not affect stored data and has

no side effects (except for the specific problem explained above).

H.3 How do I change the order of columns that I see in a

Table/Query/Form?

It is different to change the order of columns that you see in “Datasheet View” than

changing the order of the actual database elements that support each column. Let us

see the three specific cases:

• Tables

It is different to change the order of Table columns that you see in “Datasheet
View” than changing the order of Table fields in “Design View”. If you want to

know more about these differences, you may click “H.3.2 How is it related a Table’s

column order and its field order in “Design View”?”.

• Queries

It is different to change the order of Query columns that you see in “Datasheet
View” than changing the order of Query output fields in “Design View” or in “SQL
View”. If you want to know more about these differences, you may click “H.3.3 How

is it related a Query’s column order and its field order in “Design View” and “SQL
View”?”.

• Forms

It is different to change the order of Form columns that you see in “Datasheet
View” than changing the order of Table fields of the origin Table of the Form. If

you want to know more about these differences, you may click “H.3.4 How is it

related a Forms’ column order and shown/hidden columns and the ones of its

associated Table?”.

If you want to know more about this, you may click:

• “H.3.1 How do I change the order of columns in a Table/Query/Form?”

• “H.3.2 How is it related a Table’s column order and its field order in “Design
View”?”

• “H.3.3 How is it related a Query’s column order and its field order in “Design
View” and “SQL View”?”

• “H.3.4 How is it related a Forms’ column order and shown/hidden columns and the

ones of its associated Table?”

H.3.1 How do I change the order of columns in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

Select the column that you want to move (change order) by clicking on its field name

(the column heading). The column you wanted should now be shaded, and this tells you

that it has been selected. You can now drag-and-drop the column heading cell to change

the column position left or right to the place you want.

You can move several contiguous columns in one shot by selecting several columns

(click B.5.2) instead of only one.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 446 of 725

If you wanted to see the columns with this order just for a while, you can discard all

your changes by not saving the Table/Query design. When you close the Table/Query

without having saved its design, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current column order

permanently, either previously save the Table/Query (click B.4.1.6) or click “Yes”

upon the question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you have to manually revert them before closing the

Form.

Notice that if you want to change permanently the column order in a Table, I advise you

actually change its field order in “Design View” because the column order in “Datasheet
View” will be lost the next time that you do a design change. Likewise, if you want to

change permanently the column order in a Query, I advise you change the output field

order in “SQL View” because the column order in “Datasheet View” will be lost the

next time that you do a design change or SQL change.

Changing the order of columns in “Datasheet View” does not affect stored data and has

no side effects.

H.3.2 How is it related a Table’s column order and its field order in

“Design View”?

When you create a Table, its column order in “Datasheet View” is the same as its field

order in “Design View”.

If you change the Table column order in “Datasheet View”, this will not affect the

Table field order in “Design View”, even if you save the Table and make the changes

permanent.

However, each time you change the field order of a Table in “Design View”, once you

save the Table, the field order you have configured will be also applied to the column

order in “Datasheet View”.

There is nothing specifically wrong in having a different order of the Table’s columns

in “Datasheet View” than the field order in the Table’s records. However, if you forget

about this difference, it may lead to making errors when coding your SQL Queries.

H.3.3 How is it related a Query’s column order and its field order in

“Design View” and “SQL View”?

When you create a Query, its column order in “Datasheet View”, its field order in

“Design View”, its field order in “SQL View” and its field order in the “Access SQL
Editor” are all the same.

The field order in “Design View” and “SQL View” are always the same. Therefore, if

you change the field order in either of them, the same field order will appear in the other

one.

If you change the column order in “Datasheet View” this will not change the field

order in “Design View”, “SQL View” nor in the “Access SQL Editor”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 447 of 725

If you change the field order in “Design View” or “SQL View” this will also change the

column order in “Datasheet View”, but it will not change the field order in the “Access
SQL Editor”. Notice however that doing this will cause that the Query’s SQL code in

MS-Access and in the “Access SQL Editor” will be different (click L.8.4). I therefore

advise you never change the field order using “Design View” or “SQL View”.

If you change the field order in the “Access SQL Editor”, this will also change the

column order in “Datasheet View” and the field order in “Design View” and “SQL
View”.

There is nothing specifically wrong in having a different order of the Query’s columns

in “Datasheet View” than the field order in the Query’s records. However, if you forget

about this difference, it may lead to making errors when coding your SQL Queries.

H.3.4 How is it related a Forms’ column order and shown/hidden

columns and the ones of its associated Table?

The order of columns and the columns shown/hidden in a Form in “Datasheet View” is

totally unrelated to the order of columns and columns shown in its associated Table (in

“Datasheet View”), and totally unrelated to the order of fields in its associated Table

(in “Design View”). The only requirement is that the Table field associated to a Form

column has not been removed from the Table.

You can change the order of columns and hide/unhide columns in a Table or Form, and

it will have no effect in its associated Form or Table (respectively).

H.4 How do I hide/unhide columns in a Table/Query/Form?

Hiding/unhiding some columns that you see in a Table/Query/Form in “Datasheet
View” is very different from suppressing/adding fields in the Table/Query records.

Hiding some columns is just a matter of changing the appearance of the

Table/Query/Form in “Datasheet View” and it does not have any side effect on other

Tables, Forms, Queries nor in any other element of your database. However,

suppressing/adding fields in the records of the Table/Query will have side effects.

In the following four sections I explain how to hide/unhide Table/Query/Form columns

in “Datasheet View”:

• “H.4.1 How do I hide the columns that I see in a Table/Query/Form?”

• “H.4.2 How do I unhide columns in a Table/Query/Form?”

• “H.4.3 How are related a Table/Query’s shown/hidden columns and its fields in

other views?”

• “H.4.4 How is it related a Forms’ column order and shown/hidden columns and the

ones of its associated Table?”

If you rather want to add/delete fields to/from a Table, you may click:

• “B.6.1.5 How do I add Table fields in “Design View”?”

• “B.6.1.8 How do I delete Table fields in “Design View”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 448 of 725

If you rather want to suppress/add fields in a Query’s output records, you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.8.4 What are the output fields of a Join?”

• “F.9.3 What are the output fields of a Union?”

• “F.10.3 What are the output fields of a Transform?”

H.4.1 How do I hide the columns that I see in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

You can then hide column(s) in either of the following ways:

• Place the mouse on the column name cell of the column you want to hide, right-

click on it, and click on “Hide Fields” from the pop-up menu. The column will be

hidden.

You can hide several contiguous columns in one shot by first selecting several

contiguous columns (click B.5.2) and then right-clicking on any place of the

selected columns. Avoid right-clicking when the mouse pointer has changed to a

white cross “ ”, because if you do it, the column range will be de-selected, the

current cell will be selected, and a different pop-up menu will appear.

After having right-clicked, select “Hide Fields” from the pop-up menu and all the

columns you had selected will be hidden.

• Right-click over any column name cell and click on “Unhide fields” from the pop-

up menu. This will open a dialogue-box where all the column names are shown,

each with a checkbox to its left. You can now tick or untick each of the column

names. If you untick a column name, that column will be hidden. If you tick it the

column will be unhidden. When you are done ticking/unticking column names,

click on the “Close” button. As you may see, you can also use this method to unhide

columns.

If you wanted to hide the columns just for a while, you can discard all your changes by

not saving the Table/Query design. When you close the Table/Query without having

saved its design, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current hidden columns

permanently, either previously save the Table/Query design (click B.4.1.6) or click

“Yes” upon the question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you will have to manually revert them before closing

the Form.

Hiding columns in “Datasheet View” does not affect stored data and has no side effects,

but it may be difficult for you to create new Table/Form records with hidden columns.

H.4.2 How do I unhide columns in a Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 449 of 725

Right-click over any column name cell and click on “Unhide Fields” from the pop-up

menu. This will open a box where all the column names are shown, each with a

checkbox to its left. You can now tick or untick each of the column names. If you

untick a column name, that column will be hidden. If you tick it the column will be

unhidden. When you are done ticking/unticking column names, click on the “Close”

button. As you may see, you can also use this method to hide columns.

If you wanted to unhide the columns just for a while, you can discard all your changes

by not saving the Table/Query design. When you close the Table/Query without having

saved its design, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you should click on “No”. If you want to keep the current unhidden columns

permanently, either previously save the Table/Query layout (click B.4.1.6) or click

“Yes” upon the question above.

Notice that for the case of Forms, it is not possible to discard changes: if you just

wanted the changes for a while, you will have to manually revert them before closing

the Form.

Unhiding columns in “Datasheet View” does not affect stored data and has no side

effects.

H.4.3 How are related a Table/Query’s shown/hidden columns and its

fields in other views?

The shown/hidden columns in a Table in “Datasheet View” are totally unrelated to its

fields in “Design View”.

If you change the Table’s shown/hidden columns in “Datasheet View”, this will not

affect the Table’s fields in “Design View”, even if you save the Table layout and make

the changes permanent.

The columns shown/hidden in a Query result in “Datasheet View” are totally unrelated

to its fields in “Design View” and “SQL View”.

If you change the Query’s shown/hidden columns in “Datasheet View”, this will not

affect the Query’s fields in “Design View” nor in “SQL View”, even if you save the

Query layout and make the changes permanent.

H.4.4 How is it related a Forms’ column order and shown/hidden

columns and the ones of its associated Table?

The order of columns and the columns shown/hidden in a Form in “Datasheet View” is

totally unrelated to the order of columns and columns shown in its associated Table (in

“Datasheet View”), and totally unrelated to the order of fields in its associated Table

(in “Design View”). The only requirement is that the Table field associated to a Form

column has not been removed from the Table.

You can change the order of columns and hide/unhide columns in a Table or Form, and

it will have no effect in its associated Form or Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 450 of 725

H.5 How do I change the column headings in a

Table/Query/Form?

Changing the column headings that you see in a Table/Query/Form in “Datasheet
View” is very different from changing the field names in the Table/Query records.

Changing the column heading that you see is just a matter of changing the appearance

of the Table/Query/Form in “Datasheet View” and it does not have any side effect on

other Tables, Forms, Queries nor in any other element of your database. However,

changing the field names in the records of the Table/Query will have side effects.

If you want to change the heading of Table/Query/Form columns in “Datasheet View”,

you may click:

• “H.5.1 How do I change a Table’s column headings?”

• “H.5.2 How do I change a Query’s column headings?”

• “H.5.3 How do I change a Form’s column headings?”

• “H.5.4 How are related a Form’s column headings and the ones of its associated

Table?”

If you rather want to change the field names in a Table, you may click:

• “B.6.1.7 How do I reconfigure my Table fields in “Design View”?”

If you rather want to change the change the field names in a Query’s output records,

you may click:

• “F.7.5 What are the output fields (“SELECT” clause) of a Select?”

• “F.8.4 What are the output fields of a Join?”

• “F.9.3 What are the output fields of a Union?”

• “F.10.3.2 What are the output field names of a Transform?”

H.5.1 How do I change a Table’s column headings?

Remind that changing the Table’s column headings that you see in “Datasheet View”

is very different from changing the Table’s field names (click B.6.1.7).

If the Table is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

Select the field associated to the column heading you want to change by clicking on the

corresponding field row.

Click on the row named “Caption” in the field properties, placed at the bottom sub-pane,

in the “General” tab.

In the box to the right of “Caption”, type-in the label you want to be shown in this

column in “Datasheet View”.

You may repeat the process for as many fields/columns that you want.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 451 of 725

(click B.4.1.4).

Changing the Table column headings in “Datasheet View” does not affect stored data

and has no side effects.

H.5.2 How do I change a Query’s column headings?

Remind that changing the Query’s column headings that you see in “Datasheet View”

is very different from changing the Query’s field names (click H.5).

If the Query is not opened in “Design View”, you either open it (click B.4.1.3) in

“Design View” or change its view-type (click B.4.1.4) to “Design View”.

Then, you can either click on the Property Sheet “ ” icon from the “Query Tools /
Design” contextual Ribbon, or else, right-click anywhere on the “Query pane”, and click

on “Properties” from the pop-up menu. This will show the “Property Sheet”.

Click on the field name corresponding to the Query column heading that you want to

change. The field names are in the first row of the “Query design grid”, placed in the

bottom sub-pane. In case the field name that you want is not currently shown, use the

horizontal scrollbar at the bottom of the bottom sub-pane.

Click on the row “Caption”, within the “Property Sheet” placed at the right of the

“Query pane”, in the “General” tab. In the box to the right of “Caption”, type-in the

column heading you want to be shown in the column associated to this field in

“Datasheet View”.

You may repeat the process for as many column headings that you want to change.

Once you are done with your Query configuration, save (click B.4.1.6) your Query

design. You may then close the Query (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

Changing the Query result column headings in “Datasheet View” does not affect stored

data and has no side effects.

H.5.3 How do I change a Form’s column headings?

Remind that changing the Form’s column headings that you see in “Datasheet View”

is very different from changing the supporting Table’s field names (click H.5).

Open the Form in “Datasheet View” (click B.4.1.3).

Then, you can either click on the Property Sheet “ ” icon from the “Form Tools /
Datasheet” contextual Ribbon, or else, right-click anywhere on the “Form pane”, and

click on “Properties” or “Form Properties” from the pop-up menu. This will show the

“Property Sheet” on the right side of the “Form pane”76.

Click on the drop-down “ ” icon in the element box, at the top of the “Property Sheet”,

and click on the label element corresponding to the field name you want to change. The

label element is the one with the field name followed by the suffix “_label”. Click on

the tab “Format”, and then on the row “Caption”. In the box to the right of “Caption”,

type-in the column heading you want to be shown in the column associated to this field

76 You can also show the “Property Sheet” of a Form from its “Design View”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 452 of 725

in “Datasheet View”.

Remind that you can toggle between property default order and alphabetical order by

clicking on the A-Z “ ” icon placed at the top-right corner of the “Property Sheet”.

You may repeat the process for as many column headings that you want to change.

Once you are done with your Form configuration, save (click B.4.1.6) your Form

layout. You may then close the Form (click B.4.1.7).

Changing the Form column headings in “Datasheet View” does not affect stored data

and has no side effects.

H.5.4 How are related a Form’s column headings and the ones of its

associated Table?

The column headings in a Form in “Datasheet View” will be the same as the ones in its

associated Table, if you created the Form from the Table using the “Form Wizard” from

the “Create” Ribbon.

However, if you later change the column heading(s) of the Form (click H.5.3) or of its

associated Table (click H.5.1), the column labels in the Form are totally unrelated to

column heading in its associated Table. The only requirement is that the Table field

associated to a Form column has not been removed from the Table.

H.6 How do I configure the formatting of column values in a

Table/Query/Form?

You do it by assigning specific values to the formatting properties of the column in

“Datasheet View”. To locate the formatting properties of a Table click H.6.3.1, of a

Query result click H.6.3.2 and of a Form click H.6.3.3.

The most important formatting property of a Table/Query/Form column is “Format”.

You locate the “Format” property (click H.6.3) corresponding to the column you want

to configure. You then type-in the predefined or custom format you want, or else, you

choose one of the predefined format options using the drop-down menu. It is very

important to notice that you can type-in any applicable predefined format, even if it

is not shown in the drop-down menu.

Changing the display formatting of a Table/Query/Form column in “Datasheet View”

does not affect stored data and has no side effects. However, in case the formatted

representation of a value does not fit in the cell (because the formatted representation

is larger than the cell’s width and height), then MS-Access will not show the value and

will instead show the cell filled with “#” characters (e.g., “#########”). This does not

apply to Short Text or String values: if a Short Text or String value is larger than the

cell size, and cannot be shown as a whole, MS-Access will show the part of the text

string that fits in the cells size.

If you want to configure predefined or custom formats, and/or find the formatting

properties, you may click:

• “H.6.1 How do I configure predefined column formatting in a Table/Query/Form?”

• “H.6.2 How do I configure custom column formatting in a Table/Query/Form?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 453 of 725

• “H.6.3 How do I find the column formatting properties in a Table/Query/Form?”

H.6.1 How do I configure predefined column formatting in a

Table/Query/Form?

The most important formatting property of a Table/Query/Form column in “Datasheet
View” is “Format”. To locate the formatting properties of a Table click H.6.3.1, of a

Query result click H.6.3.2 and of a Form click H.6.3.3. You first locate the “Format”

property corresponding to the column you want to configure. You then type-in the

predefined or custom format that you want, or else, you choose one of the predefined

format options shown in the drop-down menu. It is very important to notice that you can

type-in any predefined format, even if it is not shown in the drop-down menu.

The predefined formats that are shown in the drop-down menu depend on the field type

of the column. I will explain the predefined formats for the following four cases:

• Short Text field type

Click “H.6.1.1 What “Format” options are available in Short Text and Long Text
fields?”.

• Yes/No field type

Click “H.6.1.2 What “Format” options are available in Yes/No fields?What

“Format” options are available in Yes/No fields?”.

• Number, Large Number, Currency, and Date/Time field types

Click “H.6.1.3 What “Format” options are available in Number, Large Number,
Currency and Date/Time fields?”.

• Calculated field type

Click “H.6.1.4 What “Format” options are available in Calculated fields?”.

H.6.1.1 What “Format” options are available in Short Text and Long Text
fields?

If you write “Standard” as the value of the “Format” “Datasheet View” property of a

Short Text or Long Text field, the values shown in “Datasheet View” in this column

will be right-aligned.

No other predefined formats are available (only custom formatting is available).

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.1.2 What “Format” options are available in Yes/No fields?

The formatting of the Yes/No field type in Table “Datasheet View” is different from

the other field types, because it depends on the configuration of its “Display Control”

property in the “Lookup” tab of the Table field.

Having clarified this, the predefined formatting options for a Yes/No field are the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 454 of 725

following:

• Table field with “Display Control” set to “Check Box”

The Yes/No value is always shown as a checkbox, no matter what you configure

in its “Format” property.

• Query/Form field directly coming from a Table field that has “Display Control”

set to “Check Box”

The value is always shown as a checkbox, no matter what you configure in its

“Format” property.

If you want to change the formatting of such a Query field, the solution is as simple

as adding in the Query code “OR True” to the Table field name in the “SELECT”

expression, so the Query field is now the result of a Boolean operator. In this way,

the Query field now corresponds to the case of the next bullet point.

• Table field with “Display Control” set to “Text Box” or “Combo Box”, or

Query/Form field directly coming from a Table field that has “Display Control”

set to “Text Box” or “Combo Box”, or

Query field resulting from any Boolean operator/function

The options for the “Format” property are:

• Blank: values will be shown as “-1” or “0”.

• “True/False”: values will be shown as “True” or “False”.

• “Yes/No”: values will be shown as “Yes” or “No”.

• “On/Off”: values will be shown as “On” or “Off”.

Notice that you can configure the above options for the “Format” property, even if

they are not shown in its drop-down menu: you just have to type-in the

corresponding text.

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.1.3 What “Format” options are available in Number, Large Number,
Currency and Date/Time fields?

For the purpose of formatting in “Datasheet View”, the values of these five field types

are all equally interpreted as a floating-point number. For Date/Time, the integer part

is the date-part (0 being 30-dec-1989) and the fractional part is the time-part.

The field types Number and Currency have the additional formatting property “Decimal
Places” that the field type Date/Time does not have. The additional property “Decimal
Places” is located right below the “Format” property.

The predefined formats available for these four field types are:

• Default format (when the “Format” property is blank)

In this case, the applied formatting depends on the field type, as follows:

o Number field type: value is shown with “General Number” format.

o Currency field type: value is shown with “Currency” format.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 455 of 725

o Date/Time field type: value is shown with “General Date” format.

• “General Number” predefined format

Numbers written in normal decimal notation with all its decimal digits. Negative

numbers are prefixed by “-”.

• “Currency” predefined format

Notice that there may be some confusion because the name of the “Currency”

predefined format is the same as the Currency field type. You should remind that

the Currency field type and the “Currency” predefined format are very different

things, although (unfortunately) they have the same name.

The “Currency” format is similar to “General number”, but adding thousands

separation characters, showing the number of decimal digits indicated in the

“Decimal Places” property and appending a blank followed by the currency

character (e.g., $, €, ...) defined in your system. If the value of “Decimal Places” is

“Auto”, then two decimal digits are shown.

• “Fixed” predefined format

Similar to “General number” but showing the number of decimal digits indicated

in the “Decimal” property. If the value of “Decimal Places” is “Auto”, then two

decimal digits are shown.

• “Standard” predefined format

Similar to “General number” but adding thousands separation characters and

showing the number of decimal digits indicated in “Decimal Places”. If the value of

“Decimal Places” is “Auto”, then two decimal digits are shown.

• “Percent” predefined format

Similar to “General number”, but the value shown is the stored value multiplied by

100, decimal digits shown are the value of the “Decimal Places” property and the

“%” character is appended. If “Decimal Places” is set to “Auto”, then two decimal

digits are shown.

• “Scientific” predefined format

Number is shown in decimal exponential notation (i.e., 2.0376E+02). Decimal digits

shown are the value of the “Decimal Places” property. If “Decimal Places” is set to

“Auto”, then two decimal digits are shown.

• “General Date” predefined format

Values with time-part equal 0:00:00 are shown as “m/d/yyyy” where “d” is day

number, “m” is month number and “yyyy” is year number. The time-part is not

shown. Example:

 1/15/2019

Values with date-part equal to 30-December-1899 (i.e., integer part equal “0”) are

shown as “h:nn:ss xx” where “h” is hour (0 to 12), “nn” is minutes, “ss” is seconds

and “xx” is either AM or PM. Day, month and hour less than 10 are shown with one

digit. Minutes and seconds are always two digits. Example: 1:09:07 PM

Values with date-part and time-part different from the two values above are shown

as:

 m/d/yyyy h:nn:ss xx

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 456 of 725

where the letters mean the same as in the previous two cases. Example:

 1/15/2019 1:09:07 PM

• “Long Date” predefined format

Only the date-part is shown as “Weekday, Month d, yyyy” where Weekday and

Month are shown as names and day “d” and year “yyyy” are show as numbers. Day

numbers less than 10 are shown with one digit. Time-part is not shown. Example,

“Tuesday, January 1, 2019”.

• “Medium Date” predefined format

Only the date-part is shown as “dd-mmm-yy” where “mmm” are the first three

letters of each month’s name. Day is always shown with two digits. Year is shown

with two digits if the first two are “20” and with four digits otherwise. Example,

“15-Jan-19”.

• “Short Date” predefined format

Only the date-part is shown as “m/d/yyyy” where “m” is month number, “d” is day

number, and “yyyy” is year number. Day and month less than 10 are shown with one

digit. Year is always shown with four digits. Example: “1/15/2019”.

• “Long Time” predefined format

Only the time-part is shown as “h:nn:ss xx” where “h” is hour (0 to 12), “nn” is

minutes, “ss” is seconds and “xx” is either AM or PM. Hour less than 10 is shown

with one digit. Minutes and seconds are always two digits. Example: “1:09:07 PM”.

• “Medium Time” predefined format

Only the time-part is shown as “h:nn xx” where “h” is hour (0 to 12), “nn” is minutes

and “xx” is either AM or PM. Hour less than 10 is shown with one digit. Minutes are

always two digits. Example: “1:09 PM”.

• “Short Time” predefined format

Only the time-part is shown as “h:nn” where “h” is hour (0 to 23) and “nn” is

minutes. Hour less than 10 is shown with one digit. Minutes are always two digits.

Example: “13:09”.

Notice that some of the predefined formats above are not displayed in the pop-up menu

shown when clicking in the rightmost side of the “Format” row, but still can use them

if you type them in.

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.1.4 What “Format” options are available in Calculated fields?

The predefined formats available in “Datasheet View” for a Calculated field are the

ones corresponding to the equivalent field type of its “Result Type” property, for all

the field types. If you want to know the predefined formats for all the actual field types,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 457 of 725

you may click:

• “H.6.1.1 What “Format” options are available in Short Text and Long Text fields?”

• “H.6.1.2 What “Format” options are available in Yes/No fields?”

• “H.6.1.3 What “Format” options are available in Number, Large Number, Currency

and Date/Time fields?”

H.6.2 How do I configure custom column formatting in a

Table/Query/Form?

You have to be careful with custom formatting “Datasheet View” because if you use

strange formats you may have problems when copying data from MS-Access and

pasting as text in other programs. I advise you use custom formatting as you want, as

long as you do not add additional text. Adding additional text will almost for sure

create problems when pasting as text in other programs.

They way to configure custom formatting is by writing in the “Format” property a text

string composed of characters that convey formatting instructions to MS-Access. You

locate the “Format” property corresponding to the column you want to configure. To

locate the formatting properties of a Table click H.6.3.1, of a Query result click H.6.3.2

and of a Form click H.6.3.3.

The custom formatting most frequently used is for dates, and you will see in the

corresponding table below that MS-Access allows very flexible custom formatting for

dates.

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

If you want to know each of the formatting characters, and what is their formatting

effect, you may click:

• “H.6.2.1 How do I configure custom formatting for all field types?”

• “H.6.2.2 How do I configure custom formatting for Short Text fields?”

• “H.6.2.3 How do I configure custom formatting for Number, Large Number and

Currency fields?”

• “H.6.2.4 How do I configure custom formatting for Date/Time field type?”

H.6.2.1 How do I configure custom formatting for all field types?

This subsection presents the common formatting characters for all field types. In

addition to these, there are specific formatting characters for some field types, that I

present in the next two subsections:

• “H.6.2.2 How do I configure custom formatting for Short Text fields?”

• “H.6.2.3 How do I configure custom formatting for Number, Large Number and

Currency fields?”

The following table shows the formatting characters to write “Datasheet View” custom

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 458 of 725

formatting strings that are common to all field types:

Character Description (for all field types)

*

When used, the character immediately after the asterisk (*) becomes a

fill character (a character used to fill blank spaces). Access normally

displays text as left-aligned and fills any area to the right of the value

with blank spaces. You can add fill characters anywhere in a format

string. When you do so, MS-Access fills any blank spaces with the

specified character.

Blank

space, + - $
€ ()

Used to insert blank spaces, math characters “+”, “-”, financial

symbols “$”, “€”, and parentheses as needed anywhere in your format

strings. If you want to use other common math symbols, such as slash

(\ or /) and the asterisk (*), enclose them between double quotes. Note

that you can place these characters anywhere in the format string.

"Literal
text"

Use double quotes to enclose any text that you want to be displayed to

users.

\
Display the character that immediately follows. Typically used when

you want to display a character that has some special meaning like

“*”. This is the same as enclosing a character between double quotes.

[color]
Displays in color all values in a section of your format. You must

enclose the color name in brackets and use one of these names: black,

blue, cyan, green, magenta, red, yellow, or white.

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.2.2 How do I configure custom formatting for Short Text fields?

The following table shows the formatting characters to write “Datasheet View” custom

formatting strings for Short Text field type. Remind that you can also use the common

formatting characters for all field types shown in “H.6.2.1 How do I configure custom

formatting for all field types?”.

Character Description (for Short Text field type)

@

Displays any available character for its position in the format string. If

MS-Access places all characters in the underlying data, any remaining

placeholders appear as blank spaces. For example, if the format string

is @@@@@ and the underlying text is ABC, the text is left-aligned

with two leading blank spaces.

&

Displays any available character for its position in the format string. If

MS-Access places all characters in the underlying data, any remaining

placeholders display nothing. For example, if the format string is

&&&&& and the text is ABC, only the left-aligned text is displayed.

!
Displays text left justified. You must use this character at the start of

any format string.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 459 of 725

Character Description (for Short Text field type)

<
Displays all text in lowercase. You must use this character at the

beginning of a format string, but you can precede it with an

exclamation point (!).

>
Displays all text in uppercase. You must use this character at the

beginning of a format string, but you can precede it with an

exclamation point (!).

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.2.3 How do I configure custom formatting for Number, Large Number
and Currency fields?

The following table shows the formatting characters to write “Datasheet View” custom

formatting strings for Number. Large Number and Currency field types. Remind that

you can also use the common formatting characters for all field types shown

in “H.6.2.1 How do I configure custom formatting for all field types?”.

Character Description (for Number, Large Number and Currency field types)

Displays a digit. Each instance of the character represents a position

for one digit. If no value exists in a given position, MS-Access

displays a blank space. It can also be used as a placeholder. For

example, if you apply the format #,### and enter a value of 45 in the

field, 45 is displayed. If you enter 12,145 in a field, MS-Access

displays 12,145, even though you defined only one placeholder to the

left of the thousands separator.

0
Used to display a digit. Each instance of the character represents a

position for one digit. If no value exists in a position, MS-Access

displays a zero (0).

Decimal

separator

“.” (period)

Indicates where you want MS-Access to place the separator character

between the whole and decimal parts of a Number or Currency field.

For non-English versions, decimal separator may vary and is set in the

regional settings in Windows.

Thousands

separator

“,” (comma)

Indicates where you want MS-Access to place the separator character

between the thousands part of a Number or Currency field.

For non-English versions, thousands separator may vary is set in the

regional settings in Windows.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 460 of 725

Character Description (for Number, Large Number and Currency field types)

E+, E-
or

e+, e-

Used to display values in scientific (exponential) notation.

Use this option when the predefined scientific format doesn't provide

sufficient room for your values. Use E+ or e+ to display values as

positive exponents, and E- or e- to display negative exponents. You

must use these placeholders with other characters.

For example, suppose that you apply the format 0.000E+00 to a

numeric-like field and then enter 612345. MS-Access displays

6.123E+05. MS-Access first rounds the number of decimal places

down to three (the number of zeros to the right or left of the decimal

separator). Next, MS-Access calculates the exponent value from the

number of digits that fall to the right (or left, depending on your

language settings) of the decimal separator in the original value. In

this case, the original value would have put 612345 (five digits) to the

right of the decimal point. For that reason, MS-Access displays

6.123E+05, and the resulting value is the equivalent of 6.123 x 105.

!
Used to force the left alignment of all values. When you force left

alignment, you cannot use the # and 0 digit placeholders, but you can

use placeholders for text characters.

%
Used as the last character in a format string. Multiplies the value by

100 and displays the result with a trailing percent sign.

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.2.4 How do I configure custom formatting for Date/Time field type?

The following table shows the formatting characters to write custom formatting strings

for Date/Time field type. Remind that you can also use the common formatting

characters for all field types shown in “H.6.2.1 How do I configure custom formatting

for all field types?”.

Character Description (for Date/Time field type)

Date

separator

Separator character between days, months, and years. Use the

separator defined in the Windows regional settings. For example, in

English (U.S.), use a slash “/” or hyphen “-” character.

Time

separator

Separator character between hours, minutes, and seconds. Use the

separator defined in the Windows regional settings. For example, in

English (U.S.), use a colon “:” character.

c Displays the “General Date” predefined format (click H.6.1.3).

d or dd Displays the day of the month as one or two digits.

ddd Displays the first three letters of the name of day of the week.

dddd Displays the complete name of the day of the week.

ddddd Displays the “Short Date” predefined format (click H.6.1.3).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 461 of 725

Character Description (for Date/Time field type)

dddddd Displays the “Long Date” predefined format (click H.6.1.3).

w Displays a number that corresponds to the day of the week (1 to 7).

ww Displays a number that corresponds to the week of the year (1 to 53).

m or mm Displays the month as either a one-digit or two-digit number.

mmm Displays the first three letters of the name of the month.

mmmm Displays the complete name of the month.

q
Displays the number of the current calendar quarter (1 to 4). For

example, if you hire a worker in May, MS-Access will display 2 as the

quarter value.

y Displays the day of the year, 1 to 366.

yy Displays the last two digits of the year.

yyyy Displays the year as four digits in the range 0100 to 9999.

h or hh Displays the hour as one or two digits.

n or nn Displays minutes as one or two digits.

s or ss Displays seconds as one or two digits.

tttt Displays the “Long Time” predefined format (click H.6.1.3).

AM/PM
Twelve-hour clock with the uppercase letters “AM” or “PM”, as

appropriate.

am/pm
Twelve-hour clock with the lowercase letters “am" or “pm”, as

appropriate.

A/P
Twelve-hour clock with the uppercase letter “A” or “P”, as

appropriate.

a/p
Twelve-hour clock with the lowercase letter “a” or “p”, as

appropriate.

AMPM
Twelve-hour clock with the appropriate morning/afternoon

designator as defined in the regional settings of Windows.

Notice that in non-English versions of MS-Access, some of the characters above may

be translated. For example, in the Spanish version, the character “y” becomes “a” for

“año”. Formatting characters may differ from the above ones in the MS-Access settings,

but will stay the same in the VBA formatting functions, even in foreign language

versions of MS-Access.

Once you are done with your Table/Query/Form configuration, save (click B.4.1.6) your

Table/Query/Form design. You may then close the Table/Query/Form (click B.4.1.7) or

change it to “Datasheet View” (click B.4.1.4).

Changing the column formatting in “Datasheet View” does not affect stored data and

has no side effects.

H.6.3 How do I find the column formatting properties in a

Table/Query/Form?

The way to find the column formatting properties in “Datasheet View” is specific of a

Table, Query result or Form, as I explain in the following subsections:

• “H.6.3.1 How do I find a Table’s column formatting properties?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 462 of 725

• “H.6.3.2 How do I find a Query’s column formatting properties?”

• “H.6.3.3 How do I find a Form’s column formatting properties?”

H.6.3.1 How do I find a Table’s column formatting properties?

Open the Table in “Design View” (click B.4.1.3).

Select the field associated to the column you want to format by clicking on the

corresponding field row.

Find the row named “Format”, in the field properties placed at the bottom sub-pane, in

the “General” tab. In the cell to the right of “Format”, type-in the predefined/custom

format that you want for this field. You can also right-click on the rightmost part of this

box and click on a predefined format from the drop-down menu. However, notice that

the drop-down menu does not show all of the predefined formats that you can use.

In case this is a Number, Large Number or Currency field, you will find the property

“Decimal Places” right below “Format”. In the cell to the right of “Decimal Places”,

either type-in the number of decimal digits you want for this field, or else, right-click

on the rightmost part of this box and click on a value from the drop-down menu.

Find the row named “Text Align”, in the field properties placed at the bottom sub-pane,

in the “General” tab. In the cell to the right of “Text Align”, either type-in the value you

want for this field, or else, right-click on the rightmost part of the cell and click on a

value from the drop-down menu.

You may repeat the process for as many Table fields that you want.

Once you are done with your Table configuration, save (click B.4.1.6) your Table

design. You may then close the Table (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

Changing the value formatting of a Table’s column that is shown in “Datasheet View”

does not affect stored data and has no side effects.

H.6.3.2 How do I find a Query’s column formatting properties?

Open the Query in “Design View” (click B.4.1.3).

In case “Design View” is not shown, it is most likely because this is a Union Query: to

fix this you may click “K.4.7 Why should I enclose the outermost Union operation in a

Select operation?”.

Then, you can either click on the Property Sheet “ ” icon from the “Query Tools /
Design” contextual Ribbon, or else, right-click anywhere on the “Query pane”, and click

on “Properties” from the pop-up menu. This will show the “Property Sheet” on the

right side of the “Query pane”.

To configure the formatting properties of a given Query column, click on the

corresponding output field name in the first row of the “Query design grid” placed in

the bottom sub-pane of the “Query pane”. This will show the properties of that output

field in the “Property Sheet”.

In the “Property Sheet”, find the row named “Format”. In the cell to the right of

“Format”, type-in the predefined/custom format you want for this field. You can also

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 463 of 725

right-click on the rightmost part of this cell and click on a predefined format from the

drop-down menu. However, notice that the drop-down menu does not show all the

predefined formats that you can use.

In case this is a Number, Large Number or Currency field, you will find the property

“Decimal Places” right below “Format”. In the cell to the right of “Decimal Places”,

either type-in the number of decimal digits you want for this field, or else, right-click

on the rightmost part of this box and click on a value from the drop-down menu.

Notice that Query columns do not have a “Text Align” property.

You may repeat the process for as many Query output fields that you want.

Once you are done with your Query configuration, save (click B.4.1.6) your Query

design. You may then close the Query (click B.4.1.7) or change it to “Datasheet View”

(click B.4.1.4).

Changing the value formatting of a Query’s column that is shown in “Datasheet View”

does not affect stored data and has no side effects.

When writing your SQL Queries, remind to qualify all the output field names in your

SQL Query code. Otherwise, all the formatting configuration of the Query columns that

you have made for “Datasheet View” will be lost when you modify the Query SQL

code. If you want to know more about this, you may click “K.4.5 Why should I qualify

all the outermost output field names of my Queries?”.

H.6.3.3 How do I find a Form’s column formatting properties?

Open the Form in “Datasheet View” (click B.4.1.3).

Then, you can either click on the Property Sheet “ ” icon from the “Form Tools /
Datasheet” contextual Ribbon, or else, right-click anywhere on the “Form pane”, and

click on “Properties” or “Form Properties” from the pop-up menu. This will show the

“Property Sheet” on the right side of the “Form pane”77.

You can see that the “Property Sheet” shows at its top an element box with a drop-

down menu to select the Form element for which you want to show its properties. Click

on the name of the column whose formatting properties you want from the drop-down

menu. Now select the “Format” tab in the “Property Sheet”.

In the “Property Sheet”, find the row named “Format”. In the cell to the right of

“Format” type-in the custom/predefined format that you want for this column. You can

also right-click on the rightmost part of this cell and click on a predefined format from

the drop-down menu. However, notice that the drop-down menu does not show all the

predefined formats that you can use.

In case that this is a Number, Large Number or Currency field, you will find the property

“Decimal Places” right below “Format”. In the cell to the right of “Decimal Places”,

either type-in the number of decimal digits you want for this field, or else, right-click

on the rightmost part of this box and click on a value from the drop-down menu.

Find the row named “Text Align”. In the cell to the right of “Text Align”, either type-in

the value you want for this column, or else, right-click on the rightmost part of this box

77 You can also show the “Property Sheet” of a Form from its “Design View”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 464 of 725

and click on a value from the drop-down menu.

Remind that you can toggle between property default order and alphabetical order by

clicking on the A-Z “ ” icon placed at the top right corner of the “Property Sheet”.

You may repeat the process for as many Form columns that you want.

Save the Form layout by right-clicking on the Form tab and clicking on “Save” from

the pop-up menu. You can then close the Form or close the “Property Sheet” to

introduce data into it.

Changing the value formatting of a Form’s column that is shown in “Datasheet View”

does not affect stored data and has no side effects.

H.7 How do I configure the column text alignment in a

Table/Query/Form?

You may click:

• “H.7.1 How do I configure a Table/Form’s column text alignment?”

• “H.7.2 How do I configure a Query’s column text alignment?”

H.7.1 How do I configure a Table/Form’s column text alignment?

For Tables and Forms you configure each “Datasheet View” column’s text alignment

in either of the following ways:

• Select the column and click on the corresponding text align icon: left “ ”, center

“ ” or right “ ” from the “Home” Ribbon.

• Configure a custom format in the “Format” property: click “H.6.2 How do I

configure custom column formatting in a Table/Query/Form?”.

• Configure the “Text Align” property. You can find the “Text Align” property of each

field/column in the same way as the “Format” property: click “H.6 How do I

configure the formatting of column values in a Table/Query/Form?”).

You can configure one of the following options for the property “Text Align”:

• “General” (default option)

Aligns the values of columns with Short Text field type to the left and the values of

all the other field types to the right.

• “Left”
Aligns each value to the left of the column.

• “Center”
Centers each value in the column.

• “Right”
Aligns each value to the right of the column.

• “Distribute”
Distributes the characters of each value across all the column width, introducing

the required spacing between the characters.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 465 of 725

If you want the changes to be permanent, save the Table/Form by right-clicking on its

tab and clicking on “Save” from the pop-up menu. You can then introduce data in the

Table/Form pane or close the Table/Form pane.

Changing the Table/Form text alignment that is shown in “Datasheet View” does not

affect stored data and has no side effects.

H.7.2 How do I configure a Query’s column text alignment?

Query results columns in “Datasheet View” do not have the “Text Align” property, and

the text align icons from the “Home” Ribbon will not work (they will be shaded).

Therefore, the only way to configure the text alignment in a Query column is by

configuring a custom formatting in the corresponding “Format” property.

For Query results my advice is that you keep the default alignment. This will make

the text strings left justified, and all other field types with a different justification

(centered, right, ...). This will allow you to detect in just one glance that a number,

date, or other field types have been converted to String. This is a quite frequent mistake

that can cause a number of errors. Detecting this in a glance is extremely useful.

The default alignment for Short Text fields is left alignment. If you want a Short Text
field right aligned, you may you write “Standard” in its “Format” property.

The default alignment for Number fields is right alignment. If you want a Number field

left aligned, you may write an exclamation mark “!” its “Format” property.

If you want to know more about configuring custom formatting, you may click

“H.6.2 How do I configure custom column formatting in a Table/Query/Form?”.

H.8 How do I show aggregate values (e.g., totals) in a

Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

You then click on the Total “ ” icon from the “Home” Ribbon. This will show an

additional “aggregate” row at the end of the Table/Query/Form. This additional

aggregate row will be labeled “Total” in the leftmost cell. If you click again on the Total

“ ” icon this additional aggregate row will be hidden.

In case you use a filter (click H.2.2) to only show some rows, the value in the aggregate

additional row will be computed over the rows currently shown. This is, the rows that

have been hidden as a consequence of the filter, will be completely ignored for the

result computed in the aggregate row. Combining filters and the aggregate values row

is very useful to compute different aggregated results over the specific groups of records

that you want.

You can select different types of aggregate values (total, average, …) for each field

within the aggregate row. To do this, click on the left side of any cell in the additional

aggregate row (including the cell labeled “Total”, if you want) and you will see a drop-

down menu where you can select the type of aggregate value you want. The aggregate

value options shown in the drop-down menu depend on the field type of the column, as

I explain in the following subsections:

• “H.8.1.1 How do I show aggregate values in Short Text and Yes/No fields?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 466 of 725

• “H.8.1.2 How do I show aggregate values in Date/Time field?”

• “H.8.1.3 How do I show aggregate values in Number, Large Number and Currency

fields?”

If you wanted to see the aggregate row for just a while, you can discard it by not saving

the Table/Query layout. When you close the Table/Query without having saved it, MS-

Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you click on “No”. If you want to keep the aggregate row permanently, either

previously save the Table/Query layout (click B.4.1.6) or click “Yes” upon the question

above.

Notice that for the case of Forms, it is not possible to discard the “Total” row: if you

just wanted it for a while, you have to manually remove it before closing the Form.

Adding the aggregate row to a Table/Query/Form in “Datasheet View” does not affect

stored data and has no side effects.

You can also compute aggregate rows in your SQL Queries in a very flexible way

(several aggregate rows, selective aggregate, show the row in a different position, …).

If you want to know more about this, you may click:

• “K.6.3 How do I produce totals in addition to individual results?”

H.8.1.1 How do I show aggregate values in Short Text and Yes/No fields?

Click on the left side of the cell that you want in the additional aggregate row (including

the cell labeled “Total”) and click on the aggregate value option that you want from the

pop-up menu.

The “Datasheet View” aggregate value options for Short Text and Yes/No fields are:

• None:

This is the default value. If selected, will clear the aggregated value shown in the

cell.

• Count:
Will show in the cell the count of non-Null values currently listed in this column.

H.8.1.2 How do I show aggregate values in Date/Time field?

Click on the left side of the cell that you want in the additional aggregate row (including

the cell labeled “Total”) and click on the aggregate value option that you want from the

pop-up menu.

The “Datasheet View” aggregate value options for Date/Time fields are the ones

available for Short Text and Yes/No fields, plus the following additional ones:

• Average:

Will show in the cell the average of all the non-Null values currently listed in this

column.

• Maximum:

Will show in the cell the maximum value in the rows currently listed in this

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 467 of 725

column.

• Minimum:

Will show in the cell the minimum value in the rows currently listed in this

column.

H.8.1.3 How do I show aggregate values in Number, Large Number and

Currency fields?

Click on the left side of the cell that you want in the additional aggregate row (including

the cell labeled “Total”) and click on the aggregate value option that you want from the

pop-up menu.

The “Datasheet View” aggregate value options for Number, Large Number and

Currency fields are the ones available for Date/Time fields, plus the following

additional ones:

• Sum:

Will show in the cell the addition of all the non-Null values currently listed in this

column.

• Standard Deviation:

Will show in the cell the standard deviation of all the non-Null values currently

listed in this column. Remind that you need at least two values to get a standard

deviation result.

• Variance:

Will show in the cell the variance of all the non-Null values currently listed in this

column. Remind that you need at least two values to get a variance result.

H.9 How do I configure colors, fonts and other features of a

Table/Query/Form?

Open the Table/Query/Form in “Datasheet View” (click B.4.1.3).

You then select the font type, font size, font style (bold, italic, ...) and/or the font color

that you want by using the corresponding icons from the “Text Formatting” Ribbon

group in the “Home” Ribbon.

You can also configure the borders, shadowing and other appearance of cells.

You can also configure the colors used for the alternate rows.

The selected changes are applied to the whole Table/Query/Form and cannot be

selectively applied to individual columns or rows.

Remind that for the case of Tables and Forms, you can also configure the text alignment

of each individual column (click H.7.1).

If you wanted to see this formatting for just a while, you can discard it by not saving

the Table/Query/Form layout. When you close the Table/Query/Form without having

saved it, MS-Access will ask:

 “Do you want to save changes to the layout of table/query 'Table/Query_Name'?”

and you click on “No”. If you want to keep this formatting permanently, either

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 468 of 725

previously save the Table/Query/Form layout (click B.4.1.6) or click “Yes” upon the

question above.

Changing the Table/Query/Form appearance that is shown in “Datasheet View” does

not affect stored data and has no side effects.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 469 of 725

PART I. EVOLVING MY DATABASE DESIGN

You may click:

• “I.1 Why would I want to improve/modify my database design?”

• “I.2 Why should I be so careful with any change to the database design?”

• “I.3 How do I find all the dependent objects on a given database object?”

• “I.4 What are the side effects of modifying my Table fields?”

• “I.5 What are the side effects of modifying my Tables?”

• “I.6 What are the side effects of modifying my Queries?”

• “I.7 What are the side effects of modifying my user-defined VBA functions?”

• “I.8 What are the side effects of modifying my Relationships, Forms and/or

Reports?”

I.1 Why would I want to improve/modify my database design?

Because you may want to fix errors, introduce more functionality, or adapt the database

to changing environment and needs.

In theory, you carefully do a perfect initial database design when you create the

database, and then you just use it as such forever. In practice, this never happens.

To start with, the most frequent way to do a database design is by doing it incrementally.

You start creating some Tables and Relationships. You paste/input some test data to

check if everything seems right. You then do some modifications to the Tables and

Relationships, and you add a couple more Tables. You paste/input some more test data

to check if everything seems right. You repeat this cycle a few times, until you consider

that the database design is sufficiently sound. You then remove all data used for testing

and input the correct initial data. The database is then operational, and you begin using

it.

After the database is in operation, you will also be doing, for sure, some modifications

to the database design. You may be for example adding more fields to the existing

Tables, adding new Tables and Relationships, changing field names, field types,

Relationships or Key fields. Modifications are sometimes motivated because you want

either more functionality or adjust the current one. Other times, modifications are

motivated because the environment (e.g., accounting regulation, privacy laws, your

business expands, ...) changes.

I.2 Why should I be so careful with any change to the database

design?

Because most changes on your database design, even seemingly minor, will imply that

you will have to do adjustments over other elements of the database (e.g., stored data,

fields, Tables, Relationships, Queries and/or Forms). The reason for this is that database

elements are interdependent among themselves. For example, if you change the name

of a Table, all the Queries that use that Table will crash, because they will have the old

Table name into their SQL code, and the Table with the original name does not exist

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 470 of 725

anymore.

You need to understand well both the interrelations between database elements

(called “dependencies”) and the specific malfunctions (called “side effects”) that will

happen on the dependent elements when you modify the element on which they depend.

If you understand well dependencies and side effects, you will be able to plan and

execute the changes in your database design properly and without introducing any

malfunctions in the process.

My advice is that before making any modification on any database element (fields,

Tables, Relationships, Queries or Forms), you check the corresponding chapter “What

are the sides effect of...” clicking in Part I.

If you want to understand better the concepts of dependencies and side effects, you

may click:

• “I.2.1 What are database element dependencies?”

• “I.2.2 What are side effects?”

I.2.1 What are database element dependencies?

A dependency means that when you modify a database element this causes a

malfunction on other elements that are said to depend on the element that has been

modified.

The database elements in any database design are very interrelated. Most

modifications you make on an element will cause malfunctions on its dependent

elements. There is also a cascading effect: if you modify an element that causes its K

dependent elements to malfunction, each of the K elements will in turn affect a number

of elements that depend on it, and so on. With this cascading effect, the consequences

of one modification may propagate causing malfunctions on many of your database

elements. Therefore, when you modify an element, you have some elements that are

directly dependent on it, but you may also have many more elements that are indirectly

dependent on it.

For example, if you change the name of a given Query, all the Queries that make use of

this Query will crash, because they cannot find the former Query name (direct

dependence). Also, all other Queries that make use of any of these Queries that now

crash, will also crash (indirect dependence). The same applies to further Queries

making use of these ones (indirect dependence again), and so on.

Adding a new Table, Form, Query, Report or user-defined VBA function to the

database design does not cause any side effect. You can therefore add as many as you

need without experiencing any problem. Adding a new Relationship will restrict the

values of the slave Tables, but this is not a side effect, and rather it is actually what you

want. Therefore, adding a new Relationship does not cause any side effect.

However, modifying an existing database element has side effects on most cases. The

following is a list of elements that have a direct dependency on each database element

type:

• Table modifications may have direct side effects on:

o All Relationships in which the Table is involved

o All Forms based on the Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 471 of 725

o All Reports based on the Table

o All Queries that use the Table

o All Tables and Forms with a drop-down menu that has the Table name in

its “Row Source” property

o All user-defined VBA functions and all Forms’ VBA Event Subroutines,

that use the Table

• Query modifications may have direct side effects on:

o All Forms based on the Query

o All Reports based on the Query

o All Queries that use the Query

o All Tables and Forms with a drop-down menu that has the Query name in

its “Row Source” property

o All user-defined VBA functions and all Forms’ VBA Event Subroutines,

that use the Query

• User-defined VBA function modifications may have direct side effects on:

o All Tables that use the function in a Calculated field

o All Queries that use the function

o All user-defined VBA functions and all Forms’ VBA Event Subroutines,

that use the function

Remind that these are only the direct dependencies, and that the cascading effect will

propagate the malfunction to many other elements that have an indirect dependence on

the modified element.

My advice is that before making any modification on any database element (fields,

Tables, Relationships, Queries or Forms), you check the corresponding chapter “What

are the sides effect of...” clicking in Part I.

I.2.2 What are side effects?

Side effects are the specific malfunctions that a modification on an element may cause

on its dependent elements. Some examples of side effects are:

• The dependent Query crashes.

• The dependent function crashes.

• The dependent Query requests a non-existing parameter.

• An Insert operation inserts wrong values in its target Table.

• A pop-up menu in the dependent Table is not shown.

• A pop-up menu in the dependent Table does not show the values you expect.

The specific side effect caused by modifying an element varies case by case, and it

depends on the element type, and on the specific modification that has been done to the

element.

My advice is that before making any modification on any database element (fields,

Tables, Relationships, Queries or Forms), you should check the corresponding chapter

“What are the sides effect of...” (click Part I).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 472 of 725

I.3 How do I find all the dependent objects on a given database

object?

You do it using an object dependency tool.

MS-Access has a built-in object dependency tool that you can find in the “Database
Tools” Ribbon. However, this tool just does not do the job. To start with, if you write

your Queries in SQL, this built-in tool will not be able to find their dependencies. You

could then think to use this tool only to track Table/Form dependencies. Even for this

restricted usage there are problems: the tool function “Objects on what I depend” does

not work properly and the tool will include master Tables as dependent objects, which

on my view is misleading because it should only include slave Tables as dependent

objects.

My advice is therefore not to use the built-in tool and rather install a third-party add-in

object dependency tool. One such tool you may want to consider is:

http://www.accessdependencychecker.com/

I.4 What are the side effects of modifying my Table fields?

You may click:

• “I.4.1 What are the side effects of adding a field to a Table?”

• “I.4.2 What are the side effects of deleting a Table field?”

• “I.4.3 What are the side effects of changing the name of a Table field?”

• “I.4.4 What are the side effects of modifying the properties of a Table field?”

• “I.4.5 What are the side effects of changing the order of Table fields?”

I.4.1 What are the side effects of adding a field to a Table?

Adding a new field to a Table (click B.6.1.5) causes side effects if you are using

“SELECT *” over the Table, you have Forms over the Table or you have Insert

operations into the Table. Side effects will affect the following database elements:

• Queries with “SELECT *” over the Table

The result of the Select operation will additionally produce the field. This is what

you may want in some cases. However, the additional field may propagate through

other “SELECT *” higher up the SQL operation hierarchy and cause some of the

problems listed in the following bullet points.

You fix this by editing all such Queries and replace the “*” by an explicit list of

the corresponding Table fields wherever it is needed: see the problem description in

the following bullet points.

• Queries with “SELECT *” over the Table in a Union operation

The Queries with “SELECT *” will crash because the “SELECT *” will

additionally produce the field, thus having a different number of fields than the

other input record-list of the Union operator. Remind that both input record-lists

to a Union operator must have the same number of fields.

http://www.accessdependencychecker.com/

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 473 of 725

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list of the corresponding Table fields.

o Modify all the other input record-lists of the Union operations to match the

additional field.

• Queries with a “SELECT *” over the Table, and the Select is used in an Insert-

many-records operation

The Queries will (most likely) crash. In the case of using the optional list of target

Table field names, the number of fields will now not be the same. In case of

omitting the optional list of target Table field names, the newly added field most

likely does not exist in the target Table, and this crashes the said Queries. In case

the newly added field exists in the target Table, this is most likely an unintended

coincidence, and the Insert operation will insert wrong values in that same-name

field: this error may be quite difficult to detect.

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list with the corresponding Table fields.

o Modify the target Table to also include the newly added field (in case this is

coherent with your database design).

If you want to know more about Insert operations, you may click “F.13.2 What is

an Insert operation and how do I write it?”.

• Queries with Insert-one-record operation without the optional list of target

Table field names with the Table as its target Table

The Query will crash because having added the field to the target Table causes that

the number of “VALUES” expressions in the Insert operation is different from the

number of fields in the target Table.

You fix this by editing all such Queries and correcting the corresponding Insert

operations. If you want to know more about Insert operations, you may click

“F.13.2 What is an Insert operation and how do I write it?”.

• Queries with an Insert-many-records operation, with the Table as its target

Table

The Query will insert the default value (or Null if no default value) in the field in all

the inserted records. If this is what you want, this is fine.

Otherwise, you fix this by editing all such Queries and correcting the

corresponding Insert operations. If you want to know more about Insert operations,

you may click “F.13.2 What is an Insert operation and how do I write it?”.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above,

depending on the specific cause(s) of the problem.

• Table/Form pop-up menus with “SELECT *” over the Table

All such pop-up menus will show different fields. If this is what you want, it is OK.

Otherwise, you fix this by editing all such Select operations in the corresponding

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 474 of 725

pop-up menus.

The following is not a side effect, but I believe it is worth mentioning it:

• Forms over the Table

Forms over the Table will not show the newly added field. If this is what you

wanted, then it is OK.

Otherwise, you fix this by adding the field to each Form (click D.10.3.1) based on

the Table.

• Reports over the Table

Reports over the Table will not show the newly added field. If this is what you

wanted, then it is OK.

Otherwise, you fix this by manually adding the field to each Report based on the

Table.

Having the crashes listed above due to using a “SELECT *” is one of the reasons why

I advise you never use “SELECT *”.

I.4.2 What are the side effects of deleting a Table field?

Deleting a Table field78 (click B.6.1.8) causes side effects in the following database

elements:

• Key fields of the Table, if the field is a Key field

This side effect only happens if the field is one of the Key fields of the Table. If you

try to delete any of the Key field(s), MS-Access will warn you that it is a Key field

and will ask if you still want to delete the field. If you actually delete the field, this

will clear the Key field configuration of the Table, effectively leaving the Table

without any Key field. If this is what you want, then it is OK. However, it is quite

infrequent (and risky) to have a Table without any key.

You fix this by configuring the corresponding Key fields of the Table after having

deleted the field.

• Indexes of the Table, if the field belongs to composite indexes

This side effect only happens if the field belongs to one (or more) composite

index(es) of the Table. If you try to delete the field and it belongs to one (or more)

composite index(es), MS-Access will warn you about this, and will ask if you still

want to delete the field. If you actually delete it, you will lose all the composite

indexes where the field was included. If this is what you want, then it is OK.

You fix this by configuring again the composite indexes that you want in the

Table.

• Queries that use the field

All Queries that use the field will consider it a parameter and will prompt the user

to enter it.

You fix this by editing all such Queries and removing the field in a suitable manner.

78 I will call “the field” to the field that has been deleted and “the Table” to the Table the field has been

deleted from.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 475 of 725

• Queries with Insert operations inserting values into the field

These Queries will crash, because the inserted value has no matching field in the

target Table, because it is the Table.

You fix this by editing all such Queries and modifying the corresponding Insert

operations removing the deleted field in a suitable manner.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the Table, all the previous side effects will also affect them in

exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above.

• Table/Form pop-up menus with Select operations including the field

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus.

• The Table’s record validation rule, in case its expression includes the field

MS-Access will not allow you to save the Table, because it detects that the

expression in the record validation rule is invalid.

You fix this by editing the Table’s record validation rule and suitably removing

the field from it.

• The Table’s Calculated fields whose expression includes the field

All such Calculated fields will show “#Invalid” because their corresponding

expressions are now invalid and cannot be evaluated.

You fix this by either adding back the field, correcting the expression of the

Calculated field or removing the Calculated field, as corresponds.

Notice that, to prevent this error, MS-Access will issue you the following warning

message if you try to save the Table design with Calculated fields dependent on

non-existing fields:

“There are calculated columns in this table that depend on the column
'Col_name'.
Changing or deleting this column may cause errors in one or more of the
dependent calculated columns. Do you want to continue?”

• Relationships involving the field

If the field is involved in one or more Relationships, deleting the field would make

all such Relationships invalid. To prevent unintended errors, if the field is involved

in one (or more) Relationships, MS-Access will inform you of this fact and will not

allow you to delete the field.

If you anyway want to delete the field, you will have to first manually edit all the

Relationships where the field is involved and either delete the Relationship itself or

delete the field from the Relationship.

Even though they are not side effects, it is convenient that you are aware of the following

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 476 of 725

issues:

• All data is lost

I guess it is pretty obvious, but just in case, all the data in the field (in all the

records of the Table) will be lost and cannot be recovered.

• Forms over the Table

The name of the field will not be automatically deleted by MS-Access. The column

will remain in the Form as an unlinked field. If you want to fix this, you manually

delete the column corresponding to the field from all Forms based on the Table.

• Reports over the Table

The name of the field will not be automatically deleted by MS-Access. The column

will remain in the Report as an unlinked field. If you want to fix this, you manually

delete the column corresponding to the field from all Reports based on the Table.

I.4.3 What are the side effects of changing the name of a Table field?

Remind that it is not the same to change a Table’s field name (click B.6.1.7) than

changing a Table’s column heading in “Datasheet View” (click H.5.1). Changing the

column heading has no side effects.

However, changing the name of a Table field causes side effects in the following

database elements:

• Queries that use the old field name

These Queries will now consider it a parameter and will request the user to input

its value when the Query is run.

You fix this by editing all such Queries and replacing the old field name by the

new field name.

• Queries with Insert operations inserting values into the old field name

With one exception, these Queries will now crash, because the old field name in the

Insert operation will not have a matching field name in the target Table. The

exception is the Insert-one-record operation without the list of target Table field

names, that will work fine.

You fix this by editing all such Queries and replacing in the Insert operations the

old field name by the new field name.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines and modifying the corresponding SQL operations by

replacing the old field name by the new field name.

• Table/Form pop-up menus with Select operations including the old field name

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 477 of 725

• This field’s validation rule

The new field name will not be automatically updated in the expression of this field

validation rule.

You fix this by editing this field’s validation rule (click D.5.1.5) and replacing the

old field name by the new field name.

• This Table’s record validation rule, in case it includes the old field name

The new field name will not be automatically updated in the expression of this

Table’s record validation rule.

You fix this by editing this Table’s record validation rule (click D.8.1) and

replacing the old field name by the new field name.

Just for your information, I will now list a few cases where there are no side effects

because in these cases MS-Access automatically updates the old field name to the new

field name:

• Calculated fields in the Table that used the old field name will work fine.

• Forms over the Table with fields linked to the Table field will work fine.

• Reports over the Table with fields linked to the Table field will work fine.

• SQL operations involving the field name, that are used in drop-down menus, will

work fine.

• Relationships involving the Table field name will work fine.

I.4.4 What are the side effects of modifying the properties of a Table

field?

You may click:

• “I.4.4.1 What are the side effects of changing the “Field Type” and/or “Field Size”

properties of a Table field?”

• “I.4.4.2 What are the side effects of changing the “Required”, “Allow zero length”,

“Validation rule” or “Indexing” properties of a Table field?”

• “I.4.4.3 What are the side effects of changing a drop-down menu of a Table field?”

I.4.4.1 What are the side effects of changing the “Field Type” and/or “Field
Size” properties of a Table field?

Changing the “Field Type” and/or “Field Size” properties of a Table field (click B.6.1.7)

causes side effects in the following database elements:

• Data in the Table field, when changing to a larger field type and/or field size

If you change to a new field type and/or field size larger than the former ones, MS-

Access will do it silently and the field’s values will be converted to the new field

type and/or field size. I want to highlight that changing from any numeric-like field

type to a Short Text field type, even if its field size is really small (e.g., 2 characters),

is considered by MS-Access as changing to a larger field type and/or field size, and

therefore, the change will be applied by MS-Access when saving the Table design,

without issuing any type of warning message.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 478 of 725

If you change a numeric-like field type to a larger field size (e.g., from Number-
Long to Number-Double), the field values may be modified because of

decimal/binary conversion rounding errors (click G.9.3). If you change from a

numeric-like field type to a Short Text field type, the values will be certainly

modified. First, the numeric-like values will be converted to the “equivalent” text

string values (Boolean and datetime values will be changed to their specific text

representations, while numeric will be changed to numeric text representations).

Second, the resulting text strings will be truncated to the number of characters of

the new value of the Field Size property. Most important, the resulting text string

may violate (i.e., return False from) the field validation rule and/or the record

validation rule, and MS-Access will not even issue a warning about it. Even if the

validation rules are violated, the new values will stay in the Table.

• Data in this Table field, when changing to a smaller field type and/or field size

If you change to a new field type and size smaller than the former field type and/or

field size, MS-Access cannot guarantee that existing values will be preserved, and

will show the following warning message, asking for your confirmation to proceed:

“Some data may be lost.
The size of one or more fields has been changed to a shorter size. If data is lost,
validation rules may be violated as a result. Do you want to continue anyway?”

If you click on “Yes” and proceed to apply the change, MS-Access will do type

conversion, for all this field’s data in the Table, from the former field type and

size to the new field type and size. MS-Access will do its best to do the data

conversion correctly, but data correctness cannot be guaranteed. Most important,

the result of type conversions may violate (i.e., return False from) the field

validation rule and/or the record validation rule. Even if the validation rules are

violated, the new value will stay in the Table. You should therefore be very sure

of what you are doing before clicking on “Yes”.

Some examples of data conversion that may happen are:

o If you change from a Number-Simple to a Number-Long, the former fractional

values will be converted to integer (using round-half to even). If you want to

know more about rounding types, you may click “J.11.20 How do I fix a Query

making rounding errors?”.

o If you reduce the “Field Size” property of a Short Text field to “n” characters,

all stored text strings longer than “n” will be truncated to their first “n”

characters.

Notice further that if a given type conversion cannot be done, the value will be

deleted. For example, if you change from a Number-Double to a Number-Simple

all the Number-Double values larger than what can be stored as a Number-Simple

will be deleted, resulting in having Null in that field. Whenever values will be

deleted, MS-Access will issue the following warning message, asking for your

confirmation to proceed:

“Microsoft Access encountered errors when converting the data.
 The contents of fields in N record(s) were deleted.
 Do you want to proceed anyway?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 479 of 725

where “N” is the number of records having field values that will be deleted,

becoming Null.

If you click on “Yes”, and the values become Null, the result may violate (i.e., return

False from) the field validation rule and/or the record validation rule as in the

previous case. In this case, it may also violate the field properties “Required” and

“Allow Zero Length”. Even if the said rules and/or properties are violated, the Nulls

will stay in the Table.

You should therefore be very sure of what you are doing before clicking on “Yes”.

Furthermore, it is possible that some of the changes I have just explained on your

Table data may violate the conditions of the Table’s Primary Key and/or one (or

more) Table’s indexes without duplicate values. If this is the case, MS-Access will

issue the following additional warning message:

“The changes you requested to the table were not successful because they
would create duplicate values in the index, primary key, or relationship. Change
the data in the field or fields that contain duplicate data, remove the index, or
redefine the index to permit duplicate entries and try again.”

Regardless of you clicking “OK” or closing the error box, MS-Access will remove

the Primary key and/or the indexes that are violated by the converted data, and

will show the additional warning message:

“Microsoft Access deleted n indexes on the converted fields.

 Some data did not convert properly.”

Notice that the Nulls and/or duplicate values (that resulted from the converted

data) that violate the Primary key and/or indexes will stay in the Table.

Notice further that sometimes MS-Access does not remove the Primary key and/or

the indexes that are violated by the converted data. In this case, MS-Access will not

allow you to save the Table design, and you will have to manually remove the

Primary key and/or indexes in order to be able to close the Table.

• Queries with Union operations that use this Table field

The new field type may affect the result of Union operations because MS-Access

will do a type-cast among all the different field types in each column of the Union

operation.

You fix this by editing all such Queries and modifying the corresponding Union

operations to make them produce your intended result.

• Queries with numeric-like SQL aggregate functions over a non-numeric-like

field-type

The numeric-like SQL aggregate functions Sum(), Avg(), StDev(), StDevP(),

Var() and VarP() can only work over a numeric-like field type (click F.7.18.7).

If you changed this field from a numeric-like field type to a non-numeric-like field

type, all the Queries with a numeric-like SQL aggregate function over this field

will crash.

You fix this by editing all such Queries and modifying them accordingly.

• Queries and VBA functions with numeric-like domain aggregate functions over

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 480 of 725

a non-numeric-like field-type

The numeric-like domain aggregate functions DSum(), DAvg(), DStDev(),

DStDevP(), DVar() and DVarP() can only work over a numeric-like field

(click G.6.2 and F.7.18.7). If you changed this field from a numeric-like field type

to a non-numeric-like field type, all the Queries and VBA functions with a numeric-

like domain aggregate function over this field will crash.

You fix this by editing all such Queries and/or VBA functions and modifying them

accordingly.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above,

depending on the specific cause(s) of the problem.

• Relationships with referential integrity involving the field

If the field is involved in one or more Relationships with referential integrity,

changing the field type-size would make all such Relationships invalid. Remind that

both fields in each master-slave pair must have the same “Field Type” and “Field
Size”.

To prevent unintended errors, when you try to change the field type-size of a field

involved in one, or more, Relationships, MS-Access will inform you of this fact and

will not allow you to remove the field.

If you want to change the field type or field size of this field, you will have to first

manually edit all the Relationships where this field is involved to either remove the

Relationship or remove the field from the Relationship.

• Relationships without referential integrity involving the field

Master/slave field pairs of Relationships without referential integrity do not need to

have the same “Field Type” and “Field Size”. In spite of this, MS-Access will behave

in the same way as it does for Relationships with referential integrity, as I have just

described in the previous bullet point. Therefore, if you want to change the field

type-size of field involved in one, or more, Relationships without referential

integrity, you will have to first manually remove all such Relationships, change

the field type-size, and then manually configure again all the previously existing

Relationships Since Relationships without referential integrity are seldom used (my

advice is you never use them), this problem is not very relevant.

As you have seen, changing the field type and/or the field size is an extremely risky

operation. I advise you do not change any field type nor any field size while the

database is in operation. If you really want/need to do it, my advice is that before doing

the field type or field size change, you backup your MS-Access file. Then, you copy all

the field values (the whole column) to an external application (typically Excel) and adapt

the old values to the new field type and field size in the specific way you want. You

may then change the field type and/or field size and paste back the new values you want

in the field. This is a very risky operation, so check that all the pasted values are correct

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 481 of 725

before considering this solved. You may also want to click:

• “E.5.2 How do I paste data into MS-Access?”

• “E.5.3 How do I paste data copied from MS-Access into other applications?”

I.4.4.2 What are the side effects of changing the “Required”, “Allow zero
length”, “Validation rule” or “Indexing” properties of a Table field?

Changing the properties “Required”, “Allow zero length”, field “Validation rule” or

“Indexing” (click B.6.1.7) causes side effects in the following database elements:

• The field value in existing Table records may violate the new property settings

To prevent unintended errors, MS-Access will ask you if you want that MS-Access

checks if any current record violates the new settings. If click “Yes”, in case any

record violates the new properties, MS-Access will ask you if you want to keep the

new properties or you want to go back to the old properties: you just need to answer

that you want to keep the new properties. This will keep the new properties but will

leave the records that violate them unchanged. Having records that violate field

properties will most likely cause database errors quite difficult to detect. I strongly

advise you avoid having Table records that violate the field properties.

You fix the records that violate the field properties by copying all the field values

(the whole column) to an external application (typically Excel) and adapting the old

values to comply with the new field properties in the specific way you want. Then

paste back the new values into the field. Remind that bulk copy/paste operations are

risky: before doing them, I suggest you click:

• “E.5.2 How do I paste data into MS-Access?”

• “E.5.3 How do I paste data copied from MS-Access into other applications?”

I.4.4.3 What are the side effects of changing a drop-down menu of a Table

field?

If the drop-down menu does not have the property “Limit to List=Yes”, this will not

cause any side effect.

If the drop-down menu has the property “Limit to List=Yes”, this will not restrict the

values that you can enter into this field to the ones of the drop-down menu. This is most

likely what you want, but I wanted to point it out just in case.

If you want to know more about drop-down menus, you may click K.1.8.

I.4.5 What are the side effects of changing the order of Table fields?

Remind that it is not the same to change the order of Table fields (click H.3) than

changing the order of columns of a Table in “Datasheet View” (click H.3.1).

Changing the order of a columns of a Table in “Datasheet View” has no side effects.

Changing the order of Table fields causes side effects if you are using “SELECT *”

over the Table, you have Forms over the Table or you have Insert operations into the

Table. Side effects will affect the following database elements:

• Queries with “SELECT *” over the Table in a Union operation

These Queries will produce wrong results because the “SELECT *” will produce

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 482 of 725

the fields in a different order, thus wrongly combining the values with the other

input record-list to the Union operation.

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list of the corresponding Table fields in the proper

order.

o Modify all the other input record-lists of the Union operation to match the new

field order.

• Queries with Insert-one-record operation without the optional list of target

Table field names that have the Table as its target Table

These Queries will insert wrong values, because the order of values was aligned with

the old order of fields, and therefore, will not be aligned with the new order of fields.

You fix this by editing all such Queries and modify the corresponding Insert

operations. If you want to know more about Insert operations, you may click

“F.13.2 What is an Insert operation and how do I write it?”.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above,

depending on the specific cause(s) of the problem.

The following are not side effects, but I believe it is worth mentioning them:

• Forms over the Table

Forms over the Table will not show the same field order as the one that has been

configured in the Table. This is not a problem at all, but you should be aware of it.

In case you do want to change the field order of Forms over this Table, you should

manually change it for each such Form.

• Reports over the Table

Reports over the Table will not show the same field order as the one that has been

configured in the Table. This is not a problem at all, but you should be aware of it.

In case you do want to change the field order of Reports over this Table, you should

manually change it for each such Report.

I.5 What are the side effects of modifying my Tables?

You may click:

• “I.5.1 What are the side effects of adding a new Table?”

• “I.5.2 What are the side effects of deleting a Table?”

• “I.5.3 What are the side effects of changing the name of a Table?”

• “I.5.4 What are the side effects of modifying a Table field?”

• “I.5.5 What are the side effects of modifying the order of fields in the Table?”

• “I.5.6 What are the side effects of modifying the indexes or the Key fields of a

Table?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 483 of 725

• “I.5.7 What are the side effects of modifying the record validation rule of a Table?”

I.5.1 What are the side effects of adding a new Table?

Adding new Tables (click D.3) does not have any side effect.

I.5.2 What are the side effects of deleting a Table?

Deleting a Table (click B.4.1.13) causes side effects in the following database elements:

• Queries using the Table

These Queries will now crash.

You fix this by editing all such Queries and removing the references made to the

deleted Table in a suitable manner.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the Table, the side effects in the previous bullet point will also

affect them in exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullet above.

• Table/Form pop-up menus with Select operations including the deleted Table

All such pop-up menus will not work.

You fix this by edit all such Select operations in the corresponding pop-up menus.

• Forms over the deleted Table

These Forms will stop working. When you open any of them, you will get an

informative message indicating that the origin of data does not exist.

You fix this by either manually deleting each of the orphan Forms, or by manually

linking each of them to an existing or newly created Table.

• Reports over the deleted Table

These Reports will stop working. When you open any of them, you will get an

informative message indicating the origin of data does not exist.

You fix this by either manually deleting each of the orphan Reports, or by

manually linking each of them to an existing or newly created Table.

• Relationships involving the Table

If the Table is involved in one or more Relationships, deleting the Table would make

all such Relationships invalid. To prevent unintended errors, when you try to remove

a Table involved in one, or more, Relationships, MS-Access will inform you of this

fact and will ask if you want MS-Access to remove all such Relationships. If you

click on “Yes”, MS-Access will remove all such Relationships and will also remove

the Table.

Even though this is not a side effect, it is convenient that you are aware of the following

issue:

• I guess it is pretty obvious, but just in case, all the data in the deleted Table will be

lost and cannot be recovered.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 484 of 725

I.5.3 What are the side effects of changing the name of a Table?

If you change the name of a Table (click B.4.1.8), MS-Access will automatically update

the new Table name in all Relationships and Forms. Therefore, Relationships and Forms

suffer no side effects from changing a Table name.

However, changing a Table name will causes side effects in the following database

elements:

• Queries using the Table

These Queries will now crash.

You fix this by editing all such Queries and replacing the old Table name by the

new Table name.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Table

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the Table, the side effects in the previous bullet point will also

affect them in exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullet above.

• Table/Form pop-up menus with Select operations including the Table

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus replacing the old Table name by the new Table name.

I.5.4 What are the side effects of modifying a Table field?

This is quite complex and has a full chapter on its own, you may click:

• “I.4 What are the side effects of modifying my Table fields?”

I.5.5 What are the side effects of modifying the order of fields in the

Table?

Remind that it is not the same to change the order of Table fields (click B.6.1.8) than

changing the order of Table columns shown in “Datasheet View” (click H.3).

Changing the order of Table columns in “Datasheet View” has no side effects.

In respect to the side effects of changing the order of fields in the Table, you may click

“I.4.5 What are the side effects of changing the order of Table fields?”.

I.5.6 What are the side effects of modifying the indexes or the Key fields

of a Table?

You may click:

• “I.5.6.1 What are the side effects of changing an index with duplicate values?”

• “I.5.6.2 What are the side effects of adding an index without duplicate values?”

• “I.5.6.3 What are the side effects of changing an index without duplicate values?”

• “I.5.6.4 What are the side effects of adding or changing the Key fields of a Table?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 485 of 725

I.5.6.1 What are the side effects of changing an index with duplicate values?

Adding or removing an index with duplicate values causes no side effects.

Adding or removing fields to/from an index with duplicate values causes no side

effects.

Even though this is not a side effect, it is convenient that you are aware that removing

indexes typically degrades the performance of your database.

Removing an index with duplicate values will most likely degrade the performance of

your database.

I.5.6.2 What are the side effects of adding an index without duplicate values?

Adding an index without duplicate values, or changing the properties of an existing

index from being with duplicate values to become without duplicate values, causes side

effects in the following database elements:

• Relationships with referential integrity with exactly the slave fields of this index

If the index fields are part of the slave fields of one or more Relationships with

referential integrity, configuring the index as without duplicate values, would

change all such Relationships from being one-to-many to one-to-one.

• Newly input Table data

MS-Access will prevent records with duplicate values in the index fields. This is

most likely what you want, but just in case I wanted to point it out.

To prevent unintended errors, when you try to do add the index, MS-Access will

check if the Table contains any record with duplicate values over the index fields:

in case there is on (or more) such records, MS-Access will not allow you to do add

the index (click L.2.6).

I.5.6.3 What are the side effects of changing an index without duplicate

values?

Removing an index without duplicate values, or adding/removing fields to/from the

index, or changing the index from being without duplicate values to become with

duplicate values will cause side effects in the following database elements:

• Relationships with referential integrity with exactly the master fields of this

index

If exactly the index fields are the master fields of one or more Relationships with

referential integrity, the changes indicated above will make the Relationships

invalid. Remind that the master fields in a Relationship with referential integrity

must always have an associated index without duplicate values and without Nulls.

To prevent unintended errors, when you try to do any of the changes above, MS-

Access will inform you that the index is used in a Relationship and will not allow

you to do the change (click L.2.9 for an index or L.2.8 for the Key fields).

If you want to do any of the changes above, you will have to either manually

remove all the affected Relationships or to manually configure them as without

referential integrity. Notice that changing your Relationships does not have side

effects, but you have to be very sure that you want that.

Notice also that if you try to remove field(s) from an index without duplicate values,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 486 of 725

MS-Access will check if the Table contains any record with duplicate values over

the remaining index fields: in case there is on (or more) such records, MS-Access

will not allow you to remove the field(s) from the index (click L.2.6).

Removing an index without duplicate values will most likely degrade the performance

of your database.

I.5.6.4 What are the side effects of adding or changing the Key fields of a

Table?

The Key fields of a Table must have an associated index without duplicate values and

without Nulls. For this reason, changing the Key fields of a Table will cause the same

side effects as changing the fields of an index without duplicate values, as described

in:

• “I.5.6.2 What are the side effects of adding an index without duplicate values?”

• “I.5.6.3 What are the side effects of changing an index without duplicate values?”

I.5.7 What are the side effects of modifying the record validation rule

of a Table?

Deleting the record validation rule (click B.6.4) causes no side effect.

Creating or modifying (click D.8.1) the record validation rule causes side effects in the

following database elements:

• Existing Table data

MS-Access will check the currently existing data in the Table, and in case it is not

compliant with the new record validation rule, will issue a warning. However, the

data will not be modified, and the record validation rule will be inconsistent with

existing Table data.

You fix this by copying all the data in the fields used in the record validation rule

to an external application (typically Excel), modifying it to be compliant with the

new record validation rule, and pasting back into the Table. Remind that bulk

copy/paste operations are risky. Before doing them, I suggest you click:

• “E.5.2 How do I paste data into MS-Access?”

• “E.5.3 How do I paste data copied from MS-Access into other applications?”

I.6 What are the side effects of modifying my Queries?

You may click:

• “I.6.1 What are the side effects of adding a new Query?”

• “I.6.2 What are the side effects of deleting a Query?”

• “I.6.3 What are the side effects of modifying the functionality of a Query?”

• “I.6.4 What are the side effects of changing the name of a Query?”

• “I.6.5 What are the side effects of adding a new field to a Query?”

• “I.6.6 What are the side effects of deleting a Query field?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 487 of 725

• “I.6.7 What are the side effects of changing the name of a Query field?”

• “I.6.8 What are the side effects of changing the data type of a Query field?”

• “I.6.9 What are the side effects of modifying the order of fields in a Query?”

I.6.1 What are the side effects of adding a new Query?

Adding new Queries (click F.4.5) does not have any side effect.

I.6.2 What are the side effects of deleting a Query?

Deleting a Query causes side effects in the following database elements:

• Queries using the Query

These Queries will now crash.

You fix this by editing all such Queries and removing the references made to the

deleted Query in a suitable manner.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the deleted Query, the side effect in the previous bullet point

will also affect them in exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the previous bullet

point.

• Table/Form pop-up menus with Select operations including the deleted Query

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus.

• Table/Form pop-up menus with the deleted Query

All such pop-up menus will not work.

You fix this by editing all such pop-up menus in a suitable manner.

• Forms over the deleted Query

These Forms will stop working. When you open any of them, you will get an

informative message indicating the origin of data does not exist.

You fix this by either manually deleting each of the orphan Forms, or by manually

linking each of them to an existing or newly created Query.

• Reports over the deleted Query

These Reports will stop working. When you open any of them, you will get an

informative message indicating the origin of data does not exist.

You fix this by either manually deleting each of the orphan Reports, or by

manually linking each of them to an existing or newly created Query.

I.6.3 What are the side effects of modifying the functionality of a

Query?

If you change the functionality of the Query, and it therefore produces now different

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 488 of 725

results, this may cause side effects in the following database elements:

• Queries using the Query

These Queries may now produce different results.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the deleted Query, the side effect in the previous bullet point

will also affect them in exactly the same way.

• Table/Form pop-up menus with Select operations including the Query

All such pop-up menus will now work differently or will not work.

• Table/Form pop-up menus with the Query

All such pop-up menus will now work differently or will not work.

You fix this by creating a copy of the former Query and either:

• Keep the same Query name in the copy of the former Query and assign a new Query

name to the Query with modified functionality.

• Assign a new Query name to the copy of the former Query and replace its former

name by the new name in all the places where it was used from the three bullet points

above.

I.6.4 What are the side effects of changing the name of a Query?

Changing a Query name (click B.4.1.8) will cause side effects in the following database

elements:

• Queries using the Query

These Queries will now crash.

You fix this by editing all such Queries and replacing the old Query name by the

new Query name.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the deleted Query, the side effect in the previous bullet point

will also affect them in exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the previous bullet

point.

• Table/Form pop-up menus with Select operations including the Query

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus and replacing the old Query name by the new Query name.

• Table/Form pop-up menus with the Query

All such pop-up menus will not work.

You fix this by editing all such pop-up menus and replacing the old Query name

by the new Query name.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 489 of 725

I.6.5 What are the side effects of adding a new field to a Query?

Adding a new field to a Query causes side effects if you are using “SELECT *” over

the Query or you have Forms over the Table. Side effects will affect the following

database elements:

• Queries with “SELECT *” over the Query

The result of the Select operation will show an additional field. This is what you

may want in some cases. However, this additional field may propagate through other

“SELECT *” higher up the SQL operation hierarchy and cause some of the

problems listed in the following bullet points.

You fix this by editing all such Queries and replacing the “*” by an explicit list of

the corresponding Query fields wherever it is needed: see the problem description

in the following bullet points.

• Queries with “SELECT *” over the Query in a Union operation

The Queries with “SELECT *” will crash because the “SELECT *” will include

the newly added Query field in its output fields, thus having a different number of

fields than the other input record-list of the Union operator. Remind that both input

record-lists to a Union operator must have the same number of fields.

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list of the corresponding Query fields.

o Modify all the other input record-lists of the Union operations to match the

newly added field.

• Queries with “SELECT *” over the Query, and the Select is used in an Insert-

many-records operation

The Queries will (most likely) crash. In the case of using the optional list of target

Table field names, the number of fields will now not be the same. In case of

omitting the optional list of target Table field names, the newly added Query field

most likely does not exist in the target Table, and this crashes the said Queries. In

case the newly added field exists in the target Table, this is most likely an unintended

coincidence, and the Insert operation will insert wrong values in that field: this

error may be quite difficult to detect.

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list with the corresponding Query fields.

o Modify the target Table to also include the newly added Query field (in case this

is coherent with your database design).

If you want to know more about Insert operations, you may click “F.13.2 What is

an Insert operation and how do I write it?”.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above,

depending on the specific cause(s) of the problem.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 490 of 725

• Table/Form pop-up menus with “SELECT *” over the Query

All such pop-up menus will show different fields. If this is what you want, it is OK.

Otherwise, you fix this by editing all such Select operations in the corresponding

pop-up menus.

The following is not a side effect, but I believe it is worth mentioning it:

• Forms over the Query

Forms over the Query will not show the newly added field. If this is what you

wanted, then it is OK.

Otherwise, you fix this by adding this field to each Form based on the Query where

you want the field to appear.

• Reports over the Query

Reports over the Query will not show the newly added field. If this is what you

wanted, then it is OK.

Otherwise, you fix this by manually adding this field to each Report based on the

Query where you want the field to appear.

Having the crashes listed above due to using a “SELECT *” is one of the reasons why

I advise you never use “SELECT *”.

I.6.6 What are the side effects of deleting a Query field?

Deleting a Query field causes side effects in the following database elements:

• Queries that use the deleted field name

All Queries that use the deleted field name will consider it a parameter and will

prompt the user to enter it.

You fix this by editing all such Queries and removing the deleted field in a suitable

manner.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code that use the Query, side effects in the previous bullet point will also

affect them in exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the way listed in the bullet above.

• Table/Form pop-up menus with Select operations including the deleted field

name

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus.

Even though they are not side effects, it is convenient that you are aware of the following

issues:

• Forms over the Query

The deleted field name will not be automatically deleted by MS-Access. The

column will remain in the Form with unlinked field values. If you want to fix this,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 491 of 725

you manually delete the column from all Forms based on the Query.

• Reports over the Query

The deleted field name will not be automatically deleted by MS-Access. The field

will remain in the Report with unlinked field values. If you want to fix this, you

manually delete the field from all Reports based on the Query.

I.6.7 What are the side effects of changing the name of a Query field?

Remind that it is not the same to change a Query’s field name (click H.5) than changing

the Query’s column heading in “Datasheet View” (click H.5.2). Changing the column

heading in “Datasheet View” has no side effects.

However, changing the name of a Query field causes side effects in the following

database elements:

• Queries that use the old field name

These Queries will now consider it a parameter and will request the user to input

its value when the Query is run.

You fix this by editing all such Queries replacing the old field name by the new

field name.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines modifying the corresponding SQL operations by replacing

the old field name by the new field name.

• Table/Form pop-up menus with Select operations including the old field name

All such pop-up menus will not work.

You fix this by editing all such Select operations in the corresponding pop-up

menus.

Just for your information, I will now list a few cases where there are no side effects

because in these cases MS-Access automatically updates the old field name to the new

field name:

• Forms over the Query with fields linked to the Query field will work fine.

• Reports over the Query with fields linked to the Query field will work fine.

• SQL operations involving the field name, that are used in drop-down menus, will

work fine.

I.6.8 What are the side effects of changing the data type of a Query

field?

Changing the data type of a Query field causes side effects in the following database

elements:

• Queries with Union operations that use this Query field

The new field type may affect the result of a Union operations because MS-Access

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 492 of 725

will do a type-cast among all the different field types in each column of the Union

operation.

You fix this by editing all such Queries and modifying the corresponding Union

operations to make them produce your intended result.

• Queries with numeric-like aggregate functions over a non-numeric-like field-

type

The numeric-like SQL aggregate functions “Sum()”, “Avg()”, “StDev()”,

“StDevP()”, “Var()” and “VarP()” can only work over a field with a numeric-

like data type (click F.7.18.7). The same happens with the equivalent numeric-like

domain aggregate functions (click G.6.2 and F.7.18.7). If you changed this field

from a numeric-like data type to a non-numeric-like data type, all the Queries with

a numeric-like aggregate function over this field will crash.

You fix this by editing all such Queries and modifying them accordingly.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, all the previous side effects may also affect them in exactly the same

way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the bullets above,

depending on the specific cause(s) of the problem.

I.6.9 What are the side effects of modifying the order of fields in a

Query?

Remind that it is not the same (click H.3) to change the order of Query fields than

changing the order of columns of a Query in “Datasheet View” (click H.3.1).

Changing the order of a columns of a Query in “Datasheet View” has no side effects.

However, changing the order of a Query field causes side effects in the following

database elements:

• Queries with “SELECT *” over the Query in a Union operation

These Queries will produce wrong results because the “SELECT *” will produce

the fields in a different order, thus wrongly combining the values with the other input

record-list to the Union operation.

You fix this by editing all such Queries and either:

o Replace the “*” by an explicit list of the corresponding Query fields in the proper

order.

o Modify all the other input-lists of the Union operation to match the new field

order.

• User-defined VBA functions and Forms’ VBA Subroutines that use the Query

If you have user-defined VBA functions, and/or Forms’ VBA Subroutines, with

SQL code, the side effects in the previous bullet point may also affect them in

exactly the same way.

You fix this by editing the SQL code of all such user-defined VBA functions and

Forms’ VBA Subroutines in the corresponding way listed in the previous bullet

point.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 493 of 725

The following are not side effects, but I believe it is worth mentioning them:

• Forms over the Query

Forms over the Query will not show the same field order as the one that has been

configured in the Query. This is not a problem at all, but you should be aware of it.

In case you do want to change the field order of Forms over this Query, you should

manually change it for each such Form.

• Reports over the Query

Reports over the Query will not show the same field order as the one that has been

configured in the Query. This is not a problem at all, but you should be aware of it.

In case you do want to change the field order of Reports over this Query, you should

manually change it for each such Report.

I.7 What are the side effects of modifying my user-defined

VBA functions?

Adding user-defined VBA functions does not cause any side effect.

Modifying the internal computations of a user-defined VBA function does not cause

any side effects, but it will obviously cause direct effects, anywhere that is used. These

direct effects are most likely what you want, but I am pointing this out just in case.

Deleting a user-defined VBA function or adding/removing its arguments causes side

effects in the following database elements:

• Queries using the function

These Queries will now crash.

You fix this by editing all such Queries and removing/modifying the references

made to the deleted/modified function in a suitable manner.

• User-defined VBA functions and Forms’ VBA Subroutines with SQL code that

use the function

These functions and Subroutines will now crash.

You fix this by editing all such functions and Subroutines and

removing/modifying the references made to the deleted/modified function in a

suitable manner.

• Forms using the function

These Forms will now crash.

You fix this by editing all such Forms and removing/modifying the references

made to the deleted/modified function in a suitable manner.

• Reports using the function

These Reports will now crash.

You fix this by editing all such Reports and removing/modifying the references

made to the deleted/modified function in a suitable manner.

Replacing the function data type by a new one may cause the same side effects above

if the new data type is not equivalent to the former one.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 494 of 725

I.8 What are the side effects of modifying my Relationships,

Forms and/or Reports?

Modifying your Relationships, Forms and/or Reports does not cause any side effect.

You can add/delete/modify your Relationships, Forms and/or Reports, and this will only

cause the direct effects of the change you did, which most likely is exactly what you

wanted.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 495 of 725

PART J. DEBUGGING MY SQL QUERIES

When you want to fix a bug (error or crash) in a Query, you have two very different

cases:

• The bug is in test-and-proven Query

• The bug is in a non-test-and-proven Query

The first case applies when the Query has already been in operation for a substantial

time (e.g., months) without any apparent problem. If you get a bug in such a Query,

click:

• “J.1 How do I fix an error/crash in a test-and-proven Query?”

The second case applies when you are now writing the Query, or when it has been in

operation for a short time (e.g., a few weeks or less). If you get a bug in such a Query,

click:

• “J.2 How do I fix an error/crash in a non-test-and-proven Query?”

If you want more information about debugging, you may click:

• “J.3 How do I debug by commenting/uncommenting?”

• “J.4 How do I debug in progressive steps?”

• “J.5 How do debug inside out?”

• “J.6 How do I debug my same-level code linearly?”

• “J.7 How do I debug the current uncommented SQL operation at each step?”

• “J.8 How do I fix a syntax error that prevents saving a Query?”

• “J.9 How do I fix a crash from a syntax error?”

• “J.10 How do I fix a crash from a run-time error?”

• “J.11 How do I fix defective Query results?”

• “J.12 What do I do when I just cannot fix a Query?”

• “J.13 Why should I always compare the results of an existing Query?”

• “J.14 What Null-related bugs can I get?”

• “J.15 What exception-value bugs can I get?”

• “J.16 What data type bugs can I get?”

J.1 How do I fix an error/crash in a test-and-proven Query?

If the error/crash is in a non-test-and-proven Query, click “J.2 How do I fix an

error/crash in a non-test-and-proven Query?”.

If the error/crash is in a test-and-proven Query, it is most likely because of a transient

software problem or because of data incoherence (click L.1), and not because of a bug

in the Query.

Therefore, you should never rush to debug the Query, and rather you should first take

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 496 of 725

the following sequential actions:

1. Retry, as you usually do with most software programs:

a) Retry a couple times.

b) Click on the Compact and Repair Database “ ” icon from the “Database
Tools” Ribbon and try again.

c) Close and open MS-Access and try again.

If the Query error/crash stays the same, go to the next step (number 2).

2. Run the Query that checks the correctness of your data:

Data inconsistency is by far the most frequent cause when you get an error after the

database has been tested and has already been in operation for some time. Even if you

have sound validation rules in your fields and Tables, it is very likely that some

erroneous value combinations produce Query/function crashes and/or wrong Query

results.

If the Query detects any data inconsistencies, fix them and try again.

If you want to know more about a Query that verifies the correctness of your data, you

may click “K.6.11 How do I design a data check Query?”.

If the Query error/crash stays the same, go to the next step (number 3).

3. Remind what record changes you have done recently:

Even if your Query to detect the correctness of your data is very good and complete,

there can be errors it does not detect. Therefore, think what record changes you have

done recently:

• Have you copied/pasted bulk records?

• Have you corrected the values of some records?

• Have you changed the value of a field that is a Relationship master field?

• Have you changed anything in the database design?

• What are the latest records you have introduced?

Then, check the correctness of the said changes.

In case you detect any error in the data, fix it and also consider if it is worth enhancing

your Query to detect the correctness of data including a check that would have

automatically detected it.

If the Query error/crash stays the same, go to the next step (number 4).

4. Restart the computer and try again:

If the Query error/crash stays the same, go to the next step (number 5).

5. Think if you have modified any auxiliary Query:

Recall if you have recently modified any Query that is invoked (directly or indirectly)

in the Query that is failing. If this is the case, then go and debug that Query that you

have recently modified. To do it, you may click “J.2 How do I fix an error/crash in a

non-test-and-proven Query?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 497 of 725

If you have not recently modified any auxiliary Query, go to the next step (number 6).

6. Debug your Query code:

If you have done all the previous steps, then the error/crash may actually be in the Query

code. You should therefore debug the Query clicking “J.2 How do I fix an error/crash

in a non-test-and-proven Query?”. When you debug the Query, rule out all syntax

errors, because the Query was running, and therefore it cannot have a syntax error.

Even though your Query code has been working well for months, it is still possible that

there is an error that only happens under infrequent combination of correct values.

Finally, if you want a brief explanation on why can you get an error/crash in a test-and-

proven Query, you may click “L.1 Why can I get an error/crash in a test-and-proven

database?”.

J.2 How do I fix an error/crash in a non-test-and-proven

Query?

If the error/crash is in a test-and-proven Query, click “J.1 How do I fix an error/crash

in a test-and-proven Query?”.

If the error/crash is in a non-test-and-proven SQL Query, debug it following these

principles:

• Comment/uncomment your SQL code.

• Debug your SQL code in progressive steps.

• Debug your SQL code inside out.

• Debug your same-level SQL code linearly.

• Debug the SQL operation at each step.

• If you get stuck, do a workaround.

• Always compare the results of an existing Query.

If you want more detail about these debugging principles above, you may click:

• “J.3 How do I debug by commenting/uncommenting?”

• “J.4 How do I debug in progressive steps?”

• “J.5 How do debug inside out?”

• “J.6 How do I debug my same-level code linearly?”

• “J.7 How do I debug the current uncommented SQL operation at each step?”

• “J.12 What do I do when I just cannot fix a Query?”

• “J.13 Why should I always compare the results of an existing Query?”

J.3 How do I debug by commenting/uncommenting?

You debug your SQL Query code by progressively “commenting” and

“uncommenting” different fragments of it.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 498 of 725

Commenting is done by selecting a number of lines of SQL code and prefixing each

line with two consecutive hyphens “--”. This converts these lines of code into SQL

comments, so they are ignored by the SQL interpreter.

Uncommenting is done by selecting a number of commented lines of SQL code and

removing their initial two consecutive hyphens “--” that had been previously added.

Removing the two-hyphen prefix from each line makes that SQL code effective again,

being processed by the SQL interpreter.

You most frequently comment/uncomment complete lines of SQL code, and not just

part of the lines. You do this by using the comment/uncomment function of the plug-in

“Access SQL Editor” (click F.5.5.1).

You leave uncommented one specific fragment of code whose syntax and functionality

you want to check. The fragment that you have left uncommented must be an

executable SQL operation (i.e., a Select, Union or Transform), so you can actually

run it and check its results. For this reason, I will call this uncommented fragment the

“current uncommented SQL operation”.

Notice that the uncommented lines that compose the current uncommented SQL

operation of your SQL code are not necessarily consecutive.

Notice also that on a number of cases commenting lines does not result in a correct

SQL operation. If this happens, you will have to manually adjust the code (e.g., adding

parenthesis, commenting part of a line of code, …) to get a correct SQL operation.

This depends on how you have formatted your SQL code. This is clearly undesirable,

because when doing this editing you may introduce further errors. This is why it is very

important to format your SQL code in a way that minimizes the need for manual

adjustments. If you want to know more about this, you may check the bullet point about

parentheses clicking on “K.4.3 How do I write readable (maintainable) SQL Queries?”.

J.4 How do I debug in progressive steps?

You debug your SQL code in progressive steps because it is the best way to locate and

fix the error(s) that the Query contains.

At each debugging step, you leave a different uncommented SQL operation

(click J.3) of your Query code (called the “current uncommented SQL operation”)

where you will focus your attention. Analyzing at each step only one SQL operation

of your code, and checking the results it produces, makes it easier to locate and fix the

possible errors in that specific SQL operation.

By progressively focusing on only one SQL operation of your code, and checking the

results it produces, you can orderly debug, in a number of steps, the complete SQL

code of your Query.

This is a very effective way of finding and fixing all your Query bugs.

You may click on the following two chapters to know how to select the current

uncommented SQL operation at each progressive debugging step:

• “J.5 How do debug inside out?”

• “J.6 How do I debug my same-level code linearly?”

You may click on the following chapter to know how to debug the current

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 499 of 725

uncommented SQL operation at a given step:

• “J.7 How do I debug the current uncommented SQL operation at each step?”

J.5 How do debug inside out?

SQL Query code is debugged inside out. This means that you first comment (click J.3)

the outer SQL code in the Query, and you leave uncommented one inner SQL

operation. You debug this inner SQL operation as I indicate “J.7 How do I debug the

current uncommented SQL operation at each step?”. Once it is correct, you uncomment

a more exterior SQL operation that encloses this one, and you debug it with the same

procedure.

When you are not experienced, my advice if you debug the SQL operations one by one,

starting in the innermost ones, and progressively going upwards until you reach the

complete Query. When your more experienced, you can debug by focusing on larger

inner SQL operations (not necessarily the innermost ones), and going outwards several

steps at a time, and not following one-by-one the next exterior SQL operation to the last

one debugged.

Notice that the structure of SQL code is like a tree, where the outermost SQL operation

is the root and each of the several innermost SQL operations are the final branches of

the tree. The tree nodes are either Union operations or Join operations.

If you want more information about this, you may click:

• “J.6 How do I debug my same-level code linearly?”

• “J.7 How do I debug the current uncommented SQL operation at each step?”

J.6 How do I debug my same-level code linearly?

When you are progressively debugging a Query inside-out, at a given step you may

have several Select operations at the same level. These Select operations at the same

level may either be:

• Several Select operations bound by one or more Union operator(s).

• Two Select operations bound by a Join operator79.

You debug these two cases as I now indicate.

Several same level Selects bound by Union operators

Debug them linearly. This implies commenting (click J.3) all the Union operations,

except one Select operation (or a few consecutive Select operations if each of them is

very simple). This allows you to focus on a current uncommented SQL operation

composed of one Select operation (or a few of them composed with Union operators).

You run the current uncommented SQL operation, and check if its results are correct.

If results are wrong, you fix the current uncommented SQL operation code until it is

correct. Once it is correct, you uncomment the next Select operation in the associative

Union operations, until you have debugged the whole block of Select operations.

79 In case it is a Cross-Join, it can be more than two Select operations, because it is associative. You

can anyway debug this case as I indicate for the case of other Joins with only two Select operations.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 500 of 725

If you want to save time from commenting/uncommenting, you can debug the

associative Union operations in an incremental way. This means that you do not

comment again the former “current uncommented SQL operations” that were run and

worked well. In this way, you have a progressively larger uncommented current

uncommented SQL operation, until you have fixed all the errors and what remains

uncommented is the whole block of associative Union operations.

An alternative of commenting and debugging the Select operations one by one (or few

by few) is doing something similar to a binary search. This is particularly useful when

you are debugging a Query crash, or a Query syntax error, where the effect of the error

is trivial to notice. To do such a binary search, you comment approximately half of the

complete block of associative Union operations. You run it, and if the Query works, the

error (crash or syntax error) is in the other half. If the Query is still erroneous, the error

is in this half. You repeat the process with the half that contains the error, over and

over, until you find and fix the error. With this binary-search approach you can find

the error in a fairly quick way.

Two same level Selects bound by a Join operator

You debug each of the left and right input SQL operations, and then debug the Select

operation that is enclosing the Join operation, as follows:

1. Comment (click J.3) the clauses of the enclosing Select operation and of the Join

operation. This is, comment the “SELECT”, “FROM”, “WHERE”, “GROUP BY”,

“HAVING” and “ORDER BY” clauses of the enclosing Select operation and also

comment the Join operator and its “ON” clause (if it exists).

2. Comment the right input record-list plus the parentheses and the “AS” clause of the

left input record-list. Run and debug the left uncommented input record-list until

it is fixed.

3. Comment the left input record-list plus the parentheses and the “AS” clause of the

right input record-list. Run and debug the right uncommented input record-list

until it is fixed.

4. Uncomment the left input record-list plus the parentheses and the “AS” clause of

the right input record-list. You also uncomment the Join operation and the

enclosing Select operation that you commented in step 1 above. Run and debug the

now complete enclosing Select operation until it is fixed.

If you want more information about this, you may click:

• “J.5 How do debug inside out?”

• “J.7 How do I debug the current uncommented SQL operation at each step?”

J.7 How do I debug the current uncommented SQL operation

at each step?

At each debugging step you have a given uncommented current uncommented SQL

operation (click J.3) that you want to debug. When you try to run it, you may encounter

four different types of problems. I provide specific advice to fix each type of problem

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 501 of 725

of the current uncommented SQL operation, as follows:

1. You cannot save the Query. Click on:

• “J.7.1 How do I debug the current uncommented SQL operation so it can be

saved?”

• “J.8 How do I fix a syntax error that prevents saving a Query?”

2. It saves well, but crashes when run. Click on:

• “J.7.2 How do I debug the current uncommented SQL operation so it runs?”

• “J.9 How do I fix a crash from a syntax error?”

• “J.10 How do I fix a crash from a run-time error?”

3. It saves and runs, but it produces defective results. Click on:

• “J.7.3 How do I debug the current uncommented SQL operation so it does not

produce defective results?”

• “J.11 How do I fix defective Query results?”

4. It saves and runs well, but its results are not the ones that you want. Click on:

• “J.7.4 How do I debug the current uncommented SQL operation’s

functionality?”

If you debug and debug, and just cannot fix the Query, I advise you do a workaround.

You may click:

• “J.12 What do I do when I just cannot fix a Query?”.

J.7.1 How do I debug the current uncommented SQL operation so it

can be saved?

This section also answers the question:

• Why cannot I save my Query?

If MS-Access does not allow you to save the Query with the current uncommented SQL

operation (click J.3) it is because:

• Almost always, the Query has syntax errors

In this case, you will get a syntax error message providing some information about

the syntax error.

• Very unusual, the Query is larger than 65,535 characters80

In this case, you will get the error message “Access SQL Editor is not able to process
query ‘Query_name’ because it is too long. Query size: nnnn characters, maximum
size 65535 characters.”

If you want to debug the error now, the fix depends on the error cause:

• If the cause is a syntax error, you fix it by checking:

o “J.8 How do I fix a syntax error that prevents saving a Query?”.

80 I am giving for granted that you are using the “Access SQL Editor”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 502 of 725

• If the cause is the Query is larger than 65,535 characters, you must make the

Query smaller. You fix this by shortening some comments or moving part of the

SQL code to an auxiliary Query invoked from this one or whatever other

modification that makes the Query smaller than 65,535 characters.

If you rather want to save the Query now (i.e., you do not want to debug the error now),

check the following two cases:

• If you are using the “Access SQL Editor” and the Query is smaller than 65535

characters

You select all the SQL code in the Query by pressing “Ctrl-a” (i.e., press the “Ctrl”

key, and without releasing it, press the “a” key) while the mouse pointer is over the

corresponding “Query pane”. You then click on the Comment “ ” icon

and all the SQL code will be commented (i.e., each line will be prefixed by two

hyphens “--”). You then write at the first line of the Query code a simple “filler”

Select operation that will not produce any syntax error. This will allow you to save

the Query.

When you come back to debugging this Query, you open it, you delete the simple

“filler” Select operation that you wrote, you select all the SQL code by pressing

“Ctrl-a” (i.e., press the “Ctrl” key, and without releasing it, press the “a” key), and

finally click on the Uncomment “ ” icon.

• If you are not using the “Access SQL Editor” or the Query is larger than 65,535

characters

You copy the whole SQL Query code from the Access SQL Editor (or from the

“Query pane” in “SQL View”), you paste it in some external plain text editor (e.g.,

notepad, textpad, emacs, vi, ...) and save it as a plain text file. Then you put in the

Query code any correct SQL operation (e.g., a most simple Select operation) that

will allow you to save the Query code for later debugging of its syntax errors. When

you come back to debugging the Query, you copy the Query code from the text file

and paste it into the “Query pane” in the “Access SQL Editor” (or into the “Query

pane” in “SQL View”) and you retake the task of debugging it.

Be aware that some types of syntax errors prevent the Query from being saved, but

other types of syntax errors allow to save the Query. Therefore, even if you could save

the Query, it can still contain syntax errors. If you run a Query with syntax errors (or

other severe errors) it will crash. If you want to fix this, you may click “J.7.2 How do I

debug the current uncommented SQL operation so it runs?”.

Let me show how to debug a Query (i.e., how to find and fix the errors) with an

example. Imagine that you have written the following Query81 to show the amount of

rainfall by city, by year and by quarter (where the auxiliary Query

81 This is the Query “J_Debugging” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 503 of 725

“K_Rows_into_columns_1” is the one from K.6.4):

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4,, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/(Num-1) AS Val FROM T_Numbrs WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

You try to run it, and MS-Access does not allow you to save it, while it shows the

syntax error message “Syntax error, missing operator in query expression
'Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4,, "Q4")'.”.

You then search for the expression “Switch(Num=1,"Q1", Num=2,"Q2",

Num=3,"Q3", Num=4,, "Q4")” (from the error message), and you find it in line 2.

You then comment that line of code (notice the two green hyphens at the beginning of

line 2) and you get this first “current uncommented SQL operation”82:

 SELECT Capital, Cal_Year, Val

 --, Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4,, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/(Num-1) AS Val FROM T_Numbrs WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

Notice that the way the SQL code is formatted allows that when commenting line 2, the

uncommented code fragment is a syntactically correct SQL operation (see the bullet

point on parentheses from K.4.3). If the SQL code was not formatted in this way, you

would have needed to do some editing in your code, in addition to commenting, to

make sure that the uncommented code corresponds to a correct “current

uncommented SQL operation”. Notice also that the uncommented lines are not

consecutive, which is a quite frequent case.

The commented code above now saves well, so it confirms there is a syntax error in line

2. You carefully look into line 2, and you notice that there are two consecutive commas

“,,” after “Num=4”. You remove the extra comma, and you also uncomment the second

82 This is the Query “J_Debugging_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 504 of 725

line, and you get this second “current uncommented SQL operation”83:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/(Num-1) AS Val FROM T_Numbrs WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

The current uncommented SQL operation now saves well!

However, when you run/execute the current uncommented SQL operation, it crashes

with the syntax error message:

“The Microsoft Access database engine cannot find the input table or query
'T_Numbrs'. Make sure it exists and that its name is spelled correctly.”

As a side note, if you run the Query from the “Access SQL Editor” (click F.5) the error

message will be different: “You cancelled the previous operation.”

I will continue debugging this same example at the end of the next section J.7.2.

J.7.2 How do I debug the current uncommented SQL operation so it

runs?

In order to run, the “current uncommented SQL operation” must be syntactically

correct (i.e., it has to comply with the rules of writing SQL code) and it must not

contain coding errors that make it crash.

In case the current uncommented SQL operation uses auxiliary Queries (i.e., the code

of the current uncommented SQL operation contains Query names), you should first

make reasonably sure that all these auxiliary Queries are correct. You know if the

current uncommented SQL operation makes use of auxiliary Queries by visually

inspecting all its “FROM” clauses or, most reliably, by using an object dependency

checker (click I.3). My advice is that you trust the test-and-proven auxiliary Queries

(i.e., the ones that have been working well for months), and do not trust the non-test-

and-proven auxiliary Queries. You should therefore first debug all the non-test-and-

proven auxiliary Queries used in the current uncommented SQL operation before

starting to debug the code of the current uncommented SQL operation itself.

Once you have finished debugging the auxiliary Queries that are non-test-and-proven,

you can begin debugging the crash in the current uncommented SQL operation.

A crash may arise from a syntax error (i.e., from the writing rules of SQL) or from a

run-time error (i.e., from the processing of the database values).

Regardless of a crash arising from a syntax error or from a run-time error, you will

anyway have to locate and fix the error. However, it is useful to know the difference

because syntax errors are found and fixed in a different way than run-time errors. Main

83 This is the Query “J_Debugging_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 505 of 725

differences are the following:

• Syntax errors always manifest before run-time errors. In order to get a run-time

error, the current uncommented SQL operation must already be syntactically

correct.

• Syntax error messages frequently provide more information about the piece of code

that originated them, so you can search in the current uncommented SQL operation

for the corresponding expression of code fragment. They are therefore easier to

locate than run-time errors.

• Syntax errors arise from not having followed the SQL writing rules (i.e., wrong

syntax), so you already have some idea of what their cause is. However, run-time

errors may arise from very complex interrelations between data and SQL-code and

can manifest themselves in segments of code that are away from their actual cause.

In order to fix the crash, you may look for the crash error message that you got in one

of the two following sections, depending on whether it is a syntax error message or a

run-time error message:

• “J.9 How do I fix a crash from a syntax error?”

• “J.10 How do I fix a crash from a run-time error?”

If you debug and debug, and just cannot fix the Query, I advise you do a workaround.

You may click:

• “J.12 What do I do when I just cannot fix a Query?”.

Let me show you this continuing with the example from the previous section J.7.1.

Remind that the Query saved well, but when you run/execute it, it crashes with the

syntax error message:

“The Microsoft Access database engine cannot find the input table or query
'T_Numbrs'. Make sure it exists and that its name is spelled correctly.”

You notice that the current uncommented SQL operation uses the auxiliary Query

“K_Rows_into_columns_1”. Let us suppose this is a test-and-proven Query, so you

do not debug it, and proceed instead to debug the current uncommented SQL operation.

You search for “T_Numbrs” (from the error message) and you find it in line 6. You now

comment lines 5 to 8 and 10 to 11, because if you only comment line 6, you would not

get a correct current uncommented SQL operation. Commenting lines 5 to 8 and 10

to 11 you get this third current uncommented SQL operation84:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 --(-- This is the inner select, producing four records

 --SELECT Num, 5/(Num-1) AS Val FROM T_Numbrs WHERE Num BETWEEN 1 AND 4

 --) AS Quadr

 --,

 K_Rows_into_columns_1

 --ORDER BY Capital, Cal_Year

 --, Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

84 This is the Query “J_Debugging_3” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 506 of 725

This now runs (although it requests parameters “Val” and “Num”), so it confirms there

is a syntax error in line 6, in Table name “T_Numbrs”. You carefully look at it, and you

notice it is misspelled. You replace it by “T_Numbers” and also uncomment lines 5 to

8 and 10 to 11, getting this fourth current uncommented SQL operation85:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/(Num-1) AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

This current uncommented SQL operation now runs!!

However, its results show the divide-by-zero “#Div/0!” exception-value, so you are

having defective results. I will continue debugging this same example at the end of the

next section.

The Table “T_Numbers” used in the example above is an auxiliary Table that just

contains integer numbers (click K.2.2).

J.7.3 How do I debug the current uncommented SQL operation so it

does not produce defective results?

The current uncommented SQL operation produces defective results. When I say

that results are defective it is not that they are different from what you intended, but

rather that they are actually flawed. Some examples of defective results are:

• Showing exception-values.

• Requesting a parameter you did not define.

• Requesting the same parameter twice.

• Considering two different values as equal (e.g., in a “WHERE” Boolean expression).

• Wrong record sorting.

• Arithmetic errors.

Regardless of the type of defective result, you must debug it/them from your current

uncommented SQL operation.

If you want to fix these defective results, you may click:

• “J.11 How do I fix defective Query results?”

If you debug and debug, and just cannot fix the Query, I advise you do a workaround

checking:

• “J.12 What do I do when I just cannot fix a Query?”

Let me show you this continuing with the example from the previous section J.7.2.

Remind that the current uncommented SQL operation saved well, but when you

85 This is the Query “J_Debugging_4” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 507 of 725

run/execute it, it shows the divide-by-zero “#Div/0!” exception-value, so you are

having defective results.

You search for a division operator “/” and you find it in line 6, that contains the

expression “5/(Num-1)”. This expression causes division by zero when “Num=1”.

Replacing “Num-1” by “Num”, you get this fifth current uncommented SQL Operation86:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/Num AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

This now saves and runs well!!

However, this current uncommented SQL operation does not produce the amount of

rainfall by city, by year and by quarter, which is what you wanted. I will continue

debugging this same example at the end of the next section J.7.4.

The Table “T_Numbers” used in the example above is an auxiliary Table that just

contains integer numbers (click K.2.2).

J.7.4 How do I debug the current uncommented SQL operation’s

functionality?

What happened in the example along the previous three sections is not something I

forced, and rather it is the most usual situation: you solve a few crashes but once the

code runs, you have to debug its functionality until it actually produces the results you

want. Therefore, once you get an SQL operation to run without defective results, you

are not done debugging, and you will most likely have to do substantially more

debugging.

The procedure to debug the functionality is basically the same as the one for debugging

syntax and run-time errors that I showed in the previous sections: you have to

progressively comment/uncomment your SQL code, correcting the functionality, until

you debug your current uncommented SQL operation, and it produces the results that

you want.

If you debug and debug, and just cannot fix the Query, I advise you do a workaround

checking:

• “J.12 What do I do when I just cannot fix a Query?”

Let me show how to fix the functionality of an SQL operation continuing with the

example from the previous section, where we finished with the following fifth current

86 This is the Query “J_Debugging_5” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 508 of 725

uncommented SQL operation87:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/Num AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

This Query should produce the amount of rainfall by city, by year and by quarter, but it

currently produces no Q2 results, and Q1 results are duplicated. The way I advise you

debug this is the following:

You run the auxiliary Query “K_Rows_into_columns_1” and check (just in case) its

results. They are correct, so the error is not there.

You now comment the lines 1 to 5 and 7 to 11, getting the sixth current uncommented

SQL Operation88:

 --SELECT Capital, Cal_Year, Val

 --, Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 --, Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 --FROM

 --(-- This is the inner select, producing four records

 SELECT Num, 5/Num AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

 --) AS Quadr

 --,

 --K_Rows_into_columns_1

 --ORDER BY Capital, Cal_Year

 --, Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

You check the expected results (the numbers 1 to 4), and you verify that they are correct.

Since the two input record-lists to the Cross-Join are correct, you then conclude that

the error is in the outermost “SELECT” clause. You decide to comment part of the

“SELECT” expressions and check their results: you uncomment al the lines, and

comment only line 2, getting the seventh current uncommented SQL Operation89:

 SELECT Capital, Cal_Year, Val

 --, Switch(Num=1,"Q1", Num=2,"Q1", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/Num AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

Running this code you can check that the actual values for the rainfall by city, by year

and by quarter are correct. Therefore, the error must be in the names of the Quarters,

which are in line 2, and are the only ones not checked. You carefully look at them, you

notice that in line 2 the second “Q1” should be a “Q2”, and you fix it. The resulting

87 This is the Query “J_Debugging_5” from file “Company_Database.accdb”.
88 This is the Query “J_Debugging_6” from file “Company_Database.accdb”.
89 This is the Query “J_Debugging_7” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 509 of 725

eighth current uncommented SQL Operation90 is:

 SELECT Capital, Cal_Year, Val

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4") AS Quart

 , Switch(Num=1,Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (-- This is the inner select, producing four records

 SELECT Num, 5/Num AS Val FROM T_Numbers WHERE Num BETWEEN 1 AND 4

) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Cal_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4, "Q4")

which finally saves well, runs well and has the desired functionality!!

The Table “T_Numbers” used in the examples above is an auxiliary Table that just

contains integer numbers (click K.2.2).

J.7.5 How do I check the results of the current uncommented SQL

operation?

At each debugging step you need to check if the results of the fragment SQL operation

are correct. SQL operations return a record-list which may contain a large amount of

data. Going over all the data with visual inspection to check it if is correct is feasible

on some cases. However, if the SQL operation results are too large and complex,

checking their correctness with visual inspection is slow, cumbersome and error prone.

I now present several complementary approaches that can help you check the correct

functionality of each SQL operation:

• Debug the Queries in a duplicate database

Produce a copy of the database Tables and database Queries (in a split database this

implies copying the frontend files and source files and relinking the linked Tables,

click K.3.10) and use it to develop/debug your new Queries. In this way you can

modify the data in the Tables as you need (deleting records, adding records useful

for tests, ...) to produce the results that are most convenient for the debugging

process.

• Restrict the input record-lists of your Query

In the innermost Select operations of your Query, the ones that are taking the input-

record-lists for the Query, replace their “WHERE” clauses by others that restrict the

input records to the ones that are useful for your debugging. When you are done

debugging, you replace the testing “WHERE” clauses by the original “WHERE”

clauses. The usual way to do this is commenting each original “WHERE” clause,

adding a new testing “WHERE” clause, and adding very clear comments to the SQL

code, so you can undo this without making mistakes. This a good technique but you

have to be very careful and always mark with searchable comments all the

original (commented) “WHERE” clauses and all the testing “WHERE” clauses. By

“searchable” comments I mean that you put in all these comments some codeword

(e.g., “REMOVE_ME”) to clearly identify these pieces of code. Doing this will allow

you to search for the specific codeword you used in your comments to mark these

pieces of code and undo the changes without mistakenly missing any of them.

90 This is the Query “J_Debugging_8” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 510 of 725

• Check the results with a record-list comparator (click J.13.1)

Whenever you have a record-list of your expected results (which is sometimes the

case), use a record-list comparator tool to check the actual record-list produced

by the SQL operation against the expected record-list that you have. The record-

list comparator tool will automatically identify and mark all the possible

differences, greatly simplifying your work, and greatly reducing the possibility of

you overlooking some of the differences.

J.8 How do I fix a syntax error that prevents saving a Query?

You can look for the syntax error message you got in the following list of syntax error

messages (in alphabetical order). Once you find it, you may check its corresponding

causes and fixes:

• “Extra) in query expression 'expression()'.”

This is most likely because there is an extra closing parenthesis “)” in the

expression “expression()”, that is listed explicitly in the error message.

You fix this by searching for “expression()” (from the error message) in your Query

code and correcting it.

• “Invalid SQL statement; expected 'DELETE', 'INSERT', 'PROCEDURE', 'SELECT', or
'UPDATE'.”

You fix this by correcting one of the following possible errors:

o A mistyped or missing “SELECT” keyword.

o A mistyped or missing keyword among the other ones listed in the error

message.

• “JOIN expression not supported.”
This is most likely caused by a wrong Boolean expression in the “ON” clause

(click F.8.9) of the Join operation. You fix this by correcting one of the following

possible errors:

o One or more field names in the “ON” Boolean expression are not qualified with

the name of the corresponding input record-list of the Join operation.

o One (or more) Boolean sub-expressions within the “ON” Boolean-expression

does not contain field names from both input record-lists of the Join

operation.

• “Syntax error, missing operator in query expression 'expression()'.”

You fix this by searching for “expression()” (from the error message) in your Query

code and correcting one of the following possible errors:

o Extra opening parenthesis “(”.

o Wrong parentheses matching.

o Missing comma “,” between two arguments of a function.

o You are using both “DISTINCT” and “DISTINCTROW”.

o Missing operator.

• “Syntax error in FROM clause.”

You fix this by locating the wrong “FROM” clause, and correcting one of the

following possible errors:

o You enclosed a Table name or Query name between parentheses and also used

the “AS” clause: either remove the parentheses or the “AS” clause.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 511 of 725

o You did not enclose between parentheses a Select operation: enclose it between

parentheses.

o Wrong parentheses matching at the end of a Select operation.

o Extra commas between fields.

o Wrong number of arguments in functions.

o Not having enclosed in parentheses each of the two SQL operations that are the

operands of a Join operator.

o Misspelled operator (e.g., “MOOD” instead of “MOD”).

o Error in “ON” expression.

o You used a comma “,” instead of a period “.” to separate decimals in numbers.

This error is particularly frequent if in your country you use comma “,” to

separate decimals.

o You are doing a “SELECT” over a “TRANSFORM”.

• “Syntax error in TRANSFORM clause.”

You fix this by removing the “HAVING” clause from the Transform operation.

Notice that there may be other possible errors.

• “The SELECT statement includes a reserved word or an argument name that is
misspelled or missing, or the punctuation is incorrect.”
You fix this by correcting one of the following possible errors:

o You are using a reserved keyword (e.g., “Value”) as a field name or SQL

operation name.

o You used an invalid parameter in the “TOP” clause. Invalid parameters are

expressions (i.e., not a constant), zero or negative constants, and for the “TOP

PERCENT” also constants greater than 100.

If you want detailed guidance on the writing rules (syntax) of SQL operations, you may

click:

• “F.7.15 How do I write a correct (syntax) Select-no_aggreg?”

• “F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?”

• “F.7.17 How do I write a correct (syntax) Select-total_aggreg?”

• “F.8.10 How do I write a correct (syntax) Join?”

• “F.9.5 How do I write a correct (syntax) Union?”

• “F.10.14 How do I write a correct (syntax) Transform?”

• “F.12 How do I add parameters (type-in variables) to my Queries?”

• “F.13 How do I write a Query that changes my Table data?”

If you want guidance on writing SQL operations, you may click:

• “K.4 What Query design principles should I follow?”.

J.9 How do I fix a crash from a syntax error?

Some Query crashes are due to syntax errors: the Query is not properly written, and

it crashes before it is actually being run (it crashes in the parsing phase of the SQL

code).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 512 of 725

All crash error messages that begin with “Syntax error...” are caused by a syntax error

(that was easy!). Crash error messages that do not begin with “Syntax error...”, but

whose content refers to errors in the rules for writing SQL code are also caused by a

syntax error. Some examples of such crash syntax error messages are:

• “Cannot repeat table name 'Table_name'.”

• “The specified field 'Field_name' could refer to more than one table listed in the
FROM clause of your SQL statement.”

• “Wrong data type for parameter '[Param_name].”

You can look for the crash error message you got in the following list of syntax error

messages (in alphabetical order). Once you find it, you may check its corresponding

causes and fixes:

• “Cannot group on fields selected with '*'.”
The most likely cause is a “SELECT *” with either a “GROUP BY” clause.

You fix this by searching for “SELECT *” to locate the wrong Select, and then

writing an explicit list of “SELECT” expressions (and typically also output field

names) after the “SELECT” keyword.

If you want to know more, you may click “K.4.9 Why should I avoid using

“SELECT *”?”.

• “Cannot have aggregate function in expression 'exp()'”
The most likely cause is nested SQL aggregate functions.

You fix this by searching for “exp()” (from the error message) to locate the wrong

expression, and then removing the SQL aggregate function you are erroneously

using inside another SQL aggregate function.

You can never use an SQL aggregate function inside the argument expression of

another SQL aggregate function.

• “Cannot have aggregate function in WHERE clause 'exp()'”
The most likely cause is an SQL aggregate function inside a “WHERE” expression.

You fix this by searching for “exp()” (from the error message) to locate the wrong

“WHERE” expression, and then removing the SQL aggregate function you are

erroneously using inside it. You can never use an SQL aggregate function in a

“WHERE” expression.

• “Cannot repeat table name '%$##@_Alias’ in FROM clause.”
The most likely cause is a Join operation where both of its input SQL operations

have not been assigned a name using the “AS” clause. For this reason, MS-Access

assigned the name “%$##@_Alias” to both of them, and this is why the name is

repeated.

You fix this by finding the wrong Join operation and assigning a name to at least

one (better to both) of its two input SQL operations. You assign a name to an input

SQL operation by enclosing it between parentheses, followed by the “AS” keyword

and followed by a name (the assigned name must be different in both SQL

operations).

If you want to know more, you may click “F.8.10.2 What are the formal rules

(syntax) to write a Join?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 513 of 725

• “Cannot repeat table name 'Table_name'”
The most likely cause is a Join operation with the same name “Table_name”

assigned to both of its input record-lists.

You fix this by searching for “Table_name” (from the error message) to locate the

wrong Join operation, and then assigning different names to its two input record-

lists.

If you want to know more, you may click “F.8.10.2 What are the formal rules

(syntax) to write a Join?”.

• “Circular reference caused by alias 'Alias_name' in query selection's SELECT list.”
The most likely cause is a circular field name reference in “SELECT” expressions.

You fix this by searching for “Alias_name” (from the error message) to locate the

wrong “SELECT” expressions where you are assigning an output field name to

itself, or you are assigning output field names in a circular way (e.g., “Name_1” is

used in the expression for “Name_2”, “Name_2” is used in the expression for

“Name_3” and “Name_3” is used in the expression for “Name_1”). Once you find

this, you change the naming to suppress the circular reference.

If you want to know more, you may click “F.7.14 How do I write a correct (syntax)

Select?”.

• “Column names in each table must be unique. Column name 'Col_name' is specified
more than once.”
The most likely cause is a duplicated value in the “IN” list-of-PIVOT-values

of the Transform operation.

You fix this by making sure that the “IN” list-of-PIVOT-values does not

contain any duplicate value.

If you want to know more, you may click “F.10.12 What is the “IN” clause of a

Transform?”.

• “HAVING clause (exp()) without grouping or aggregation.”
The most likely cause is a “HAVING” clause in a Select-no_aggreg (this is, a Select

without a “GROUP BY” clause and without SQL aggregate functions).

You fix this by searching for “exp()” (from the error message) to locate the wrong

Select-no_aggreg operation. If you do not want aggregation in this Select

operation, you then remove the “HAVING” clause by either turning it into a

“WHERE” clause, or by integrating the “HAVING” Boolean expression into the

“WHERE” Boolean expression. If you do want aggregation in this Select operation,

you then add the corresponding “GROUP BY” clause and/or SQL aggregate

functions.

If you want to know more, you may click “F.7.16.2 What are the formal rules

(syntax) to write a Select-group_by_aggreg?”.

• “Item not found in this collection.”

Some possible causes are the following:

o Not having enclosed between parentheses each of the two SQL operations that

are the operands of a Join operator.

o Problems with identifiers.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 514 of 725

• “Number of query values and destination fields are not the same.”
The most likely cause is an Insert-one-record operation where either:

o The number of “VALUES” expressions is different from the number of fields

in the list of target Table field names.

You fix this by making both of them having the same number of elements.

o The number of “VALUES” expressions is different from the number of

target Table field names (and the optional list is not used).

You fix this by making the number of “VALUES” expressions the same as the

number of target Table field names.

In either case you fix this by making both of them having the same number of

elements. If you want to know more, you may click “F.13.2.2 How do I write a

Query that inserts only one Table record?”.

• “ORDER BY clause (exp()) conflicts with DISTINCT.”
The most likely cause is a Select with “DISTINCT” where one (or more) of the

“ORDER BY” expressions is/are not exactly the same as one of the “SELECT”

expressions.

You fix this by searching for “exp()” (from the error message) to locate the wrong

Select operation, then you remove its “ORDER BY” clause, and finally you enclose

this Select into a new Select operation where you can write the “ORDER BY”

expressions that you want.

If you want to know more, you may click “F.7.12 How do I use “ORDER BY” to

order the output records of a Select?”.

• “ORDER BY clause (exp()) conflicts with GROUP BY.”
The most likely cause is a Transform where one (or more) of the “ORDER BY”

expressions is/are not exactly the same as either of the “GROUP BY” expressions

or as the “PIVOT” expression.

You fix this by making (in the Transform) each and every of the “ORDER BY”

expressions to be exactly the same as either of the “GROUP BY” expressions or

as the “PIVOT” expression.

If you want to know more, you may click “F.10.8 What is the “ORDER BY” clause

of a Transform?”.

• “Subqueries cannot be used in the expression 'Agg_func()'”
The most likely cause is nested SQL aggregate functions.

You fix this by searching for “Agg_func()” (from the error message) to locate the

wrong SQL aggregate function, and removing the SQL aggregate function you are

using inside its argument.

You can never use an SQL aggregate function inside the argument of another SQL

aggregate function.

• “The INSERT INTO statement contains the following unknown field name:
'Field_name'. Make sure you have typed the name correctly, and try the operation
again.”

The most likely cause is a mistyped output field name in the “SELECT” clause of

the Insert-many-records operation.

You fix this by correcting the wrong output field name(s) from the “SELECT”

clause so that each and every of them corresponds to one target Table field name.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 515 of 725

If you want to know more, you may click “F.13.2.1 How do I write a Query that

inserts many Table records?”.

• “The Microsoft Access database engine cannot find the input table or query
'T_Q_name'. Make sure it exists and that its name is spelled correctly.”

The most likely cause is a mistyped or outdated Table/Query name.

You fix this by searching for “T_Q_name” (from the error message), and then

correcting its name.

If this is not the case, then it is not an actual syntax error, but I will anyway explain

here how to fix it.

If it is a linked Table, and its name was correctly written in the Query code, the

most likely cause is a failed Table link.

You fix this by correcting the Table link: see “K.3.10 How do I view and manage

Table links?”.

In other case, the most likely cause is that a Table/Query was deleted by mistake,

which is a very severe problem.

You fix this by recovering the deleted Table/Query from your backup files.

• “The number of columns in the two selected tables or queries of a union query do
not match.”
The most likely cause is a Union operation with a different number of fields (i.e.,

different number of columns) in its two input record-lists.

You fix this by finding the wrong Union operation and making both its input record-

list having the same number of fields.

• “The specified field 'Field_name' could refer to more than one table listed in the
FROM clause of your SQL statement.”
The most likely cause is that you did not qualify (click C.2.2) a field name used in

a “SELECT” expression and that field name exists in both input record-lists of the

enclosed Join operation.

You fix this by searching for “Field_name” (from the error message) to locate the

wrong “SELECT” expression, and then you correctly qualify that field name.

If you want to know more, you may click “F.7.5 What are the output fields

(“SELECT” clause) of a Select?”.

• “Undefined function 'WrongFunc' in expression.”
The most likely cause is a mistyped function name.

You fix this by searching for “WrongFunc” (from the error message) to locate the

wrong function name, and then you correct it.

• “Wrong data type for parameter '[Param_name].”
The most likely cause is two parameters with the same name but with a different

data type.

You fix this by searching for “Param_name” (from the error message) in the current

Query, and in all its auxiliary Queries (recursively) to locate the colliding

parameters, and then you change the name of one of them.

This may happen when you declare a parameter in a Query, and the parameter name

that you selected is the same as the one of another parameter declared inside an

auxiliary Query, and both parameters have a different data type.

Notice that if both parameters have the same data type there is no crash, because

they are considered as the same parameter.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 516 of 725

If you want to know more, you may click “F.12 How do I add parameters (type-in

variables) to my Queries?”.

• “Wrong number of arguments with function in query expression 'Wrong_exp()'.”

The most likely cause is a wrong number of arguments in one (or more) of the

functions inside the expression “Wrong_exp()”.

You fix this by searching for the expression “Wrong_exp()” (from the error

message) to locate the wrong function invocation(s), and then using the correct

number of arguments.

• “You cancelled the previous operation.”

This is a misleading error message shown by the “Access SQL Editor” (click F.5).

If you get this error message, my advice is you run the Query from MS-Access, and

you will then get the error message “The Microsoft Access database engine cannot
find the input table or query 'T_Q_name'. Make sure it exists and that its name is
spelled correctly.”. You will find this error message higher above in this list with

an explanation on how to fix the problem.

• “Your Query does not include the specified expression 'exp()' as part of an
aggregate function.”

The most likely cause is that you are using wrong elements to build a

“TRANSFORM”, “SELECT”, “HAVING” and/or “ORDER BY” expression(s)

belonging to a Select-group_by_aggreg operation or a Transform operation.

You fix this by searching for the expression “exp()” (from the error message) to

locate the wrong Select-group_by_aggreg operation or wrong Transform

operation. The expression “exp()” can be inside their “TRANSFORM”, “SELECT”,

“HAVING” and/or “ORDER BY” expression(s). Once you have located the wrong

Select-group_by_aggreg or Transform operation, you correct its

“TRANSFORM”, “SELECT”, “HAVING” and/or “ORDER BY” expression(s) by

using only the corresponding allowed elements. For a Select-group_by_aggreg

operation you may click “F.7.16 How do I write a correct (syntax) Select-

group_by_aggreg?”. For a Transform operation you may click “F.10.14 How do

I write a correct (syntax) Transform?”.

If the crash error message did not begin with “Syntax error...” and is not in the list

above, then the crash is most likely from a run-time error. You may therefore fix it

clicking “J.10 How do I fix a crash from a run-time error?”.

If you want detailed guidance on the writing rules (syntax) of SQL operations, you may

click:

• “F.7.15 How do I write a correct (syntax) Select-no_aggreg?”

• “F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?”

• “F.7.17 How do I write a correct (syntax) Select-total_aggreg?”

• “F.8.10 How do I write a correct (syntax) Join?”

• “F.9.5 How do I write a correct (syntax) Union?”

• “F.10.14 How do I write a correct (syntax) Transform?”

• “F.12 How do I add parameters (type-in variables) to my Queries?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 517 of 725

• “F.13 How do I write a Query that changes my Table data?”

If you want guidance on writing SQL operations, you may click:

• “K.4 What Query design principles should I follow?”.

J.10 How do I fix a crash from a run-time error?

You can look for the crash error message you got in the title of the following sections.

Once you find it, you may click on the corresponding section title to get advice on

possible causes and fixes for the crash:

• “J.10.1 How do I fix the crash “Divide by zero.”?”

• “J.10.2 How do I fix the crash “Overflow.”?”

• “J.10.3 How do I fix the crash “Data type mismatch in criteria expression.”?”

• “J.10.4 How do I fix the crash “Data type mismatch.”?”

• “J.10.5 How do I fix the crash “Invalid Procedure Call or Argument.”?”

• “J.10.6 How do I fix the crash “Invalid use of Null.”?”

• “J.10.7 How do I fix the crash “The expression cannot be used in a calculated
column.”?”

• “J.10.8 How do I fix the crash “Cannot have … in aggregate argument.”?”

• “J.10.9 How do I fix the crash “Could not find field…”?”

• “J.10.10 How do I fix the crash “The expression cannot be used in a Calculated
column”?”

• “J.10.11 How do I fix the crash “Expression is too complex.”?”

• “J.10.12 How do I fix the crash “Query is too complex.”?”

• “J.10.13 How do I fix the crash “Cannot open any more databases.”?”

• “J.10.14 How do I fix a crash from my user-defined VBA functions?”

J.10.1 How do I fix the crash “Divide by zero.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because of one (or

more) of the following:

• A divide-by-zero “#Div/0!” exception-value is an argument to a function (e.g.,

“Log(2/0)”).

• A divide-by-zero “#Div/0!” exception-value is an argument to the “IN” operator.

• A divide-by-zero “#Div/0!” exception-value is an an argument to a domain or SQL

aggregate function.

• A Union operation where one (or both) of its SQL operations produces at least one

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 518 of 725

divide-by-zero “#Div/0!” exception-value in its record-list.

• A user-defined VBA function that contained a division by zero.

You fix these problems by preventing divide-by-zero “#Div/0!” in your Query: click

“J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or

“#Func!” in a field?”.

J.10.2 How do I fix the crash “Overflow.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because of one (or

more) of the following:

• A number-overflow “#Num!” exception-value is an argument to a function (e.g.,

“Log(0/0)”).

• A number-overflow “#Num!” exception-value is an argument to the “IN” operator.

• A number-overflow “#Num!” exception-value is an argument to a domain or SQL

aggregate function.

• You are using correct values as arguments to a numeric-like aggregate function,

but the correct values cause the aggregate function itself to overflow. Remind that

the numeric-like aggregate functions are the SQL aggregate functions “Sum()”,

“Avg()”, “StDev()”, “StDevP()”, “Var()” and “VarP()”, plus their

corresponding domain aggregate functions “DSum()”, “DAvg()”, “DStDev()”,

“DStDevP(), “DVar()” and “DVarP()”.

• A Union operation where one (or both) of its SQL operations produces at least one

number-overflow “#Num!” exception-value in its record-list.

• A type-conversion function over an argument that is out of the range of the target

data/field type. For example, “CInt(36000)”, “CByte(256)” or “CInt(-32769)”.

• An expression caused overflow. Notice that some expressions that cause overflow

crash the Query, while others do not crash the Query and their result will be shown

as number-overflow “#Num!”. An example of an expression that will crash the

Query is “1.7E308 + CDbl(1.7E308)”. An example of an expression that will

not crash the Query is “1.7E308 + 1.7E308”. Overflow of operators over the

Currency data/field type typically crash the Query.

• All arithmetic operators that perform overflow with one “Ccur()” type conversion

function as one operand, and an integer-like value as the other operand, will cause

a Query crash. For example, the expression:
 CCur(922337203685477.5807) + 1

will crash the Query, because the constant “1” is interpreted as Long (because it is

combined with Currency and it is within the range of Long). You could expect this

expression to return the exception-value number-overflow, but it does not, and

instead it crashes the Query. As another example, the expression:
 CCur(922337203685477.5807) + 2147483648

will not crash the Query, because the constant “2147483648” is interpreted as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 519 of 725

Variant-Decimal (because it is outside of the range of Long), and the expression

will return the correct value “922339351169125.5807”.

• All arithmetic operators that perform overflow with one “CDbl()” type conversion

function as one operand, will cause a Query crash showing the error message

“Overflow.”. For example, the expression “Cdbl(1.7E308) + 1.7E308” will

crash the Query.

• A user-defined VBA function that contained an operation producing overflow

(either a variable assignment or a function argument out of range, or an expression

causing overflow).

You fix these problems by preventing number-overflow “#Num!” in your Query: click

“J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or

“#Func!” in a field?”. Other problems you fix by correcting the corresponding

expression.

J.10.3 How do I fix the crash “Data type mismatch in criteria
expression.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because of one (or

more) of the following:

• A Null has been used as an argument to a function, where the function argument

data type is other than Variant (e.g., “Log(Null)”).

• A numeric-like aggregate function is used over Short Text, String, Long Text
(formerly “Memo”) or Attachment data/field types. Remind that the numeric-like

aggregate functions are the SQL aggregate functions “Sum()”, “Avg()”,

“StDev()”, “StDevP()”, “Var() and “VarP()”, plus their dual domain

aggregate functions “DSum()”, “DAvg()”, “DStDev()”, “DStDevP()”, “DVar()”

and “DVarP()”.

• A function invocation with a data type mismatch between the provided value(s)

and their corresponding function argument(s). For example, “Log("Text")”.

• An “IN” operator with a data type mismatch. Some examples of this are Boolean

searched in a list of String and Boolean; Integer searched in a list of String and

Integer; String searched in a list of Integer and String; String searched in a list of

Fractional and String. For example:

o Boolean searched in a list of String and Boolean:
 True IN ("Text_string", false)

o Integer-like searched in a list of String and integer-like:
 12345 IN ("Text_string", 123)

o String searched in list of integer-like and String:
 "Text_string" IN (123, "Text_string")

o String searched in list of fractional data type and String:
 "Text_string" IN (12.34, "Text_string")

• A type-error “#Error” exception-value is an argument to a function (e.g.,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 520 of 725

“Log("Text"+1)”).

• A type-error “#Error” exception-value is an argument to the “IN” operator.

• A type-error “#Error” exception-value is an argument to a domain or SQL

aggregate function91 (e.g., “Sum("Text"+1)”).

• A name-error “#Name?” exception-value is an argument to an SQL aggregate

function other than “Count(*)”, “Count()”, “First()”, and “Last()”.

• A Union operation where one (or both) of its SQL operations produces at least one

type-error “#Error” exception-value in its record-list.

• A Null in some Union operations. For example, the following Query92 crashes:

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION

 SELECT True FROM T_Numbers WHERE Num=0

 UNION

 SELECT False FROM T_Numbers WHERE Num=0

Notice however that the following Query, which is very similar, does not crash, so

it is not easy to formulate in what cases a Null will crash a Union operation:

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION

 SELECT True FROM T_Numbers WHERE Num=0

• A user-defined VBA function that contained a data-type mismatch (in a variable

assignment, operator or function argument).

You fix these problems by either (or both):

• Correcting a mishandled Null: click “K.5 Why and how should I carefully handle

Nulls in my Queries?”.

• Preventing type-error “#Error” in your Query: click “J.11.10 How do I fix a

Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or “#Func!” in a

field?”.

The Table “T_Numbers” used in the examples above is an auxiliary Table that just

contains integer numbers (click K.2.2).

J.10.4 How do I fix the crash “Data type mismatch.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because of one (or

more) of the following:

• A table-type “#Type!” exception-value is an argument to a domain or SQL

91 If you run the Query from the “SQL Access Editor”, a type-error “#Error” exception-value as an

argument to a domain aggregate function will produce a different error message: “Unknown.”.
92 This example and the next one are included in the Query “J_Union_Nulls” from file

“Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 521 of 725

aggregate function93.

• A user-defined VBA function that contained a data-type mismatch (in a variable

assignment, operator or function argument).

You fix these problems by preventing table-type “#Type!” in your Query: click

“J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or

“#Func!” in a field?”.

J.10.5 How do I fix the crash “Invalid Procedure Call or Argument.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because of one (or

more) of the following:

• A table-function “#Func!” exception-value is an argument to a domain or SQL

aggregate function.

• A table-function “#Func!” exception-value in some Union operations.

You fix these problems by preventing table-function “#Func!” in your Query: click

“J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or

“#Func!” in a field?”.

J.10.6 How do I fix the crash “Invalid use of Null.”?

If this is a test-and-proven Query, the most likely cause for the crash is that Table

data is inconsistent. You fix this by clicking “J.1 How do I fix an error/crash in a test-

and-proven Query?”.

If this is a non-test-and-proven Query, the crash is most likely because Null was used

as an argument to a function, when the data type of the function argument is Variant

but the function cannot handle the Null. For example, the following Query will crash:

 SELECT Cdbl(Null) FROM T_Numbers

You fix this problem by modifying your SQL code or Table data to guarantee that Null

is not used as indicated above. On many cases the cause is a mishandled Null: click

“K.5 Why and how should I carefully handle Nulls in my Queries?”.

The Table “T_Numbers” used in the example above is an auxiliary Table that just

contains integer numbers (click K.2.2).

J.10.7 How do I fix the crash “The expression cannot be used in a
calculated column.”?

This crash is most likely because a calculated-invalid “#Invalid” exception-value is an

argument to an SQL aggregate function94.

93 If you run the Query from the “SQL Access Editor”, a table-type “#Type!” exception-value as an

argument to a domain aggregate function will produce a different error message: “Data type mismatch
in criteria expression.”.
94 If you run the Query from the “SQL Access Editor”, a table-invalid “#Invalid” exception-value as an

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 522 of 725

You fix this by clicking “J.11.11 How do I fix a Query producing “#Invalid” or

“#Deleted” in a field?”.

J.10.8 How do I fix the crash “Cannot have … in aggregate argument.”?

If a Query crashes with error message:

“Cannot have Memo, OLE, or Hyperlink Object fields in aggregate argument
(Val_exp).”

where “Val_exp” stands for the expression used as argument to the aggregate function

that caused the crash.

The crash is because you used an aggregate function other than “Count()” or

“DCount()” over a Memo, OLE, or Hyperlink Object argument.

You fix this by modifying your SQL code to guarantee that aggregate functions other

than “Count()” or “DCount()” are never used over a Memo, OLE, or Hyperlink Object
argument.

J.10.9 How do I fix the crash “Could not find field…”?

If a Query crashes with error message:

“Could not find field 'Field_name'”

this crash is most likely because the “Expression” property of a Calculated field or Table

validation rule uses the Table field “Field_name” that does not exist.

You fix this by finding the corresponding Table and doing either of the following:

• Correct the corresponding Calculated field(s) and/or the Table’s record validation

rule so they refer to existing field names.

• Add a field (creating or renaming it) with the same field name as the missing one.

• Remove the corresponding Calculated field(s) and/or Table’s record validation rule.

This is risky, so you have to be very sure that this is what you want.

To find which Table produced the error notice that:

• You recently removed the field “Field_name” from it.

• It is used (directly or indirectly through auxiliary Queries) in this Query.

• It has Calculated fields and/or a record validation rule.

J.10.10 How do I fix the crash “The expression cannot be used in a
Calculated column”?

This crash is most likely because the “Expression” property of a Calculated field is

either wrong or it uses a Table field that was deleted.

You fix this by finding the Table and doing either of the following:

• Correct the corresponding Calculated field(s) so they refer to existing field names.

• Add a field (creating or renaming it) with the same field name as the missing one.

argument to a domain aggregate function will produce a different error message: “Unknown.”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 523 of 725

• Remove the corresponding Calculated field(s). This is risky, so you have to be very

sure this is what you want.

To find which Table produced the error notice that:

• You recently removed some field(s) from it.

• It is used (directly or indirectly through auxiliary Queries) in this Query.

• It has Calculated fields.

J.10.11 How do I fix the crash “Expression is too complex.”?

This crash is most likely because an expression is too complex to be executed. For

example, you have too many nested functions (e.g., “Iif()”, “Switch()” or others) and/or

you have lots of combined value operators.

Notice however, that this crash may also be from a syntax error that causes a wrong

interpretation of the expression.

If the crash cause is a syntax error, you fix it debugging your Query (click J.7) until you

find the syntax error.

If the crash cause is from the complexity of the expression, you fix it simplifying it. For

example, you may create a user-defined VBA function, or you may modify your SQL

code so the calculation the expression does is divided in two steps.

J.10.12 How do I fix the crash “Query is too complex.”?

This crash is most likely because an SQL operation is too complex to be executed. For

example, you have too many nested Union operations, or too many Join operations. In

the trials I did, when I connected more than 50 SQL operations using 49 “UNION”

operator the Query crashed.

Notice however, that this crash may also be from a syntax error that causes a wrong

interpretation of the Query.

If the crash cause is a syntax error, you fix it debugging your Query (click J.7) until you

find the syntax error.

If the crash cause is from the complexity of the Query, you fix it simplifying the Query

by moving part of its SQL operation to one (or more) auxiliary Queries and invoke these

auxiliary Queries from the main Query.

J.10.13 How do I fix the crash “Cannot open any more databases.”?

This crash is most likely because you have too many opened Queries. This is particularly

likely when you are working with linked Tables.

You fix this by closing some of the Queries (click B.4.1.7).

If you want to know more about linked Tables, you may click “K.3 How do I structure

and optimize a distributed database?”.

J.10.14 How do I fix a crash from my user-defined VBA functions?

If a Query crash opens the VBA editor window (click K.9.1), this is a crash from a

user-defined VBA function. The VBA editor will open in the specific line of code that

caused the crash. This will allow you to know what user-defined function caused the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 524 of 725

crash.

If this is a test-and-proven VBA function, the most likely cause for the crash is that

Table data is inconsistent. If you want some guidance on locating errors in your Table

data, you may click “J.1 How do I fix an error/crash in a test-and-proven Query?”.

Otherwise, if this is non-test-and-proven VBA function you will have to debug your

user-defined VBA function. VBA debugging is out of the scope of this Lightning

Guide.

J.11 How do I fix defective Query results?

When I say that results are defective it is not that they are different from what you

intended, but rather that they are actually flawed (click J.7.3). You fix this by finding

the specific problem you have in the sections below, and clicking on the corresponding

section:

• “J.11.1 How do I fix a Query showing a wrong numeric-like value?”

• “J.11.2 How do I fix a Query showing a wrong Short Text value?”

• “J.11.3 How do I fix a Query erroneously considering two different values as

equal?”

• “J.11.4 How do I fix a Query erroneously considering two equal values as

different?”

• “J.11.5 How do I fix a Query erroneously ordering records?”

• “J.11.6 How do I fix a Query requesting a non-declared parameter?”

• “J.11.7 How do I fix a Query requesting a non-existing parameter?”

• “J.11.8 How do I fix a Query requesting the same parameter twice (or more times)?”

• “J.11.9 How do I fix a Query showing “########” in a field?”

• “J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!”

or “#Func!” in a field?”

• “J.11.11 How do I fix a Query producing “#Invalid” or “#Deleted” in a field?”

• “J.11.12 How do I fix a Query showing a black square in a field?”

• “J.11.13 How do I fix a Query producing “#Name?” in a field?”

• “J.11.14 How do I fix a Query showing a blank field that should not be blank?”

• “J.11.15 How do I fix a Query producing defective values?”

• “J.11.16 How do I fix a Query’s defective “ON” expression?”

• “J.11.17 How do I fix a Transform Query producing wrong field names?”

• “J.11.18 How do I fix a Query that stalls/freezes?”

• “J.11.19 How do I fix a Query making arithmetic errors?”

• “J.11.20 How do I fix a Query making rounding errors?”

• “J.11.21 How do I fix a Query that I cannot open in “Design View”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 525 of 725

• “J.11.22 How do I fix my VBA functions comparing text strings case sensitive?”

J.11.1 How do I fix a Query showing a wrong numeric-like value?

If you see a numeric-like value that is different from the actual value that the Query

is producing, this is most likely because the formatting configured for this field and/or

the field width and height is/are not the one you want. This is particularly frequent with

Date/Time fields, where you can configure a format that only shows the date-part or

the time-part of the stored value, and therefore, the actual stored value is not correctly

shown.

You fix this by changing the field formatting and/or the field width and height to more

suitable ones.

If you want to know more about how to change the field formatting, you may click:

• “H.6 How do I configure the formatting of column values in a Table/Query/Form?”

If you want to know more about how to change the field width and height, you may

click:

• “H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form?”

• “H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form?”

J.11.2 How do I fix a Query showing a wrong Short Text value?

If you see a Short Text value that is different from the actual value that the Query is

producing, this is most likely because the string contains invisible characters or because

the field width and height is not large enough.

You fix this by either fixing the Query to suppress the invisible characters (if they are

wrong) or by making the field width and/or height larger.

If you want to know how to suppress the invisible characters, you may click:

• “L.7.5 How do I fix text strings and invisible characters?”.

If you want to know how to make the field width and/or height larger, you may click:

• “H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form?”

• “H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form?”

J.11.3 How do I fix a Query erroneously considering two different

values as equal?

This is most likely because one or more of the following causes:

• Short Text or String values: case insensitiveness

MS-Access comparison operators consider an upper-case letter and its

corresponding lower-case letter as the same one. For example, the text strings

“Hello”, “HELLO” and “hello” are considered to be the same, even though they look

different to you.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 526 of 725

If you want to know more about this, you may click L.7.

• Same data/field type: different formatting

If you have formatted two values (e.g., from two different fields) to be displayed in

a different way, the same value may look different. You may then consider they are

different, while MS-Access is correctly considering them as equal. For example, a

True Boolean value may be displayed as True, Yes or -1. This may lead you to

believe that they are different things, but it is the same value. A given Date/Time

value (e.g., 3-Jan-2020 5:25:00) may be displayed in different ways because the

corresponding fields have different formatting (e.g., 3-Jan-2020 5:25:00, 5:25:00 or

3-Jan-2020), but it is actually the same value. The same happens with a given

numeric value, that can be displayed differently (e.g., with exponential notation)

even though it is the same value.

If you want to know more about formatting field values, you may click “H.6 How

do I configure the formatting of column values in a Table/Query/Form?”.

Formatting problems not only apply to field values, and also apply to constants.

Notice that a given value may be written as a constant in many different ways. If

you want to know more about writing constants, you may click “G.4 How do I write

a constant?”.

• Different data/field types: type equivalences

You may think that values from different data/field types should be different, but

this is not so. For example, you may think that True is clearly different from -1, but

in fact they are the same. Also, you may think that a Date/Time or Date value is

clearly different from a numeric data/field type value, but they may actually be the

same.

If you want to know more about this, you may click “G.2.3 What is the result of

combining different data/field types in expressions?”.

Type equivalence problems not only apply to field values, and also apply to

constants. Notice that a given value may be written as a constant in many different

ways. If you want to know more about writing constants, you may click “G.4 How

do I write a constant?”.

Notice that in principle there is nothing to fix, it is just that you are not interpreting

correctly the way MS-Access displays and stores values. However, maybe you actually

need to fix the database configuration or Query code, so you get the desired results.

J.11.4 How do I fix a Query erroneously considering two equal values

as different?

This is most likely because of one or more of the following causes:

• Short Text or String values: field width/height and invisible characters

Text strings values may be shown differently to what is actually stored in the field.

The reason is that the field width/height may not allow to show the full text string

stored in the field and/or that the text string contains invisible characters. This may

lead you to believe that two fields contain the same text string, when they actually

contain two different text strings.

If you want to know more about this, you may click “L.7.1 Why text strings can be

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 527 of 725

different from what is shown?”.

• Numeric values: field formatting

Numeric values may be shown differently to what is actually stored in the field.

The reason is that the field formatting does not allow to show the full value, for

example, not all decimal figures are shown. This may lead you to believe that two

fields contain the same numeric value, when they actually contain two different

ones.

If you want to know more about this, you may click “J.11.1 How do I fix a Query

showing a wrong numeric-like value?”.

• Date/Time or Date values: field formatting

Date/Time or Date values may be shown differently to what is actually stored in

the field. The reason is that the field formatting does not allow to show the full value,

for example, a Date/Time field is formatted to show only the date-part or only the

time-part. This may lead you to believe that two fields contain the same Date/Time

value, when they actually contain two different ones.

If you want to know more about this, you may click “J.11.1 How do I fix a Query

showing a wrong numeric-like value?”.

• Short Text or String values vs. other values

A Short Text or String value may be displayed in exactly the same way as a value

form another data/field type, but in fact they are different values with totally

different internal representation. For example, the Short Text or String value “8-
January-2020” is shown exactly the same as the Date/Time or Date value “8-
January-2020”. However, they are different values, and their internal representation

is completely different (click G.2). The same applies to the Short Text or String

value “834” and the Number-Integer or Integer value “834”.

If you want to know more about this, you may click “L.7 How do I fix errors with

Short Text or String fields?”.

Notice that in principle there is nothing to fix, it is just that you are not interpreting

correctly the way MS-Access displays and stores values. However, maybe you actually

need to fix the database configuration or Query code, so you get the desired results.

J.11.5 How do I fix a Query erroneously ordering records?

This is most likely because the values you see in the Query fields are different from

what it is actually stored in them. You may check the causes for this in the previous two

sections:

• “J.11.3 How do I fix a Query erroneously considering two different values as

equal?”

• “J.11.4 How do I fix a Query erroneously considering two equal values as

different?”

J.11.6 How do I fix a Query requesting a non-declared parameter?

This case is when the Query requests a parameter that you did not declare using the

“PARAMETERS” clause (click F.12), but that is a valid, although undefined, variable

name (in the Query itself or within an auxiliary Query). This is different from a non-

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 528 of 725

existing parameter (click J.11.7).

You can have an undefined variable because you mistyped it, or because you thought

it is a field of your input record-list, and it is not, or because you were doing cut/paste

of SQL code and you brought in an undefined variable, or for many other reasons.

There is nothing specifically wrong with this, because MS-Access considers all

undefined variables as parameters and will prompt you to enter their value when running

the SQL operation. However, if this is not what you intended, it should be fixed.

You fix this by searching your SQL code for the exact name of each unintended

requested parameter, locating it in the code, finding out why is it not defined, and

correcting it.

J.11.7 How do I fix a Query requesting a non-existing parameter?

This case is when the Query requests a parameter that:

• You did not declare using the “PARAMETERS” clause (click F.12), and

• it is not a valid variable name within the Query.

For example, if running the SQL operation, it requests a parameter “requested_name”,

and you search for “requested_name” in the SQL operation and it does not exist. Also,

the SQL operation either does not contain auxiliary Queries or the ones it uses also do

not contain the variable “requested_name”. This is different from a non-declared

parameter (click J.11.6).

This is most likely because you are using a foreign-language version of MS-Access and

it translates some field names in the Query SQL code!! Furthermore, if you are using

the “Access SQL Editor”, the SQL code in the “Access SQL Editor” will remain

unchanged, and if you check the Query code you will still see the English field names

there. This may be an extremely puzzling problem if you are not aware of this.

This problem happens in foreign-language versions of MS-Access when you are using

a variable (e.g., a Table field) name that has an English meaning like “Quarter”. If you

have a Query that uses field name “Quarter”, and you modify the Query design in

“Design View” (for example selecting ascending order), MS-Access will replace in the

SQL code the field name “Quarter” by the MS-Access translated name (in Spanish, it

is replaced by “Trimestre”). When you then run the Query, it will request parameter

“Trimestre”, because it is a field name that is used in the Query (because MS-Access

changed it) but it does not exist in the Table.

I did a few trials and so far I have seen that this affects English variable names “Year”,

“Quarter”, “Month”, “Day” and “Trim”, that are all translated to the foreign-language.

This may be an MS-Access bug.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

J.11.8 How do I fix a Query requesting the same parameter twice (or

more times)?

This happens because you saved the Query after having manually selected record

sorting on the Query “Datasheet View” or because you explicitly configured record

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 529 of 725

ordering in “Datasheet View”. This should not happen: this may be an MS-Access bug.

You fix this by clearing the “Order_by” property of the “Query properties”, following

the steps:

1. Open the Query in “Design View” (click B.4.1.3).

2. Either click on the Property Sheet “ ” icon from the “Query Tools / Design”

contextual Ribbon, or rather, right-click anywhere on the “Query pane”, and then

click on “Properties” from the pop-up menu. This will show the “Property
Sheet” on the right side of the “Query pane”.

3. Click on the gray background of the top sub-pane, or rather, click on the white

background of the bottom sub-pane, or else, click anywhere inside a column that

does not correspond to any output field. This will show the “Query properties”

in the “Property Sheet”.

4. In the “Property Sheet”, locate the row named “Order_by” and clear the cell to

its right.

To prevent that the same parameter is requested twice, never save the Query layout

after having manually configured record sorting in Query “Datasheet View” and never

explicitly configure record ordering in “Datasheet View”. If you want the Query to have

some specific record ordering, do it by modifying the “ORDER BY” clause of its SQL

Query code.

J.11.9 How do I fix a Query showing “########” in a field?

This is most likely because the formatted representation of that field’s value does not

fit in that field’s cell size. This is, the formatted representation of the value is larger than

the cell’s width and height, and therefore, the formatted value cannot be displayed in

full in the cell.

When this happens, MS-Access does not show the value and will instead show the field

filled with “#” characters (e.g., “#########”). Notice that this applies to all numeric-

like data/field types, but not to the Short Text or String values. For the case of the Short
Text or String data/field types, if the field’s width and height is not enough to show the

complete value of the field, MS-Access will just show the leftmost part of the text string

that fits in the field’s width and height.

You fix this by making the field width/height larger (click H.1.1 or H.2.1) and/or

modifying the field formatting (click H.6), so all the values do fit in the field size.

J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”,

“#Type!” or “#Func!” in a field?

If you see one of the following in a Query result field:

#Num!

#Div/0!

#Type!

#Error!

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 530 of 725

#Func!

this is most likely because either (or both):

• The expression that calculates the Query field’s value includes a Table field that

contains the exception-value “#Num!”, “#Div/0!”, “Type!” or “#Func!”. Remind

that the type-error “#Error” exception-value cannot appear in a Table field, and

rather the table-type “#Type!” exception-value is shown in case a type-error arises.

• The expression, itself, that calculates the Query field’s value is producing the

exception-value “#Num!”, “#Div/0!” or “#Error”.

In the first case, you fix this by correcting the corresponding Table error, clicking

“L.5.2 How do I fix a Table/Form showing “#Num!”, “#Div/0!”, “#Type!” or “#Func!”

in a field?”

In the second case, the cause of the error depends on the specific exception-value shown:

• If “#Num!” is shown, the expression resulted in the exception-value number-

overflow. This happens when an operation result is out of range (e.g.,

36000+45000 in an Integer), or when dividing zero by zero (e.g., “0/0” or

“0 Mod 0”).

• If “#Div/0!” is shown, the expression resulted in the exception-value divide-by-

zero. This happens when dividing a non-zero number by 0 (e.g., “8\0”).

• If “#Error” is shown, the expression resulted in the exception-value type-error. This

happens when the data types of operands are not correct (e.g., multiply a number

and a text string: “'text'*5”).

You fix this by correcting the expression of the field and/or by correcting the SQL code,

so no exception-value is produced. On many cases the cause is a mishandled Null: click

“K.5 Why and how should I carefully handle Nulls in my Queries?”.

Notice that many (but not all) the expressions that result in an exception-value (e.g.,

“#Error”, “#Div/0!”, “#Num!”, …) will not crash the Query, and the Query will work

normally just showing the corresponding exception-value in some field(s). This implies

that these errors can be passed on to other Queries. Therefore, consider that the cause of

the error may not be in the Query where you first see it, and rather it can come from an

auxiliary Query invoked from this one.

If you want to know more about exception-values, you may click “J.15 What exception-

value bugs can I get?”.

Non-English MS-Access versions can show exception-values with a different

(translated) text. For example, the Spanish version shows “#¡Núm!”, “#¡Div/0!” and

“#¡Función!”.

J.11.11 How do I fix a Query producing “#Invalid” or “#Deleted” in a

field?

If you see one of the following in a Query result field:

#Invalid

#Deleted

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 531 of 725

this is most likely because the expression that calculates the Query field’s value includes

a Table field that contains the exception-value “#Invalid” or “#Deleted”.

You fix this by correcting the corresponding Table error, checking:

• “L.5.3 How do I fix a Table/Form showing “#Invalid” in a field?”

• “L.5.4 How do I fix a Table/Form showing “#Deleted” in a field?”

For the specific case of “#Deleted”, this may be fixed by either clicking on the Refresh

All “ ” icon from the “Home” Ribbon, or by closing the Query and running it again.

Non-English MS-Access versions can show a different (translated) text. For example,

the Spanish version shows “#¡Tipo!”, “#Inválido”, and “#Nombre?”.

J.11.12 How do I fix a Query showing a black square in a field?

If you see a black square in a checkbox field, this is exactly the same problem, and has

the same fix, as described for the “#Deleted” case in the previous section J.11.11. The

only difference is that you see a black square for the specific case of a field with Yes/No

field type that is configured to be shown as a checkbox. In this type of fields, MS-

Access shows a black square instead of the label “#Deleted”.

J.11.13 How do I fix a Query producing “#Name?” in a field?

This is most likely because an SQL operation is producing the name-error “#Name?”

exception-value. One example of an SQL operation95 producing it is:

 SELECT Null AS Name FROM T_Numbers

 UNION ALL

 SELECT True AS Name FROM T_Numbers

 UNION ALL

 SELECT False AS Name FROM T_Numbers

You fix this by correcting the SQL operation that produced this exception-value.

Notice that many (but not all) expressions that result in an exception-value (e.g.,

“#Error”, “#Div/0!”, “#Num!”, …) will not crash the Query, and the Query will work

normally just showing the corresponding exception-value in some field(s). This implies

that these errors can be passed on to other Queries. Therefore, consider that the cause of

the error may not be in the Query where you first see it, and rather it can come from an

auxiliary Query invoked from this one.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

Non-English MS-Access versions can show a different (translated) text. For example,

the Spanish version shows “#Nombre?” instead of “#Name?”.

J.11.14 How do I fix a Query showing a blank field that should not be

blank?

This is most likely because the Table field contains a wrong Null or because the Query

field’s expression is producing a wrong Null.

If the problem is a wrong Null in a Table field, you fix this by clicking “L.5.12 How do

95 This example is included in Query “J_Union_Nulls” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 532 of 725

I fix an apparent Null in a Table/Form Short Text field configured as “Required=Yes”?”.

If the problem is the Query producing the wrong Null, you fix this by correcting your

SQL Query code. If you want to know more about this, you may click “K.5 Why and

how should I carefully handle Nulls in my Queries?”.

J.11.15 How do I fix a Query producing defective values?

A Query may seem to produce defective values because of one or more of the following

causes:

• Date/time or numeric values: value formatting

The formatted datetime or numeric value displayed is different from the actually

stored value (e.g., you see 5 but the stored value is 5.67). This may lead you to

believe that the Query is producing a wrong result.

This is not an error as such, so maybe there is nothing to fix. If you want to fix it,

you only need to change the formatting of the field. If you want to know more about

this, you may click “H.6 How do I configure the formatting of column values in a

Table/Query/Form?”.

• String values: insufficient cell size

If the cell size showing the field’s value is not large enough, then only part of the

text string that fits in the cell will be shown (e.g., you see “John”, but the stored

value is “John Lennon”). This may lead to you to believe that the Query is producing

a wrong result.

This is not an error as such, so maybe there is nothing to fix. If you want to fix it,

you only need to increase the cell width (click H.1.1) and/or height (click H.2.1), so

the full text string is seen.

• String values: invisible characters

If the string contains invisible characters (e.g., line-feed, horizontal tab), what you

see may be different from the actually stored string (e.g., you see “John” but the

stored value is “John<line-feed>Lennon”. This may lead to you to believe that the

Query is producing a wrong result.

This is not an error as such, so maybe there is nothing to fix. If you want to fix this,

you only need to modify the values and/or expressions that produce this result. If

you want to know more about this, you may click “L.7 How do I fix errors with

Short Text or String fields?”.

• Using the same name for an input field as the one of an output field

If you are using the same name for an input field as the one of an output field, then

you must qualify the input field name prefixing it with the name of the inner SQL

operation. If you forget to do it, then you are referring to the output field, and this

can create confusion. In the following example, the SQL code of the inner Select

named “Inner_select” contains an output field named “Age”. The outer Select

wants to present the input field “Age” to the square and the input field “Age” plus

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 533 of 725

3. The SQL code96 would be:

 SELECT (Inner_select.Age^2) AS Age, Age+3 AS Age_plus_3

 FROM

 (

 SELECT Num AS Age FROM T_Numbers

) AS Inner_select

However, the value of “Age_plus_3” is not the value of the input field name

“Age” plus 3. Rather, it is the value of the output field name “Age” (i.e., the input

field name “Age” to the square) plus 3.

You fix this by qualifying the input field name (prefixing to it the name assigned

to the inner SQL operation), but this requires qualifying all such input names. My

advice is that you use as output field name the input field name with the “_” suffix.

This can be alternated as a series of Queries (chains of unions,) to distinguish the

input field names and the output field names in every Query. This is clearer, and

you avoid having to qualify the input field name. The resulting code would be:

 SELECT Age^2 AS Age_, Age+3 AS Age_plus_3

 FROM

 (

 SELECT Num AS Age FROM T_Numbers

) AS Inner_select

The Table “T_Numbers” used in the example above is an auxiliary Table with only

one field (named “Num”) that just contains integer numbers (click K.2.2).

J.11.16 How do I fix a Query’s defective “ON” expression?

If the “ON” Boolean expression contains a user-defined function, the cause may be that

the function is not dealing properly with Nulls and/or exception-values.

You fix this by either:

• Correcting the user-defined function so it handles Nulls properly.

• Replacing the function with an equivalent expression.

• Doing some workaround.

If the “ON” Boolean expression does not contain a user-defined function the problem

may come from case insensitiveness, Nulls or exception values.

If you want to know more about Nulls, you may click “J.14 What Null-related bugs can

I get?” and “K.5.4 How do I handle Nulls in my Queries?”.

If you want to know more about exception-values, you may click “J.15 What exception-

value bugs can I get?”.

J.11.17 How do I fix a Transform Query producing wrong field names?

In foreign-language versions of MS-Access the built-in conversion from numbers to

strings used by the “PIVOT” clause may be different to what you expect because it will

use the English decimal separation convention. This is, it will convert the decimal

separation character to “_”, instead of to the character used in your country (e.g., a

96 This example and the next one are included in the Query “J_Field_names” from file

“Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 534 of 725

comma “,”) because this is what it does in the English version (it considers that the

decimal separation character is a period “.”).

You fix this by enclosing the numeric “PIVOT” expression in the “CStr()” type

conversion function. Notice that the “CStr()” function correctly changes the decimal

separation character to whatever character is used in the foreign-language.

Let me show you an example for the Spanish version of MS-Access. If the result of the

“PIVOT” expression is the number “3.5” (which in the Spanish version would be

“3,5”), the resulting field name would be “3_5”. However, if you enclose the “PIVOT”

expression in the “CStr()” function, the resulting field name would be “3,5”.

If you are using a foreign-language version of MS-Access, you may click “L.8.12 How

do I fix foreign-language issues of MS-Access?”.

J.11.18 How do I fix a Query that stalls/freezes?

You fix this pressing “Ctrl-Pause/Interr” (i.e., press the “Ctrl” key, and without

releasing it, press the “Pause/Interr” key97).

This should interrupt the execution of the Query, and will show the error message:

“Run-time error 3059:
 Operation cancelled by user.”

in a dialogue-box with the buttons “Continue”, “End”, “Debug” and “Help”. You

typically want to click “End” and continue working. The button “Continue” is shaded

and cannot be clicked. The button “Help” usually offers very poor help. The button

“Debug” will open the VBA editor: maybe you want to debug now, buy most frequently

you will want to do some checks on the data before jumping to debug your VBA code.

Notice that the case explained in this section, a Query that stalls/freezes, is very

different from a Query crash. In a Query crash the Query does not run and you get an

error message. If you want to know more about how to fix a Query crash, you may click

“J.9 How do I fix a crash from a syntax error?” or “J.10 How do I fix a crash from a

run-time error?”.

J.11.19 How do I fix a Query making arithmetic errors?

Although you may not believe me at first, computers systematically make arithmetic

errors. This happens because computers use base 2 arithmetic, and computers have

limitations in the number of bits the use to represent a value (which limits the precision

and ranges of values they can store and process). Therefore, computers systematically

make decimal/binary conversion rounding errors. If you want to verify this, you may

click “G.9.3 What are decimal/binary conversion rounding errors?”.

97 Notice that some laptop keyboards do not have the “Pause/Interr” key. You should then check in the

laptop information what is equivalent to simultaneously pressing the “Ctrl” and “Pause/Interr” keys: in

some laptops, it is simultaneously pressing the “Ctrl” and “Fn” and “b” keys.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 535 of 725

How do I fix arithmetic errors in comparison operators?

Binary/decimal conversion rounding errors can lead to logical errors in your comparison

operators. For example, the following Query98:

 SELECT Iif(5/10 - 4/10 - 1/10 = 0, "CORRECT", "WRONG!") AS Result

 FROM T_Numbers WHERE Num=1

returns the result “WRONG!” because of decimal/binary rounding errors.

You fix this by introducing rounding expressions. For example, the Query above may

be fixed using either of the two following rounding expressions:

 SELECT Iif(abs(5/10 - 4/10 - 1/10) < 10e-15, "CORRECT", "WRONG!") AS Result

 FROM T_Numbers WHERE Num=1

or

 SELECT Iif(Round(5/10 - 4/10 - 1/10,15) = 0, "CORRECT", "WRONG!") AS Result

 FROM T_Numbers WHERE Num=1

The first one introduces a corrective rounding by taking the absolute value and

comparing with 10^-15. The second one introduces an explicit rounding function to 15

decimal digits.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

How do I fix arithmetic errors in stored values?

Binary/decimal conversion rounding errors can lead to logical errors in stored values.

For example, if you introduce the value “2147483583” it will be stored as

“2147483520” in a Number-Integer field.

You fix this by using a Number-Double field type-size instead of Number-Integer. In

case you were already using a Number-Double field type-size, then the fix would

require using the Decimal field/type size, using Currency field type or adjusting your

database design. This is out of the scope of this Lightning Guide.

J.11.20 How do I fix a Query making rounding errors?

When you want an integer result from a non-integer calculation, you have to carefully

use a rounding function.

For example, if you want the number of trucks you need to transport the goods from a

given order, the result must be integer, but the calculation will yield a non-integer

number. If each truck has a capacity of 4,000 gallons, milk boxes are 23 gallons and

water boxes are 45 gallons (and you can always fit them perfectly), the formula would

be:

 Num_trucks = Round(4000 / (23*Milk_boxes + 45*Water_boxes))

However, it is not obvious what “Round()” should do. In principle, you could think

“Round()” should round upwards, because otherwise you will not be able to transport

the full order. However, imagine that you have a policy that you only use full trucks,

and the remaining load you serve with smaller vans. Then, “Round()” should round

98 The following three examples are included in Query “J_Arithmetic_Errors” from file

“Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 536 of 725

downwards. Also, it could very well be that your policy is that you only serve with

trucks as long as they are at least half-full, and the remaining load you serve with smaller

vans. In this case, “Round()” should round to the nearest integer.

The problem is also more general, because you may want to round to a certain number

of decimals, and not only to integer values. For example, if you are calculating the

monthly salary, you may want to round to two decimals (i.e., round to cents) and not to

an integer number. The problem becomes even more general because you may want to

round positive and negative numbers.

I suggest you check the excellent explanation about different rounding types from:

en.wikipedia.org/wiki/Rounding

For your convenience, I am including in this Lightning Guide the following two tables

(see the two next pages). The first table shows a summary of frequent rounding types.

The second table shows a summary of main differences between them.

You should also be aware what is the type of rounding implemented by the different

existing built-in functions of MS-Access:

• Round(X, +d): Round-half to even

• Int(X): Round down

• Fix(X): Round towards-zero

Since you may frequently use Excel in combination with MS-Access, it is very

convenient that you know the type of rounding implemented by the different existing

built-in functions of Excel:

• Round(X, d): Round-half away from zero

As you may see, the “Round()” function in MS-Access and in Excel implement two

different types of rounding, so be careful with this.

In the lines above “X” represents the number to be rounded and “d” the number of

decimal digits to which the number “X” should be rounded to. When “d” can only be a

positive number, it is indicated as “+d”.

https://en.wikipedia.org/wiki/Rounding

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 537 of 725

Examples of numbers to round, and the corresponding result
 (rounding to zero decimals)

Decimal digit rounded Amount Rounded
Direction of

rounding
0 0.1 -0.1 0.5 -0.5 0.8 -0.8 3.1 -3.1 3.5 -3.5 3.8 -3.8 4 -4 4.1 -4.1 4.5 -4.5 4.8 -4.8

You may round to
whatever number of
decimal digits that you
want. It is possible to
round to thousands,
hundreds, tens, integers,
decimal, centesimal, ...
Some functions have a
second argument
indicating the decimal
digit to which you want
to round: zero means
round to units, 1 to 1/10,
2, to 1/100 and so on.
Some functions accept
negative second
argument: in this case, -1
means round to tens, -2
round to hundreds, -3
round to thousands, and
so on.

ROUND:
Also called "directed
rounding". Value is
rounded to the NEAREST
integer decimal digit IN
ONE DIRECTION. The
direction towards the
nearest integer decimal
digit is taken is indicated
by the rounding type. At
most it changes a whole
decimal digit.

towards zero (or
truncate, or away
from infinity)

0 0 0 0 0 0 0 3 -3 3 -3 3 -3 4 -4 4 -4 4 -4 4 -4

away from zero (or
towards infinity)

0 1 -1 1 -1 1 -1 4 -4 4 -4 4 -4 4 -4 5 -5 5 -5 5 -5

up (or ceiling, or
towards plus infinity)

0 1 0 1 0 1 0 4 -3 4 -3 4 -3 4 -4 5 -4 5 -4 5 -4

down (or floor, or
towards minus
infinity)

0 0 -1 0 -1 0 -1 3 -4 3 -4 3 -4 4 -4 4 -5 4 -5 4 -5

Amount Rounded
Tie breaking rule for

.5 values
0 0.1 -0.1 0.5 -0.5 0.8 -0.8 3.1 -3.1 3.5 -3.5 3.8 -3.8 4 -4 4.1 -4.1 4.5 -4.5 4.8 -4.8

ROUND HALF:
Value is rounded to
NEAREST integer decimal
digit. If value is exactly .5
decimal digit, then, you
apply the tie-breaking rule
indicated by the rounding
type. At most it changes
half a decimal digit.

towards zero 0 0 0 0 0 1 -1 3 -3 3 -3 4 -4 4 -4 4 -4 4 -4 5 -5

away from zero 0 0 0 1 -1 1 -1 3 -3 4 -4 4 -4 4 -4 4 -4 5 -5 5 -5

up 0 0 0 1 0 1 -1 3 -3 4 -3 4 -4 4 -4 4 -4 5 -4 5 -5

down 0 0 0 0 -1 1 -1 3 -3 3 -4 4 -4 4 -4 4 -4 4 -5 5 -5

to even (or banker's
rounding)

0 0 0 0 0 1 -1 3 -3 4 -4 4 -4 4 -4 4 -4 4 -4 5 -5

to odd 0 0 0 1 -1 1 -1 3 -3 3 -3 4 -4 4 -4 4 -4 5 -5 5 -5

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 538 of 725

Comparison of
rounding
techniques

Round up/down
They accumulate rounding errors if you add positive numbers only, negative numbers only and also if you add both positive and negative
numbers

Round to/away from
zero

They cancel rounding errors if you add random positive and negative numbers, but, accumulate rounding errors if you add only positive
numbers or only negative numbers

Round half up/down

All round-half functions cancel
rounding errors on numbers with non-
half decimal digits. For numbers with
half decimal digits, see explanation to
the right.

They accumulate rounding errors if you add positive numbers only, negative numbers only and
also if you add both positive and negative numbers

Round half to/away
from zero

They cancel rounding errors if you add random positive and negative numbers, but, accumulate
rounding errors if you add only positive numbers or only negative numbers

Round half to even/odd
They cancel rounding errors if you add random positive numbers, or random negative numbers, or
random positive and negative numbers.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 539 of 726

J.11.21 How do I fix a Query that I cannot open in “Design View”?

This is most likely because it is a Union Query, and Union Queries cannot be opened in

“Design View”.

You fix this by enclosing the outermost Union operation of the Query in a Select

operation. Remind to qualify all the fields from the enclosing Select operation with the

identifier of the enclosed Union operation. If you want to know more, you may click

“K.4.7 Why should I enclose the outermost Union operation in a Select operation?”.

J.11.22 How do I fix my VBA functions comparing text strings case

sensitive?

SQL comparison operators are all case insensitive (i.e., they consider each upper-case

letter and its corresponding lower-case letter(s) as being the same. However, VBA

functions and operators can be configured to handle string comparison in three different

ways, depending on the setting of “Option Compare”, as follows:

• Option Compare Database

This option can only be used with MS Access VBA. When set, uses the same setting

as MS-Access to compare strings in VBA.

• Option Compare Binary

This is the default VBA setting. When set, compares text at binary level, and

therefore, it does it in a case sensitive way. Therefore, “HELLO” is considered

different than “hello”.

• Option Compare Text

When set, compares text in case insensitive way, so “HELLO” is considered the same

as “hello”.

If VBA is comparing strings in binary or case sensitive way, it is due to the setting of

“Option Compare”, as indicated above. I advise you to set “Option Compare

Database” (click D.10.4.4), in order to have the same text string handling both in your

SQL code and in your VBA code. In this way, you avoid errors arising from incoherence

between SQL and VBA.

J.12 What do I do when I just cannot fix a Query?

Sometimes you debug and debug, everything seems correct, and yet the Query fails.

It is possible that MS-Access has some internal restriction (e.g., number of nested

Queries) that you are not aware of. It can also be that MS-Access has a bug. Regardless

of the cause, do not get stuck and frustrated insisting on that MS-Access accepts your

code.

The best approach is to try a workaround by changing the way your Query is written.

Notice there are many ways to write a Query that yield the same result. I give you here

some ideas for workarounds:

• Change the name of the Query

Believe it or not, I had cases where a Query crashed, and changing its name made it

work.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 540 of 726

• Copy the code to a new Query

Create a new Query and copy/paste all the Query code from the Query that does not

work into the new Query. This may sound stupid, but sometimes a Query gets

internally corrupted in MS-Access and doing this fixes the problem.

• Split a Union Query in two

If the Query has an outermost Union operation, split it two different Queries, each of

them having part of the outermost Union operation, and then create a third Query that

is a Union of these two Queries.

• Create auxiliary Query(es)

Take one (or more) SQL operation(s) from your Query, copy its/their code into a new

auxiliary Query, and replace the SQL operation by an invocation of the auxiliary

Query. This is particularly effective when you have a very large Query making use of

none, or few, auxiliary Queries. Notice that this is a generalization of the previous

suggestion of splitting a Union Query in two auxiliary Queries plus a main Query

with a Union of both of them.

• Remove auxiliary Query(es)

Replace the invocation of one (or more) auxiliary Query(es) by the SQL operation of

the auxiliary Query. This is the reciprocal case from the previous bullet point.

• Modify your expressions

Try to simplify your expressions using other operators (e.g., use a “Switch()” instead

of nested “Iif()”, …). Replace a very complex expression by a user-defined function.

Introduce more SQL code instead of a very complex expression, by writing the Query

in a different way.

• Restructure your SQL code

Change the logic in which the Query is written. You can split the functionality in a

series of smaller SQL operations, each computing pat of the desired results,

combining them with a Union operator. You can modify the way Join operations are

nested. You can simplify the “ON” expression in Joins using a more complex

“WHERE” expression.

Doing a workaround is extremely effective way of fixing Queries if you get completely

stuck while debugging them.

J.13 Why should I always compare the results of an existing

Query?

If you are debugging a test-and-proven existing Query because you detected a bug in it,

or because you are modifying its functionality, when you are done debugging, you should

always compare the results of the new Query code with the results of the old Query code,

over the actual database data.

To do this, always keep the old Query until you compare the results. You can efficiently

compare the results of both Queries (the one with the old Query code and the one with

the new Query code) using a record-list comparator tool (you may see J.13.1 slightly

further below).

Doing this will allow you to check both that the new behavior you expected in your new

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 541 of 726

Query code is correct (e.g., you have a new field), but most important, that the old

behavior that should still be there is also correct (e.g., that the values produced in all the

other fields are the same as previously). In other words, it is essential that you always

check that your SQL code modifications to correct the bug or to improve the functionality

have not damaged the pre-existing correct functionality. Notice that a test and proven

Query is a treasure that you should be very careful to preserve.

As I indicated above, this comparison should be done over your real database data, not

only with some test cases. The reason is that the real database data usually contains many

cases that you had not expected, and you do not have in your test cases. It is therefore

much sounder to check the results of your new Query code against your old Query code

over the real database data than doing it over some test data that you have.

J.13.1 What is a record-list comparator tool?

It is a tool that compares two record-lists and marks all the differences between them.

It should also allow you to easily modify the two record-lists to focus the comparison on

some records. The tool should therefore be capable of ordering the records/fields as you

need, remove records/fields as you need, add records/fields as you need and edit

records/fields as you need. Using such a tool, you can compare two record-lists and

progressively modify them to focus at each point on the parts that are relevant for you.

For example, imagine that you did a Query modification to process invoices with

VAT=20% in a different way. You then want to compare the results of the Query before

and after the modification. Using the record-list comparator tool you first check that the

results for all the other invoices (e.g., the ones that have VAT other than 20%) are exactly

the same as previously. This is essential to check that you have not damaged the previous

functionality. After having done this, you can remove from both record-lists all such

invoices and focus on the results for the ones with VAT=20%. Here you will need to

check that the results that you want to be the same are actually the same, and the ones that

should be different are actually different and are different in the exact way you wanted.

All of this is done with the support of the record-list comparator tool.

One way of accessing a simple but useful record-list comparator tool is building it using

Excel. Excel has cell-reference formulas that allows you to build a file to compare the

cells in two sheets based on the cell position (i.e., A1 compared with A1, and so on). You

may think that you achieve this using absolute cell references (i.e., A1), but this is

wrong. The reason is that you need that A1 in one sheet is compared with A1 in the other

sheet even if you add/remove rows/columns and even if you reorder rows/columns. You

can achieve this using a formula with cell-reference functions. Also, you need to compare

string fields as strings (i.e., requesting equal match), but it is extremely convenient to

compare numerical results allowing for some (configurable) error margin. The reason for

needing some error margin is that when you modify a Query, the numerical results may

not be exactly the same because of rounding errors in the calculations. In most cases you

want to ignore such rounding errors and consider that the result 25.00000001 is the same

as 24.999999999.

I have developed such a record-list comparator Excel file that you can download from the

link:

 https://lightningguide.net/Record_List_Comparator.xlsx

https://lightningguide.net/Record_List_Comparator.xlsx

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 542 of 726

J.14 What Null-related bugs can I get?

You fix this by finding the specific bug in the sections below, and clicking on it:

• “J.14.1 What effect does Null cause in Query results?”

• “J.14.2 What effects does Null cause in Arithmetic, Comparison and Pattern value

operators?”

• “J.14.3 What effects does Null cause in Logical value operators?”

• “J.14.4 What effects does Null cause in Text string value operators?”

• “J.14.5 What effects does Null cause in the “IN” and “NOT IN” Miscellaneous

value operators?”

• “J.14.6 What effects does Null cause in SQL operators that remove duplicate

records?”

• “J.14.7 What effect does Null cause in Union SQL operators?”

• “J.14.8 What effects does Null cause in aggregate functions?”

• “J.14.9 What effects does Null cause as an argument of a VBA function?”

J.14.1 What effect does Null cause in Query results?

When a Query’s outermost “SELECT” expression returns Null, the corresponding

Query record field will be Null. Each Null will be shown as an empty field in the

corresponding records of the output record-list of the Query, same as it is shown in Table

fields with Null.

J.14.2 What effects does Null cause in Arithmetic, Comparison and

Pattern value operators?

All Arithmetic, Comparison and Pattern value operators return Null when one (or both)

operands is Null. Notice that this implies that “Null = Null” returns Null and does not

return True: this is just one case, but it is an important one that you should remember

well.

J.14.3 What effects does Null cause in Logical value operators?

All Logical operators return Null when one (or both) operands is Null, except in the

following cases:

• “False AND Null” and “Null AND False” return False.

• “True OR Null” and “Null OR True” return True.

• “Null Imp True” returns True.

• “False Imp Null” returns True.

Notice that the results in the cases above is what you would expect if Null is replaced by

unknown or by a variable X.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 543 of 726

J.14.4 What effects does Null cause in Text string value operators?

The “+” Text string operator returns Null when one (or both) operands is Null.

The “&” Text string operator returns Null when both operands are Null.

The “&” Text string operator returns the other operand when one operand is Null and

the other operand is a valid text string.

J.14.5 What effects does Null cause in the “IN” and “NOT IN”

Miscellaneous value operators?

If the searched list contains one or more Null they will be ignored and the operator will

work normally. If the searched value is Null, both operators will return Null.

J.14.6 What effects does Null cause in SQL operators that remove

duplicate records?

The “UNION” operator and Select operations using “DISTINCT” or “DISTINCTROW”

consider two Null as the same value for the purpose of producing distinct records. If

you have two or more records having the same values, or Null, in all their fields

(comparing field by field) all of the said records are considered duplicate records, and

only one of them is produced by the SQL operations above.

J.14.7 What effect does Null cause in Union SQL operators?

Null in Union operators can have different effects, like working well, producing an

exception-value or crashing the Query. The best practice is avoiding Null in Union

operations. Let me show you the following examples of the effect of Null in Union

operations.

The following Query99 produces the name-error “#Name?” exception-value:

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION ALL

 SELECT True FROM T_Numbers WHERE Num=0

 UNION ALL

 SELECT False FROM T_Numbers WHERE Num=0

The following Query (which is very similar) works well.

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION ALL

 SELECT True FROM T_Numbers WHERE Num=0

The following Query (which is very similar) crashes:

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION

 SELECT True FROM T_Numbers WHERE Num=0

 UNION

 SELECT False FROM T_Numbers WHERE Num=0

The following Query (which is very similar), does not crash, but in the second record it

99 These four examples are included in the Query “J_Union_Nulls” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 544 of 726

produces a box with a question mark instead of the value True

 SELECT Null FROM T_Numbers WHERE Num=0

 UNION

 SELECT True FROM T_Numbers WHERE Num=0

The Table “T_Numbers” used in the examples above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

J.14.8 What effects does Null cause in aggregate functions?

All aggregate functions (click F.7.18.7) ignore records that produce Null in the

expression of the function argument, except “Count(*)”, “DCount("*")”, “First()”,

“DFirst()”, “Last()” and “DLast()”.

“Count(*)” and “DCount("*")” do not have an argument consisting of an expression

over the field records. For this reason, one or more Null in the record fields does not affect

them.

“First()”, “DFirst()”, and “DLookup()” return Null if that is the result of the

expression over the first record in their group of input records.

“Last()” and “DLast()” return Null if that is the result of the expression over the last

record in their group of input records.

All aggregate functions, except “Count(*)”, “DCount("*")”, “Count()” and

“DCount()”, return Null if all the records in its group of input records produce Null in

the argument expression, or, if the group of input records is empty. The four functions

Count(*), “DCount("*")”, “Count()” and “DCount()” return the valid value “0” in

that case.

The two-value aggregate functions “StDev(), “DStDev(), “StDevP(), “DStDevP(),

“Var()”, “DVar()”, “VarP()” and “DVarP()” return Null if group of input records

contains zero or one record(s) that produce a non-Null in the argument expression.

J.14.9 What effects does Null cause as an argument of a VBA function?

Depending on the case, the VBA function may return a correct non-Null value, may

return a Null or may crash. If the function crashes, the Query will also crash.

A Null as an argument of any built-in or user-defined VBA function, where the data

type of the argument is other than Variant, will crash the Query showing the error

message “Data type mismatch in criteria expression.”.

A Null as an argument of most built-in functions (e.g., “Log()” or “Sin()”) will crash

the Query showing the error message “Data type mismatch in criteria expression.”.

A Null as an argument of any built-in type conversion function (“CByte()”,

“CBool()”, ...) will crash the Query showing the error message “Invalid use of Null.”

A Null as an argument of the “IsNull()”, “Iif()”, “Nz()” or “Switch()” built-in functions

will work correctly. However, “Nz()” and “Switch()” evaluate the non-selected

expression, so they are vulnerable to crashes. My advice is therefore that you use “Iif()”

and “IsNull()” to handle Nulls. If you want to know more about this, you may click

“K.5.4 How do I handle Nulls in my Queries?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 545 of 726

A Null as an argument of a user-defined function will have the effect that is coded in the

function. If the data type of the argument in the function definition is other than Variant,

the function will crash. Therefore, whenever you expect that a function argument may be

Null (which is very frequent), you should declare the argument data type as Variant, and

you start the function code by checking if any of the arguments is Null. Depending on the

existence of Null arguments, and the specific semantics of the function, you have to

decide what the function should do. The most usual result of one, or more Null

argument(s) is that your user-defined function will return Null, but this is not always the

case.

J.15 What exception-value bugs can I get?

You fix this by finding the specific bug in the sections below, and clicking on it:

• “J.15.1 What is an exception-value?”

• “J.15.2 What operations produce number-overflow “#Num!”?”

• “J.15.3 How do I prevent exception-values?”

• “J.15.4 What is the effect of an exception-value in value operators?”

• “J.15.5 What is the effect of an exception-value in function arguments?”

• “J.15.6 What is the effect of an exception-value in expressions?”

• “J.15.7 When is an exception-value crashing the Query?”

J.15.1 What is an exception-value?

An exception-value is a special result that indicates that a severe problem was

encountered when evaluating a value operator, an SQL operator, a function or a value-

reference.

The following is a list of the exception-values you can get, and their most frequent

causes:

• “Number-overflow” (shown as “#Num!”)

It is produced by a result that is out of range of the output data type, and also by

dividing zero by zero (e.g., “0/0”, “0 Mod 0” or “0\0”). If you want to know more,

you may click “J.15.2 What operations produce number-overflow “#Num!”?”.

Number-overflow “#Num!” appears mainly in value operators, functions and in

Calculated Table fields.

• “Divide-by-zero” (shown as “#Div/0!”)

It is produced by dividing a non-zero by zero (e.g., “3/0”, “5 Mod 0” or “8\0”).

Divide-by-zero “#Div/0!” appears mainly in value operators, functions and in

Calculated Table fields. If you want to know more, you may click “G.5 How do I use

value operators in an expression?”.

• “Type-error” (shown as “#Error”)

It is produced by a data type mismatch in an operator or function (e.g., “'text'+5”).

If you want to know more, you may click “G.5 How do I use value operators in an

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 546 of 726

expression?”.

Type-error “#Error” cannot be produced in Calculated Table fields.

• “Table-type” (shown as “#Type!”)

It is typically produced in a Calculated Table field when the calculating expression

suffers a data type mismatch in an operator or function (e.g., “'text'+5”).

Table-type “#Type!” cannot be produced by value operators and functions.

• “Table-function” (shown as “#Func!”)

It is typically produced in a Calculated Table field when the calculating expression

suffers a function crash (e.g., “Log('text'”).

• “Table-invalid” (shown as “#Invalid”)

It is produced in a Calculated Table field when the calculating expression makes a

reference to a Table field that does not exist (e.g., “5*Non_existent_field”).

Notice that when you save a Table design with such an erroneous Calculated field

you get a warning to prevent this error (click L.2.2).

Table-invalid “#Invalid” cannot be produced in expressions, nor in SQL operations.

• “Name-error” (shown as “#Name?”)

It is produced in some SQL operations100 like:

 SELECT Null AS Name FROM T_Numbers

 UNION ALL

 SELECT True AS Name FROM T_Numbers

 UNION ALL

 SELECT False AS Name FROM T_Numbers

Name-error “#Name?” is not usually produced in Calculated Table fields, but it can

be shown in Form fields, when the corresponding linked Table field does not exist.

Name-error “#Name?” is not usually produced in value expressions.

These exception-values may either crash the Query where they appear, or they may

propagate into other SQL operations and even to other Queries. In the case of them

propagating, the Queries work normally, and they return the corresponding exception-

values that are shown in the corresponding field(s) of the Query results.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

Non-English MS-Access versions can show a different (translated) text for exception-

values. For example, the Spanish version shows “#¡Tipo!”, “#¡Núm!” or “#¡Función!”.

J.15.2 What operations produce number-overflow “#Num!”?

An Arithmetic operation that causes overflow returns number-overflow. The operations

that cause overflow are:

• Adding, subtracting or multiplying two Byte, Integer or Long values such that

the result is out of range (positive or negative) of the Long data type.

100 This is included in the Query “J_Union_Nulls” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 547 of 726

• Adding, subtracting or multiplying a Single value with another Single value, or

with any integer-like value, such that the result is out of range (positive or

negative) of the Double data type.

• Adding, subtracting or multiplying a plain Double constant (i.e., a Double

constant not enclosed in a CDbl() function) with any integer-like or Single value

such that the result is out of range (positive or negative) of the Double data type.

• Adding, subtracting or multiplying a Variant-Decimal value with any numeric

data type value such that the result is out of range (positive or negative) of the

Variant-Decimal data type.

• Raising a number to a power such that the result is out of range (positive or

negative) of the output data type.

• Dividing 0 by 0: “0/0”, “0\0” or “0 Mod 0”.

Notice that concatenating text strings resulting in a text string longer than 255 characters

does not produce overflow. Actually, you can handle extremely long text strings (longer

than 3,000 characters) in your expressions.

J.15.3 How do I prevent exception-values?

This section also answers the question:

• Why cannot I handle exception-values?

Unlike you do with Nulls, exception-values cannot be handled. Once an exception-value

is produced, you cannot get rid of it. It will either be shown in your Query results or it

will crash the Query.

This is so because there are no functions/operators that will produce a meaningful result

when applied to an exception-value. In particular, the functions and operators you usually

use to handle Null do not work:

• “Iff()” with an exception-value as first argument will either return the exception-

value or crash the Query.

• Comparison operators (in particular “=” and “<>”) with an exception-value as an

argument will either return the exception-value or crash the Query.

• “Nz()” with an exception-value as an argument will either return the exception-

value or crash the Query.

• “IsError()” over an exception-value will either return the exception-value or

crash the Query.

• “IsNumeric()”, “IsDate()”, “IsArray()” or “IsEmpty()” with an exception-value

as an argument will either return the exception-value or crash the Query.

• “Switch()” with an exception-value as an argument will either return the

exception-value or crash the Query.

Since exception-values cannot be handled, they have to be prevented.

In order to prevent exception-values in Queries, you should know how they are produced

clicking “J.15.1 What is an exception-value?”. When you observe an exception-value in

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 548 of 726

one of your Tables or Queries, you have to take action to correct the error that is producing

it.

A frequent cause for exception-values in Queries is a mishandled Null. If you want how

to correct a mishandled Null, you may click “K.5 Why and how should I carefully handle

Nulls in my Queries?”.

J.15.4 What is the effect of an exception-value in value operators?

Most exception-values as an operand of all operators, except “IN” and “NOT IN”,

returns the same exception-value.

Most exception-values as an operand of operators “IN” or “NOT IN” will cause the

following:

• If the exception-value is the searched value, the Query will crash.

• If the exception-value is one of the values in the searched list, and also, the

searched value is not to its left in the list (i.e., the exception-value is reached

before having found the searched value), the Query will crash.

• Otherwise, a correct value will be returned by the “IN” or “NOT IN” operators.

J.15.5 What is the effect of an exception-value in function arguments?

An exception-value as an argument of most functions will crash the Query. If you want

to know more about this, you may click “J.15.7 When is an exception-value crashing the

Query?”.

J.15.6 What is the effect of an exception-value in expressions?

If along the evaluation of an expression, an exception-value is produced in an operator

other than “IN” and “NOT IN”, the expression will return that first exception-value that

is produced.

If along the evaluation of an expression, an exception-value is produced as an operand

of the “IN” or “NOT IN” operators or as an argument of a function, the expression will

on most cases crash. If you want to know more about this, you may click “J.15.7 When

is an exception-value crashing the Query?”.

If you want to know more about the evaluation order of expressions, you may click

“G.7 What is the evaluation order of an expression?”.

J.15.7 When is an exception-value crashing the Query?

An exception-value will most likely crash the Query in the following cases:

• An exception-value as an operand of operators “IN” or “NOT IN”

If the exception-value is the searched value, the Query will most likely crash.

If the exception-value is one of the values in the searched list, and also, the searched

value is not to its left in the list (i.e., the exception-value is reached before having

found the searched value), the Query will most likely crash.

• An exception-value as an argument of most built-in functions and most user-defined

functions will most likely crash the Query. In particular, an exception-value as an

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 549 of 726

argument of any type conversion function will most likely crash the Query.

An important case in which the exception-value does not crash the Query is when it

is the argument to the “Iif()” function that is not returned (i.e., it is not evaluated):

in this case, the “Iif()” function returns its other argument normally, but if the

exception value is in the Boolean (first) argument, the Query will most likely crash.

• An exception-value in one, or more, record fields being processed by any aggregate

function will most likely crash the Query. The exceptions are the “Count(*)” and

“DCount("*") ” aggregate functions that count the records in the group, regardless

of their field values, and will return a correct value even if one or more record fields

contain exception-values.

• If you do a Union with a Query that produces one or more exception-values, the

Union operation will crash. The error message produced is the one of the first

exception-value encountered.

When the Query crashes in the different cases above, the error message presented by MS-

Access depends on the exception-value that caused the crash. If you want to know what

are the different error messages and their causes, you may click “J.10 How do I fix a crash

from a run-time error?”.

J.16 What data type bugs can I get?

MS-Access uses a weak data type control. It does its best to interpret constants and field

values involved in operators and functions as belonging compatible data types. This is

very convenient, and is correct on most occasions, but it sometimes may lead to very

puzzling Query behavior. The reason is that a value that you believe belongs to a given

data type is interpreted by MS-Access as belonging to a different data type, yielding what

seems to be a wrong result. For example, you probably think that the expression:

 #1/1/2000# BETWEEN "1/1/1999" AND "1/1/2001"

returns True. However, this expression returns False, because the first Date value is

converted to a text string with a different format, and the converted text string is not

between the text strings "1/1/1999" and "1/1/2001".

If you want to know more, you may click:

• “J.16.1 What data type bugs can I get with constants?”

• “J.16.2 What data type bugs can I get with value operators?”

• “J.16.3 What data type bugs can I get with the Union operator?”

• “J.16.4 What data type bugs can I get with aggregate functions?”

• “J.16.5 What data type bugs can I get with VBA functions?”

J.16.1 What data type bugs can I get with constants?

The data type of a constant will be decided by MS-Access depending on context. For

example, the constant “0” can be interpreted as Boolean, Long, Integer, Double, Single,

Currency or String. For example, the constant “0” may start as a number, but becomes a

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 550 of 726

String in the following Query101 code:

 SELECT 0 AS Field_1

 FROM T_Numbers WHERE Num=1

 UNION

 SELECT "This is Text" AS Field_1

 FROM T_Numbers WHERE Num=1

Whenever there is a possible data type ambiguity, my advice is you use a specific type

conversion function over the constant. For example, “CLng(0)” to make sure that MS-

Access will interpret it as the data type you want. If you want to know more about type

conversion functions you may click “G.2.5 How do I force a value to belong to a specific

data type?”.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

J.16.2 What data type bugs can I get with value operators?

A very frequent data type problem with value operators is using a data type not admitted

in an operator. For example, trying to multiply a number and a text string. The result is

that the operator will return the type-error “#Error” exception-value.

Another frequent data type problem with value operators is getting an apparently wrong

result because you mistakenly used a data type admitted in the operator, but that you did

not want to use. For example, you may use a datetime value as an argument of Logical

operators, but most likely you did not want to do it, and this is why you are getting an

apparently wrong result.

In either case you fix this by changing the value that is creating the problem in the operator

or by using a type conversion function (click G.2.5).

If you want to know what are the data types admitted for each value operator you may

click “G.5 How do I use value operators in an expression?”.

In the following subsections I present more specific data type problems for each class of

value operators:

• “J.16.2.1 What data type problems can I get with Arithmetic operators?”

• “J.16.2.2 What data type problems can I get with Text string operators?”

• “J.16.2.3 What data type problems can I get with Comparison operators?”

• “J.16.2.4 What data type problems can I get with Pattern operators?”

• “J.16.2.5 What data type problems can I get with Logical operators?”

• “J.16.2.6 What data type problems can I get with Miscellaneous operators?”

J.16.2.1 What data type problems can I get with Arithmetic operators?

You may get apparently wrong results when combining datetime values with integer-

like or with fractional values to perform computations on dates and/or times. The most

frequent cause for this problem is that you are not handling properly the numeric-like

representation of datetime values. If you want to know more about this, you may click

101 This is the Query “J_Types_Constant” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 551 of 726

“D.4.5 What is the “Date/Time” field type?”.

You may get apparently wrong results when combining Boolean or Yes/No values with

integer-like or fractional values. The most frequent cause for this problem is that you

may be unaware that True/Yes/On or ticked is converted to number “-1” while

False/No/Off or unticked is converted to number “0”.

You may get apparently wrong results when using the “+” operator. The most frequent

cause for this problem is that you are using it with text strings that represent numbers, and

instead of adding them up it is concatenating both string operands.

J.16.2.2 What data type problems can I get with Text string operators?

You may get apparently wrong results because of:

• The zero-length string, invisible characters or invisible strings: click “L.7.10 What

apparently defective results can invisible characters produce?”.

• Type conversion from a numeric-like operand to a text string, which may be not

obvious at all: click “G.5.2 What are the Text string operators?”.

• Leading or trailing spaces, other invisible characters or control characters, because

they are not ignored by Text string operators and all of them are concatenated:

click “L.7.10 What apparently defective results can invisible characters

produce?”.

J.16.2.3 What data type problems can I get with Comparison operators?

You may get apparently wrong results when comparing values of the same data/field type.

The most frequent case for this problem is that you believe the values are being compared

as a numeric-like data/field type, and rather, they are being compared as a String or Short
Text data/field type.

You may get apparently wrong results when comparing Boolean or Yes/No values with

integer-like or fractional values. The most frequent cause for this problem is that you

may be unaware that True/Yes/On or ticked is converted to number “-1” while

False/No/Off or unticked is converted to number “0”.

You may get apparently wrong results when comparing text strings. The most frequent

causes for this problem are:

• The zero-length string, invisible characters or invisible strings: click “L.7.10 What

apparently defective results can invisible characters produce?”.

• Type conversion from a numeric-like operand to a text string, which may be not

obvious at all: click “G.5.2 What are the Text string operators?”.

• Leading or trailing spaces, other invisible characters or control characters, because

they are not ignored by Text string operators and all of them are concatenated:

click “L.7.10 What apparently defective results can invisible characters

produce?”

• You are not aware that Comparison operators ignore the case (they are case

insensitive).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 552 of 726

• You are not aware that Comparison operators ignore leading spaces, but do not

ignore trailing spaces, nor other invisible characters: click L.7.10 What apparently

defective results can invisible characters produce?.

• You are not aware of the ordering rules for text strings: click “F.7.12.1 How are

the different data/field types ordered by the “ORDER BY” clause?”.

J.16.2.4 What data type problems can I get with Pattern operators?

You may get apparently wrong results because you are not handling properly the

semantics of the pattern string. Click “G.5.4 What are the Pattern operators?”.

J.16.2.5 What data type problems can I get with Logical operators?

You may get apparently wrong results because one of the operands is mistakenly not a

Boolean value. Notice that Logical operators work with operands of any numeric-like,

and string data/field types, even if both operands are of different data/field types. Click

“G.5.5 What are the Logical (Boolean) operators?”.

J.16.2.6 What data type problems can I get with Miscellaneous operators?

You may get apparently wrong results with “IS IN” or “NOT IS IN” operators

because you are not handling properly the data types of the searched value and/or the

values in the list.

You may get apparently wrong results with “IS IN” or “NOT IS IN” operators

because of the same problems as comparison operators with text strings.

You may click “G.5.7 What are the “IN” and “NOT IN” Miscellaneous operators?”.

You may get apparently wrong results with “BETWEEN AND” or “NOT BETWEEN AND”

operators because you are not handling properly the data types of the searched value

and/or the values in the list. You may click “G.5.8 What are the “BETWEEN AND” and

“NOT BETWEEN AND” Miscellaneous operators?”.

J.16.3 What data type bugs can I get with the Union operator?

MS-Access does not enforce same-data-type between the same fields of operands of the

Union operator. As long as the number of fields is the same in the two operands, it will

produce a result. MS-Access does not care if the data types of the fields are different, as

long as the number of fields is the same.

I have made some tests and it seems MS-Access handles different data types in Union

operations in the following way:

• The resulting data type from combinations of different numeric-like data/field types

is the data type that supports the superset of all the field values resulting from the

Union.

• The resulting data type from combinations of “different” data types (e.g., number

with Date, Date with Boolean, …) to String.

If you want to know more about this, you may click “F.9.3 What are the output fields of

a Union?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 553 of 726

For example, the next Query102:

 SELECT "Madrid" AS Cap_City, "No_comments" AS Comments, #1/1/2018# AS fecha

 FROM T_Numbers WHERE Num=1

UNION

 SELECT Capital, DateSerial(Cal_Year, 1, 1), District

 FROM T_Capital_Rainfall_District

does not produce an error, and rather, it returns a record-list converting all the values in

the second and third fields to String data type. Even though this Query “works”, the

record-list it returns is very likely not what was intended by the programmer.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

J.16.4 What data type bugs can I get with aggregate functions?

Most SQL aggregate function and domain aggregate functions have restrictions on the

data/field types of its argument. If you apply an aggregate function over an unsupported

data type the Query will crash and MS-Access will most likely show one of the following

error messages:

• “Data type mismatch in criteria expression.”

• “Cannot have Memo, OLE, or Hyperlink Object fields in aggregate argument
(Value_expr).”

where “Value_expr” is the expression argument of the aggregate function.

You fix this by correcting the argument of the aggregate function so it contains only the

supported data types. If you want to know about what are the supported data types in

aggregate functions, click “F.7.18.7 What is a summary and grouping of aggregate

functions?”.

J.16.5 What data type bugs can I get with VBA functions?

When a VBA function is invoked, the system checks that the data type of each actual

function argument is the same (or a compatible one) as the data type declared for that

argument in the function definition. If there is a data type mismatch, the function will

crash. Therefore, declaring the specific data type of each argument when you write your

user-defined functions is very useful to prevent possible errors and mistakes done in

function invocation.

However, if you want that a given user-defined function argument may take Null as a

value, declaring a specific data type for that argument in the function definition will cause

the function to crash, because Null does not belong to any specific VBA data type.

Therefore, whenever you expect that a function argument may be Null (which is very

frequent), you should declare the argument data type as Variant, and you start the

function code by checking if any of the arguments is Null. Depending on the existence of

Null arguments, and the specific semantics of the function, you have to decide what the

function should do. The most usual result of one or more Null argument(s) is that your

user-defined function will return Null, but this is not always the case.

Regarding built-in functions, remind that MS-Access uses weak typing, and therefore, it

102 This is the Query “J_Types_Union” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 554 of 726

will try to interpret the argument of the built-in function as belonging to the data type

declared for the argument. For example, if you write the expression “Log("23")”, where

“23” is a text string enclosed in double quotes, this will work, because MS-Access will

convert the text string “23” to the number “23”. However, if you write the expression

“Log("a3")”, this will crash, because you are providing a text string as an argument of a

function that expects a number.

A very small set of functions can return values of more than one data type, depending

on the values of its arguments. An example of such functions are “Choose()” and

“Switch()”, that depending on the arguments may return a numeric-like or a String data

type.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 555 of 726

PART K. USEFUL DESIGN ADVICE

If you want advice on database design, you may click:

• “K.1 What are good practices in my Table design?”

• “K.2 What are other good practices in my database design?”

• “K.3 How do I structure and optimize a distributed database?”

If you want advice on Query design, you may click:

• “K.4 What Query design principles should I follow?”

• “K.5 Why and how should I carefully handle Nulls in my Queries?”

• “K.6 What are some useful models of SQL code?”

• “K.7 Why and how do I design a fast database and fast Queries?”

• “K.8 Why should I avoid using Decimal data types?”

If you want advice on VBA function design, you may click:

• “K.9 How do I write my user-defined VBA functions and database Subroutines?

If you want help to find the specific section you want, among the ones covering the same

concept, you may click:

• “K.10 What elements/concepts are explained in various places?

K.1 What are good practices in my Table design?

You may click:

• “K.1.1 Why should I write field descriptions in my Table fields?”

• “K.1.2 Why should I add validation rules to my Tables?”

• “K.1.3 Why should I prevent Nulls in my Table fields?”

• “K.1.4 Why should I add a “Comments” field to my Tables?”

• “K.1.5 Why should I add at least one Date/Time field to my Tables?”

• “K.1.6 How to prevent errors in Short Text fields?”

• “K.1.7 Why should I configure drop-down menus to enter data?”

• “K.1.8What are good practices in configuring my drop-down menus?”

• “K.1.9 How do I configure a drop-down menu in a Date/Time field?”

K.1.1 Why should I write field descriptions in my Table fields?

Because field interpretation is usually ambiguous. If you have a Table of invoices, with a

field called “Invoice_Date”, you may think it is pretty obvious what it means. However,

there may be ambiguity between the date the invoice was internally approved, the date

the invoice was accounted, the date the invoice was sent to the customer, the date the

invoice was received by the customer, the date the invoice was paid and so on.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 556 of 726

It is therefore very good practice that you use the field property “Description” to explain

with some detail what is the exact and precise meaning of each field in your database

Tables. Notice that MS-Access will show the content of the field description in its bottom

window frame each time that you select the field’s value (click B.5.3): this automatically

provides a useful information about the specific meaning of the field.

If you want to know how to add a field description to your fields, you may click

“D.5.1.1 What is the “Description” Table field property?”.

K.1.2 Why should I add validation rules to my Tables?

Because you may want to restrict the values in your Tables and because you want to

check the entered values for errors.

Regarding checking errors when entering data, it is extremely frequent to introduce

erroneous data in Tables. Table errors usually come from a misunderstanding of the field

meaning, typing-in mistakes, problems with cut/paste buffer or data representation

mismatch when importing data from other applications. If you want to know more about

cut/paste problems, you may click “L.4.4 How do I fix errors when pasting records into

a Table/Form?”.

If you want to know more about why and how to restrict the values entered in your

Tables, you may click:

• “K.1.2.1 Why should I add field validation rules to my Table fields?”

• “K.1.2.2 Why should I add record validation rules to my Tables?”

• “K.2.10 How do I restrict the values introduced in my Table fields?”.

Wrong Table data causes big problems. If you are lucky, the erroneous Table data will

cause a Query crash, exception-values or some other very clear manifestation of the error.

If you are unlucky, nothing will seem wrong, but you will be getting wrong results from

your database. Based on your wrong database results you will be making wrong

decisions, until the mistake is detected at some point in the future.

K.1.2.1 Why should I add field validation rules to my Table fields?

Because the field validation rule will prevent a number of errors in the data entered in

the field. If you want to know how to set a field validation rule, you may click

“D.5.1.5 What is the field “Validation Rule” Table field property?”.

Notice that a field validation rule cannot involve any other field in the record, and

therefore you can only establish a condition over each individual field value. This is

clearly a limitation, but if you want to establish conditions involving several fields, you

can write a record validation rule (click K.1.2.2).

I advise you (almost) always configure a field validation rule. This is particularly

important in Short Text fields because invisible characters pose a big risk of errors in

these fields. If you want to know more about these problems, you may click “L.7 How do

I fix errors with Short Text or String fields?”.

I am now listing a few frequent field validation rules that you may find useful:

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 557 of 726

Rule that prevents any space, tab “Chr(9)” or line-feed “Chr(10)” within a text field:

 0=InStr([Fld_name];" ")+InStr([Fld_name];Chr(9))+InStr([Fld_name];Chr(10))]

Rule that prevents any leading or trailing spaces, any in-string line-feed “Chr(10)” and

any in-string tab “Chr(9)” within a text field. Notice this rule does allow spaces within

the text field:

 ([Fld_name] = Trim([Fld_name])

 AND (0 = InStr([Fld_name];Chr(9)) + InStr([Fld_name];Chr(10)))

Rule enforcing that a Date/Time field has zero-date in all its values. This is, that the date

in all the values is December 30th 1899 (integer part equal zero), as if it had no date

information.

 Fix([Fld_name]) = 0

Rule enforcing that a Date/Time field has zero-time in all its values. This is, that the time

is all the values 0:00:00 (fractional part equal zero) as if it had no time information:

 Fix([Fld_name]) = [Fld_name]

K.1.2.2 Why should I add record validation rules to my Tables?

Even if all the record’s fields satisfy their own field validation rule (click K.1.2.1), the

record data as a whole may be erroneous. For example, you can have a Table of contracts

with fields “Start_Date” and “End_Date”. You possibly introduced a field validation rule

in each field, stating that the field’s value should by higher than today’s date. This is good

practice but would not prevent entering a wrong record having a value of “Start_Date”

after “End_Date”.

You can prevent such errors using a record validation rule. Record validation rules

allow to involve all the Table fields, and therefore you can establish validation

expressions that involve several fields. If you want to know how to set a record validation

rule, you may click “D.8.1 How do I configure a record validation rule?”.

My advice is you (almost) always configure a record validation rule.

K.1.3 Why should I prevent Nulls in my Table fields?

Because Null causes the following problems:

• A Table field that contains Null cannot be a Key field, even if it is configured as

“Required=Yes”.

• A Table field that can contain Null (i.e., configured as “Required=No”) cannot be

a Key field.

• A Table field that can contain Null (i.e., configured as “Required=No”) does not

prevent duplicate records, even if it has been configured as “Indexed=Yes, without
duplicates”, because several different records can contain Null in the field.

If you want to know more, you may click “K.2.3 What are the interactions between

Nulls, duplicates, indexing, and Key field(s)?”.

• A Table field that contains Null must be carefully handled in Queries that use the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 558 of 726

said field (click K.5).

Preventing Null in a Table field is very simple. You only need to configure the field

property “Required=Yes”. When a field is configured as “Required=Yes”, MS-Access

will not allow you to introduce any new record in which this field value is empty, i.e., a

record with a Null in this field.

If you want to configure a field as “Required=Yes”, open the Table in “Design View”

(click B.4.1.3) and click on the corresponding field row want in the top sub-pane. In the

tab “General” (placed at the bottom sub-pane) you will see the property row “Required”.

Right-click on the rightmost side of the “Required” row and click “Yes” from the drop-

down menu.

Notice that if you already had records with Null in a field, and you configure the field as

“Required=Yes”, MS-Access will present you a warning, but the Nulls will stay in the

Table records. If you want to remove the Nulls, do a bulk-change of your Table data

(click E.7).

K.1.4 Why should I add a “Comments” field to my Tables?

Because on many cases you will want to complement the standardized data that each

record contains with informal text in order to improve the interpretation of each record

and avoid misunderstandings.

Adding to your Tables a Short Text field for comments you may introduce textual

information whenever you need it, to add complementary clarifications to given specific

records. For example, in a Table of invoices a few records may have comments like “This
invoice is the one we took to court”, “This invoice had a problem in its delivery deadline”

or similar useful comments.

If some specific comments become frequent and relevant enough, it is better to add a

specific field to the Table. For example, if you use the “Comments” field to put in every

record “This invoice is paid” or “This invoice is not paid”, it would be a better design to

add a Yes/No field called “Paid” to your Table of invoices. This would identify which

ones are paid (and which ones are not) in a standard way that can be processed in a much

more robust way than a text field. Notice that even if you add such a “Paid” field, it still

makes sense to have the “Comments” field, where you can add any other useful

information that is not properly captured in the record’s fields.

I advise you add one field named “Comments”, with field type Short Text to (almost)

all your Tables. Exceptions may be Tables with absolutely straightforward information

(e.g., a Table with calendar years) and Tables that already have one (or more) Short Text
field(s) that are suitable to introduce a textual description that can clarify the meaning of

the record’s data. Following my general advice over Short Text fields, my advice is that

you configure this field as “Required=Yes”, as “Allow Zero Length=No” and having a

default visible value (e.g., “Default Value="-"”).

K.1.5 Why should I add at least one Date/Time field to my Tables?

Because information changes along time and because you will want to extract records

based on time information.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 559 of 726

To clarify the first reason (i.e., information changes along time), imagine you have a

Table called “T_VAT_Percentages” that records the different VAT percentage values that

may be applied to each of the invoices in your Table of invoices. This VAT Table may

look like:

VAT_Class VAT Comments

General 21.0% -

Luxury 33.0% -

Reduced 11.5% -

Tobacco 45.0% -

Gasoline 55.0% For personal use: truckers are applied the General VAT_Class

This is perfectly fine until there is a regulation change and Tobacco VAT goes up to

60.0% with date of effects 31-Oct-2021. You could think that this is as simple as replacing

45.0% by 60.0% in the corresponding record. However, this is wrong because existing

Tobacco invoices should be applied a 45.0% VAT, while forthcoming Tobacco invoices

should be applied the 60.0% VAT. It is therefore much better having designed your Table
“T_VAT_Percentages”, from the very beginning, with a “First_Day” and “Last_Day”

Date/Time fields. The Table would then look like:

VAT_Class VAT First_Day Last_Day Comments

General 21.0% 1-Jan-2018 31-Dec-3000 -

Luxury 33.0% 1-Jan-2018 31-Dec-3000 -

Reduced 11.5% 1-Jan-2018 31-Dec-3000 -

Tobacco 45.0% 1-Jan-2018 31-Oct-2021 Old VAT value.

Tobacco 60.0% 1-Nov-2021 31-Dec-3000 -

Gasoline 55.0% 1-Jan-2018
For personal use: truckers are
applied the General VAT_Class

With this VAT Table, you are much safer in respect to changes in VAT regulation. You

are even safe if new VAT classes are introduced, or if former classes are removed.

Obviously, you have to design your Queries so that each invoice is matched with the

correct VAT percentage based on each invoice “VAT_Class” and date, in respect to the

“First_Day” and “Last_Day” fields of the Table above.

To clarify the second reason (i.e., you will want to extract records based on time

information), imagine you have a Table “T_Former_employees” that looks like:

Name Fired Email Comments

Doe, John No Johny345@gmail.com -

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 560 of 726

Name Fired Email Comments

García, Juan No Juan.garcia@ABC.com -

Du Pont, Pierre No Pierre.du.pont@red.fr -

Li, Xi No Xi.Li.Alice@big.cn Retired

You use this Table to invite your former employees to open company events, to send them

job advertisements, and similar communications. However, after ten years this Table

becomes very large (imagine this is the database of Foxconn that has 803,126 active

employees!). Then, you do not want to send e-mails to all your former employees

because they are too many and/or because you do not find useful to address employees

that left long ago. It is therefore much better having designed your Table
“T_Former_employees”, from the very beginning, with a “Last_day” Date/Time field.

Based on that field it is trivial to limit the former employees to which you send letters to

only the ones that have left less than “x” years ago.

My advice is therefore that (almost) all your Tables should have at least one meaningful

Date/Time field.

K.1.6 How to prevent errors in Short Text fields?

Short Text fields are more prone to errors than Number, Date/Time, Yes/No or Currency

fields because of invisible characters, non-English characters, typos and the treatment of

strings in some operators (click G.5). If you want to know more about problems you can

encounter with Short Text fields, you may click “L.7 How do I fix errors with Short Text
or String fields?”.

It is therefore a good practice to be particularly careful with Short Text fields.

My advice is that you follow the next good practices:

• Configure all your Short Text fields as “Required=Yes”

This is a general good practice for any field (click K.1.3) and is particularly

important for Short Text fields. It prevents errors arising from Null (click J.14).

• Configure all your Short Text fields as “Allow Zero Length=No”

This prevents errors arising from the zero-length string (click L.7.8).

• Configure all your Short Text fields with some “Default Value”

This prevents errors from having to type-in a specific value for each new record.

• Configure, as much as possible, your Short Text fields as a slave field in a

Relationship with referential integrity

Slave fields can only take values from their master field in a Relationship with

referential integrity. This means that there cannot be mistyped, Null or erroneous

values in the slave field, because each and every value corresponds (guaranteed

by the database engine) to a value in its master field (check C.11.1).

• Configure, whenever possible, your Short Text fields with a drop-down menu

with property “Limit to List=Yes”

This is a general good practice for any field and is particularly important for Short

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 561 of 726

Text fields. Entering data with a drop-down menu is faster and reduces

substantially the possibility of errors. In particular, if the drop-down menu

contains all the possible values for the field, configuring its property “Limit to
List=Yes” prevents the user from mistakenly changing the value. If you want to

configure a drop-down menu, you may click “D.11 How do I configure the way

to enter data (e.g., a drop-down menu) in a Table/Form field?”.

• Configure, as much as possible, your Short Text fields with a field validation

rule

This is a general good practice for any field and is particularly important for Short
Text fields (click L.7). I strongly advise you to configure field validation rules that

prevent invisible characters in your text strings (click K.1.2.1). If you want to

configure a field validation rule, you may click “D.5.1.5 What is the field

“Validation Rule” Table field property?”.

• Configure, whenever possible, a record validation rule involving the Short Text
fields

This is a general good practice for any field and is particularly important for Short
Text fields. If you want to configure a record validation rule you may click

“D.8.1 How do I configure a record validation rule?”.

• Configure, unless you have a powerful reason, Field Size=255

Unless you need to save space for a very good reason, my advice is you always

configure the maximum size for all Short Text fields.

K.1.7 Why should I configure drop-down menus to enter data?

Because drop-down menus allow much faster and convenient data entry, and also prevent

errors.

My advice is you configure as many drop-down menus as you can in your Table fields.

If you want some useful advice on how to do a good configuration of your drop-down

menus, you may click:

• “K.1.8 What are good practices in configuring my drop-down menus?”

If you want to know a trick to configure drop-down menus on Date/Time fields, you may

click:

• “K.1.9 How do I configure a drop-down menu in a Date/Time field?”

If you just want to know the procedure itself to configure drop-down menus, you may

click:

• “D.11.1 How do I configure a drop-down menu to enter data in a Table field?”

• “D.11.4.1 How do I configure a new drop-down menu directly in a Form field?”

K.1.8 What are good practices in configuring my drop-down menus?

I explain here some good practices and advice on how to do a good configuration of

your drop-down menus.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 562 of 726

If you rather want the mechanics of configuring drop-down menus, you may click:

• “D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field?”.

• “D.11.4.1 How do I configure a new drop-down menu directly in a Form field?”

To start with, my advice is you always configure “Display Control=Combo Box” because

it is more flexible and has more configuration options than “List Box”. To find additional

information, you may click:

• “K.1.8.1 What “Row Source Type” and “Row Source” should I use in my drop-down

menus?”

• “K.1.8.2 Should I create a Relationship from an auxiliary Table used in drop-down

menus?”

• “K.1.8.3 Should I configure “Limit to List=Yes” in my drop-down menus?”

K.1.8.1 What “Row Source Type” and “Row Source” should I use in my drop-

down menus?

Remind that the “Row Source Type” property indicates if values in your drop-down menu

are taken from: a) the values in the first field of a Table, Query or SQL operation; b) an

explicit list of values; c) the field names of a Table or Query.

Remind that the “Row Source” property indicates where to get the values to be shown in

the drop-down menu.

In case the drop-down menu is in a slave field

Then, the drop-down menu values must match values from its master field, and you

should set “Row Source Type=Table/Query”. There are three usual cases:

• If the master Table is small (e.g., it has 20 records):

You can use the Table name as your “Row Source”.

• If the master Table is large, and it is simple to identify what values you want to

show:

you can use a Select operation over the master Table as your “Row Source”. In the

Select operation you can restrict the values being shown (e.g., to avoid showing old

deprecated values) with a “WHERE” clause and you can also configure the order of

values in the menu using an “ORDER BY” clause.

• If the master Table is large, and it is complex to identify what values you want to

show:

You can use a specifically designed Query as your “Row Source”. For example, for

a field containing a customer name, you could decide to show in the drop-down menu

the twenty customer names that submitted the highest amount purchased in the last

month. You can therefore design a specific Query to produce that twenty names.

In case the drop-down menu is not in a slave field and the menu values will change

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 563 of 726

little or none at all

Then, you have two usual cases:

• In case the values in the drop-down menu will not change for sure and they are not

very many (e.g., below 15)

My advice is you configure “Row Source Type=Value List” and use an explicit value

list as your “Row Source”. One example would be entering month names, or quarters:

both are values that will not change for sure, and the number of values is not very

long.

• In case the values in the drop-down menu will possibly change and/or they are very

many (e.g., above 15)

My advice is you configure “Row Source Type=Table/Query” and you place the

values for the drop-down menu in an auxiliary Table. Using an auxiliary Table has

the following advantages:

• It is easier to update the values than when they are an explicit list in the “Row
Source” property.

• In case the values are used in drop-down menus for several fields in several

Tables, you only need to update the values once instead of having to do it in each

of the drop-down menus.

• You may have in the auxiliary Table, in addition to the field with the drop-down

menu values, an additional field with a descriptive text, an additional field with

comments, an additional field to order the values over it, or any other auxiliary

fields you may find useful.

In other cases

A couple other cases you may find useful are the following:

• You get the values of the menu from the field itself.

For example, if the field is for entering a complaint from a customer, the drop-down

menu can show the 20 most frequent complaints over the past month. In this case,

“Row Source Type=Table/Query” and “Row Source” is a Query over the Table field

itself.

• You have a Transform Query whose field names you want to use in a drop-down

menu

Remind that the field names of a Transform Query correspond to the field values

of an SQL operation. In this case, “Row Source Type=Field List” and “Row Source”

is the name of the Transform Query.

K.1.8.2 Should I create a Relationship from an auxiliary Table used in drop-

down menus?

In case you want that the fields that use an auxiliary Table for their drop-down menu only

take values existing in the auxiliary Table, you can achieve this by configuring a

Relationship. You create a Relationship (with referential integrity and with the option

“Cascade Update Related Fields” set) between the field in the auxiliary Table (as the

master field) and each of the fields (as slave fields) that use the auxiliary Table in their

corresponding drop-down menu. If you create such a Relationship, it has the following

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 564 of 726

implications that you need to be aware:

• Advantage: it is completely guaranteed that each slave field only takes its values

from the ones existing in the auxiliary Table.

• If a value in the auxiliary Table is modified, its new value will be automatically

updated in all the corresponding records in all the slave Tables. This is usually

an advantage, but it can also be a disadvantage. You anyway have to be aware of

this.

• Disadvantage: If a value in the auxiliary Table is deleted (because it is obsolete),

you will either have to delete the Relationship, or delete all the records that had

that value.

An elegant way of avoiding the disadvantage above is by adding a Date/Time field named

“Date_Obsolete” (or something similar) to the auxiliary Table. In this way, you can keep

all the “old” (obsolete) values in the auxiliary Table setting their “Date_Obsolete” to the

corresponding date, and you can add new values as needed. For active values you assign

to them a “Date_Obsolete” date that is long in the future (e.g., 31-Dec-3000). Doing this,

you may show in the drop-down menu only the values that are not obsolete, by adding

the following clause to the Select operation:

 WHERE Date_Obsolete >= Date()

The obsolete values that the user should not introduce any more are therefore not shown

in the drop-down menu.

Adding such a Date/Time field is considered a good practice (click K.1.5).

You can also add Table validation rules, checking that obsolete values are only accepted

when some Date/Time field in the records is earlier than some given date. This is

technically very sound, but the expression in the validation rule may become large and

cumbersome (remind you cannot use user-defined VBA functions in validation rules).

K.1.8.3 Should I configure “Limit to List=Yes” in my drop-down menus?

Remind that configuring “Limit to List=Yes” only enforces that newly entered values

belong to the ones of the drop-down menu. Therefore, you can paste in the field values

not contained in the drop-down menu and the field can store already existing values not

contained in the drop-down menu. If you want to know more about how to restrict the

values in your fields, you may click “K.2.10 How do I restrict the values introduced in

my Table fields?”.

If the drop-down menu contains all the acceptable values to be currently entered in

the field

You should then configure “Limit to List=Yes”. This prevents the user from mistakenly

editing the selected value and entering a wrong value that is not contained in the drop-

down menu.

Even if the field where the drop-down menu is configured is a slave field in a Relationship

with referential integrity, it is still valuable to configure “Limit to List=Yes”. The main

reason is that the master field contains all the possible values that the field with the drop-

down menu can contain, but the menu contains the possible values that can be currently

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 565 of 726

entered, which can be a subset of all the possible values. If you want to know more about

this subtle (but relevant) difference, you may check my explanation on auxiliary Tables

clicking on K.1.8.1.

An added advantage of configuring “Limit to List=Yes” when the field is a slave field is

that in case the user mistakenly edits the selected value (to a value non-existing in the

master field) the user will get the MS-Access error notification right at the moment of

having entered the value in this field, and does not have to wait instead until having

entered all the values in the record (which is the moment when the MS-Access will check

the Relationship values).

If the drop-down menu does not contain all the acceptable values to be currently

entered in the field

You should then configure “Limit to List=No”. This allows the user to choose a value

from the drop-down menu, and then edit it to produce the valid value she/he wants to

enter. This is particularly useful when the drop-down menu produces values from the

field itself (check the first bullet from paragraph “In other cases” from K.1.8.1).

K.1.9 How do I configure a drop-down menu in a Date/Time field?

MS-Access does not allow configuring a drop-down menu in a Date/Time field. It allows

you to configure a date-picker, but this is a very different functionality.

If you really need a drop-down menu in a Date/Time field, there is a smart trick to do

it. The trick is based on the equivalent internal representation between Date/Time values

and Number-Double values (click D.4.5). It consists of configuring the field as a

Number-Double but displaying its values with Date/Time format. In this way, MS-

Access allows you to configure a drop-down menu in the field. The configuration of the

menu is slightly tricky, but it works. If you want to do this, follow the next steps:

Configure the Table field as “Field Type=Number” and “Field Size=Double” (click D.4,

D.4.3 and D.4.3.5).

Then configure the field’s Format property as a Date/Time format either predefined

(click H.6.1) or custom (click H.6.2).

Now you configure the drop-down menu (click D.11.1.1 for Tables or D.11.4 for Forms).

You have to configure the “Row Source” property to produce two columns in the drop-

down menu. To do this, configure the “Row Source” property of this field with the

following content:

 SELECT CDbl(Menu_Date), Menu_Date FROM Query_Date ;

where “Query_Date” is the name of the Query that you have written to produce the

Date/Time values that you want to be shown in your drop-down menu, and

“Menu_Date” is the Query field name corresponding to the Date/Time values to be

shown in the menu. If you have not written a specific Query, and you are taking the values

from a Table, then write the Table name instead of “Query_Date” in the Select operation

above.

Then, configure the field property “Column Counts=2” (to display both fields) and the

field property “Column Width=0.01";1"” to conceal the first column (if shown, it can

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 566 of 726

only create confustion) while showing the second column. Click D.11.5.1 to know how

to configure these two properties.

Be aware that with this field configuration MS-Access will not allow you to type-in

Date/Time values into this field. Because the field is configured as a Number-Double,

MS-Access will only allow you to type-in numbers. You can of course type-in a

Date/Time value as its numeric equivalent number, but this is obviously cumbersome.

The same applies if you try to paste a value having selected one field’s value

(click B.5.3): only numbers can be pasted. However, if you select one field (or a range

of record fields, click B.5.2) (to see the difference between both selections, click B.5.4),

you can directly paste Date/Time values.

Therefore, if you use this trick, you can enter values by using the drop-down menu, by

pasting values, and by the cumbersome approach of typing them as a number.

I strongly advice that when you use this field in your expressions, you always enclose it

in a “CDate()” type conversion function, in order to make sure that the values from the

Table are correctly interpreted as a Date/Time field type instead of as a Number-Double

field type-size.

Notice that you cannot use this same trick to have a drop-down menu in a Currency field

because the internal storage format of Currency and Number fields is different.

K.2 What are other good practices in my database design?

In addition to the good practices presented in “D.2 How do I carefully assign good names

from the very beginning?” and “K.1 What are good practices in my Table design?”, this

chapter contains the following useful tips and recommendation on other aspects of your

database design:

• “K.2.1 Why should I hide unfrequently used objects?”

• “K.2.2 Why should I add a “T_Numbers” Table with integer numbers?”

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?”

• “K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes?”

• “K.2.5 What are the actual fields and the actual field order in a Table/Query/Form?”

• “K.2.6 What is the difference between a Calculated field and automatically

introducing a value using a Form?”

• “K.2.7 How should I back-up MS-Access database files?”

• “K.2.8 How do I store a list of values, instead of a single value, in a Table field?”

• “K.2.9 Why and how should I maximize Table data correctness and coherence?”

• “K.2.10 How do I restrict the values introduced in my Table fields?”

K.2.1 Why should I hide unfrequently used objects?

Because hiding them allows you to find faster the objects (Tables, Forms, Queries) that

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 567 of 726

you use more frequently.

Some examples of unfrequently used objects are:

• Queries used only by other Queries, but not invoked by the user.

• Temporary Tables.

• Tables that contain quasi-static information (e.g., a list of countries, a list of states,

a list of month names, ...).

• VBA modules with user-defined functions

If you want to hide/unhide objects, you may click B.4.2.4, B.4.2.5 and B.4.2.6.

K.2.2 Why should I add a “T_Numbers” Table with integer numbers?

Because it will be extremely useful as an auxiliary Table for writing your SQL Queries.

Such a Table only has one field (that I call “Num”), and its records contain a certain range

of integer numbers (e.g., from -100 and 100). You can see an example of such Table in

the database file “Company_Database.accdb” (click A.1 to download it).

Some examples of cases where such a Table is useful are:

• Click “K.6.1 How do I generate/create record-lists?”

• Click “K.6.2 How do I replicate record-lists?”.

• Click “K.6.3 How do I produce totals in addition to individual results?”.

• Click “K.6.5 How do I convert columns into rows?”.

• Click “K.6.7 How do I produce the non-matching records of a Join operation?”.

• Click “K.6.8 How do I write a Full-Outer-Join?”.

Since this Table is static, you may consider placing it as a local Table in the frontend

files (click K.3).

K.2.3 What are the interactions between Nulls, duplicates, indexing, and

Key field(s)?

I have summarized the interactions between Nulls, duplicate values, duplicate records,

indexing and Key field(s) in the following table, that I hope you will find useful. The

table presents in each cell the specific result that you get when you configure in one field

(or a group of fields) the six possible combinations between the three indexing types and

whether the field (or all the fields in the group) are configured with Nulls (i.e.,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 568 of 726

Required=No) or without Nulls (i.e., Required=Yes):

Configuration of

one field or of one

group of fields

No Indexing
Indexing with

duplicate values

Indexing without

duplicate values

With Nulls

One or more fields

with Required=No

Independent fields

(one or more of

them with Nulls)

Index with

duplicate values

and with Nulls

Index without

duplicate values, and

with Nulls

Without Nulls

All fields in the

group with

Required=Yes

Independent fields

(all of them

without Nulls)

Index with

duplicate values

but without Nulls

Candidate Key =>

Index without

duplicate values

and without Nulls.

No duplicate

records

Notice that an index without duplicate values and with Nulls does not prevent duplicate

records in the Table, because there can be many records having Null in some of the index

fields and the different values in the other fields.

If you configure one (or more) field(s) as the Primary Key of the Table, MS-Access will

automatically configure over the Primary Key field(s) an associated index without

duplicate values and without Nulls. This, it will automatically configure each and

every Primary Key field(s) as “Required=Yes” and will also configure an index without

duplicate values for the Primary Key field(s).

As it does for any index without duplicate values, MS-Access will check that the Table

does not contain any record with duplicate values on the Primary Key field(s): in case

the Table contains records with duplicate values, MS-Access will not allow you to do the

configuration of these Primary Key fields (click L.2.6).

Also, MS-Access will check that the Table records contain no Nulls on the Primary Key

field(s). Unlike MS-Access does for a “normal” index without duplicate values, for the

case of the Primary Key fields, MS-Access does not allow to configure it in case the

Table contains any existing record with Null in any of the Primary Key fields

(click L.2.7).

Once the Primary Key field(s) are configured, MS-Access will not allow you to change

neither the indexing nor the “Required” configuration of the Primary Key field(s).

I want to highlight that it is very different to configure an index to ignore Nulls, than to

configure the index fields to prevent Nulls (i.e., configuring all fields as

“Required=Yes”). Configuring an index to ignore Nulls just makes the index slightly

more efficient, but it does not prevent Nulls in the corresponding fields of new Table

records. Remind that when I say that an index is without duplicate values and without

Nulls it means that the index is configured as without duplicates and that all the index

fields are configured as without Nulls (i.e., “Required=Yes”).

As a final remark, for the case of any Short Text field, MS-Access does not automatically

set “Allow Zero Length=No”, when configuring it as a Key field, nor when setting

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 569 of 726

“Required=Yes” in the field, nor when configuring indexing over the field. At the same

time, it is very unlikely that you will need zero-length strings in your database. For these

reasons, I strongly advise you to manually set “Allow Zero Length=No” in every Short
Text field. Doing this much reduces the risk of making mistakes between a zero-length

string, a Null and an invisible string.

K.2.4 What are the interactions between Relationships and

“PrimaryKey”, “Required” and Table indexes?

Relationships have a strong interaction with the field properties “PrimaryKey” and

“Required”, and with the Table indexes without duplicate values and without Nulls.

In Relationships with referential integrity (either one-to-one or one-to-many) both fields

in each and every master-slave field pair must have the same field type and field size,

and also, the master field(s) of the Relationship must have an associated index without

duplicate values and without Nulls. Just to clarify, it is not enough if a subset or a

superset of the master field(s) have an index without duplicate values and without

Nulls: it must be exactly the master field(s) having that index. The master Table may

have other indexes, and this does not cause any problem.

Remind from K.2.3 that having an index without duplicate values and without Nulls is

the same as being a candidate Key.

In a one-to-many Relationship every pair of related fields is of the same field type and

field size, the master field(s) is/are a candidate Key of the master Table, and neither

the slave field(s), nor any subset of them, are a candidate Key of the slave Table.

In a one-to-many Relationship every pair of related fields is of the same field type and

field size, the master field(s) is/are a candidate Key of the master Table, and either the

salve field(s), or any subset of them, are a candidate Key of the slave Table.

The master and/or slave Tables may have other indexes, as long as they satisfy the

definitions I just gave.

As you may see, if you want a one-to-many or a one-to-one Relationship, you need to

configure the Table indexes and the “Required” property of the master and slave fields

according to the definitions above. Notice that if you configure the master fields or any

subset of the slave fields as a Primary Key field, they will automatically have an

associated index without duplicate values and without Nulls.

Finally, I want to point out that the slave fields in a Relationship with referential integrity

cannot contain any Null, even if they have not been configured as “Required=Yes”. The

reason is that the slave fields can only take values from the master fields, and the master

fields cannot contain Null, because they must have an associated index without

duplicate values and without Nulls.

K.2.5 What are the actual fields and the actual field order in a

Table/Query/Form?

If you do a cut/paste operation, the actual fields and the actual field order in a

Table/Query/Form are the ones you are actually seeing in “Datasheet View”. Therefore,

for cut/paste operations, the Table/Form fields and field order in “Design View” and the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 570 of 726

Query fields and field order in “Design View” or “SQL View” are irrelevant.

If you use a Table/Query in a Union operation or an Insert operation, the Table fields

and field order are the ones in “Design View”, while the Query fields and field order are

the ones in “SQL View”.

K.2.6 What is the difference between a Calculated field and

automatically introducing a value using a Form?

Values in Calculated fields (click D.4.8) are not stored in the Table. They are calculated

from the other values in each Table record using the expression configured in the Table

field. Each time you do a Select operation over this Table involving the Calculated field,

its values are calculated by the system. Therefore, if you update the expression of a

Calculated field, this will affect all the values of this field in all the already existing

records in the Table.

Values automatically introduced by a Form (click D.10.4.3) are stored in the Table in

the corresponding non-Calculated field. Therefore, if you update the expression used by

the Form to calculate the automatically introduced value, this will only affect newly

introduced records, and the values of this field in all the already existing records in the

Table stay unaltered.

For example, imagine you have a Table of invoices, and you want to automatically show

the invoice amount including VAT (field “With_VAT”), calculated from the invoice

amount without VAT (field “Without_VAT”). Imagine that VAT percentage is 21%. You

do this by using the expression:

 With_VAT = 1.21 * Without_VAT

either in a Calculated field or in a Form that automatically introduces the value in the

field.

If the VAT percentage changes at some moment to 20%, and you replace “1.21” by

“1.20” in the expression above, the result in the field data is very different. With a

Calculated field all the already existing invoices will now show a wrong value of field

“With_VAT”, while in the case of a Form, all the already existing invoices will have the

correct value.

On my experience, it is much more frequent to prefer that all stored values stay the same

tan preferring that they are all recalculated. For this reason, I think that it is much more

frequent to use a Form that automatically introduces the value in the field than using a

Calculated field. Also, if you are using a Form and in some case you actually want to

recalculate all previous values, this is not so difficult to achieve by doing a bulk-change

of your data (click E.7).

Another difference between a Calculated field and a value automatically introduced by a

Form is that the Calculated field does not require any storage space, because it is not

stored.

If you are using an automatically introduced value by a Form, and you edit an existing

record, the automatically introduced field will most likely be recalculated! You can

make sure it is recalculated correctly if you designed the VBA Subroutine that calculates

the value to take into account the date of the record, assuming that it does have a suitable

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 571 of 726

Date/Time field (click K.1.5). You can also just be careful and remind that when editing

old records, you may have to manually adjust the recalculated values (but notice that

“being careful” is very risky...).

My overall advice is you always use a Form that automatically introduces the value in the

field instead of a Calculated field, unless you really must save storage space. If you

want to know how to automatically introduce a value in a field using a Form, you may

click “D.10.4.3 How does my VBA code modify field values in the Form record being

edited?”.

K.2.7 How should I back-up MS-Access database files?

I do not ask if you should do back-up because the answer is always “OF COURSE!”: it

is a fact that disks fail, computers fail, viruses delete or encrypt files, water leakages

damage computers and so on.

It is therefore absolutely mandatory to do daily automatic backup of your MS-Access

database files. And it is not enough to just do one automatic daily copy of your latest

database files: you should keep the most recent “n” daily copies of each file, where “n”

should be preferably 30 and never less than 7.

In this way, if anyone deletes some relevant information, the missing data may be

recovered from the backup file of a date before the deletion. In case corrupt data is

entered, you can recover a correct database file from a date before the corrupt data was

entered. Changes occurred from that date have to be manually re-entered taking them

from the current corrupted database. This is quite inconvenient, but it is infinitely worse

the alternative of having lost all your database file or having wrong data that you are not

very sure which is it.

K.2.8 How do I store a list of values, instead of a single value, in a Table

field?

Storing a list of values in a field is considered a bad practice and my advice is that you

avoid using this feature. However, if in spite of my advice you want to do it, I explain it

in this section.

MS-Access allows you to store a list of values in one field, instead of just one single

value. You can only do it for Short Text, Number and Large Number field types. MS-

Access will not allow you to use a field with a list of values as part of any index, and

consequently, cannot be a simple Key, nor part of a composite Key. Another restriction

is that fields that store multiple values cannot be used in “WHERE” or “GROUP BY”

expressions. They cannot be used in expressions, not even with the “IN” operator, that is

specific for lists of values.

To store a list of values in one field configure a drop-down menu (click D.11.1) in the

field and then configure “Allow Multiple Values=Yes” (click D.11.5.1). You may then

remove the drop-down menu if you want, but the configuration in the field to store

multiple values will remain. Actually, it is not possible to undo the field configuration

of storing multiple values and go back to storing a single value. If you want to go back to

storing a single value, you have to remove the field that you configured to store multiple

values and create a new field with the usual single-value configuration.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 572 of 726

K.2.9 Why and how should I maximize Table data correctness and

coherence?

Because wrong database data leads to wrong Query results. Based on your wrong

database data and wrong Query results you will be making wrong management

decisions. Data correctness and coherence is therefore paramount in a database.

Once a Query has been working properly for a while, if the Query crashes or the Query

produces wrong results, the most frequent cause is wrong data in your Tables. If you

are lucky, the erroneous Table data will cause a Query crash, exception-values or some

other clear manifestation of the error. If you are unlucky, nothing will seem wrong, but

you will be getting wrong results from your database. If you want to know how to fix an

erroneous result or a crash in a test-and-proven Query, you may click “J.1 How do I fix

an error/crash in a test-and-proven Query?”.

As you may see, it is essential to maximize the correctness of data within each field,

within each Table record, among the records of each Table and between the records of

different Tables.

You can maximize data correctness and coherence enforcing the following good

practices:

• Restrict the values entered in your Table fields/record.

Checking each value entered and restricting it to the set of possible correct values is

an excellent practice that can prevent many errors.

If you want to know more about how to restrict entered data, you may click

“K.2.10 How do I restrict the values introduced in my Table fields?”.

• Design a data check Query and run it frequently.

Validation rules cannot contain user-defined VBA functions. This implies severe

limitations on the complexity of error checks that you can do with them. However, a

data check Query can use expressions considerably more complex than validation

rules and in particular, they can contain user-defined VBA functions. Moreover, a

data check Query can perform error checks among the records of each Table and

between records of different Tables, while validation rules cannot do that.

If you want to know more about a data check Query, you may click “K.6.11 How do

I design a data check Query?”.

• Incorporating data check SQL code to your Queries.

In this way, each time you run a Query the coherency of the data it uses is checked,

and if an error is detected it is reported. The problem of doing this is that it slows

down your normal Queries and makes their SQL code more complex and difficult to

debug. The advantage is that you detect data errors earlier. On my view, incorporating

data check SQL code to a Query only makes sense for very few Queries that provides

really critical management data, and you want to minimize the risk of them

providing wrong information.

K.2.10 How do I restrict the values introduced in my Table fields?

This section also answers the question:

• What is the difference between setting a master field, setting “Limit to

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 573 of 726

List=Yes” and setting a validation rule?

You can restrict the (new) values that a given Table field (referred to “the field” and

“the Table” along this section) can contain by configuring the following database

properties/objects:

• The “Field Type” and “Field Size” of the field

• A Relationship (with referential integrity) where the field is a slave field

• A simple index without duplicate values over the field

• A composite index without duplicate values that includes the field

• The field as the Key field

• The field as one of the Key fields

• The field as “Required=Yes”

• The field validation rule

• The field within the record validation rule

• The field with a drop-down menu with “Limit to List=Yes”

I now explain each of these cases in more detail.

The “Field Type” and “Field Size” of the field

Configuring this guarantees that all the values stored in the field conform to what can

be represented by the chosen “Field Type” and “Field Size”. If you try to save a value, in

the field, that does not conform to the field type and size, MS-Access will not allow you

to do it (click L.4.2.1).

If you want to know more about this, you may click:

• “D.4 How do I configure a Table field data type and size?”.

• “G.2.1 What VBA data types vs. Table field types-sizes are equivalent?”

If you change the “Field Type” and/or “Field Size” properties of the field, you have two

cases. If the former field type-size and the new ones are compatible, MS-Access will

apply the change silently. However, if they are not compatible, MS-Access will show a

warning message. If you proceed to do the change, MS-Access will perform data

conversion over all the field values in the Table. If you want to know more about this

data conversion, you may click:

• “I.4.4.1 What are the side effects of changing the “Field Type” and/or “Field Size”

properties of a Table field?”.

A Relationship (with referential integrity) where the field is a slave field

Configuring this guarantees that all the values stored in the field must exist in the

master field of one of the existing records of the master Table. If you try to enter or

modify a record with a resulting value in the field that does not exist in the master field,

MS-Access will not allow you to do it (click L.4.3.3).

If you try to establish a Relationship with referential integrity where the field is a slave

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 574 of 726

field, and it contains values non-existing in its master field, MS-Access will not allow

you to do it (click L.3.4).

By defining a suitable master Table with suitable values in the master field, you can

therefore restrict the values of the field.

If you want to know more about Relationships, you may click:

• “C.11 What is a Relationship?”

• “D.9 How do I create and configure my Table Relationships?”

A simple index without duplicate values over the field

Configuring this guarantees that the field does not have a duplicate value in two (or

more) records. If you try to enter or modify a record with a resulting value in the field

that results in a duplicate value, MS-Access will not allow you to do it (click L.4.3.2).

If you try to configure an index without duplicate values over the field, and it already

contains duplicate values, MS-Access will not allow you to do it (click L.2.6).

If you want to know more about indexes, you may click:

• “C.8 What is indexing?”

• “D.7.1 How do I add simple indexes to a Table?”

A composite index without duplicate values that includes the field

Configuring this guarantees that two (or more) records in the Table do not have a

duplicate value array in the index fields. If you try to enter or modify a record with a

resulting value in the field that results in a duplicate value array over the index fields,

MS-Access will not allow you to do it (click L.4.3.2).

If you try to configure an index without duplicate values over a group of fields that

already contain duplicate value arrays, MS-Access will not allow you to do it

(click L.2.6).

If you want to know more about indexes, you may click:

• “C.8 What is indexing?”

• “D.7.2 How do I add composite (and simple) indexes to a Table?”

The field as the Key field

Configuring this guarantees that the field has no Nulls and no duplicate values. If you

try to save Null, in the field, MS-Access will not allow you to do it (click L.4.2.2). If you

try to enter or modify a record with a resulting value in the field that results in a duplicate

value array over the index fields, MS-Access will not allow you to do it (click L.4.3.2).

If you try to configure the field as the Key field when it contains Nulls and/or duplicate

values, MS-Access will not allow you to do it (click L.2.6).

Notice that configuring the field as the Key field is not the same as configuring the field

as “Required=Yes” (click D.5.1.7) plus configuring an index without duplicate values

over the field. The difference is that configuring the field as the Key field makes it

impossible to have Nulls, while configuring “Required=Yes” allows Nulls that were

already in the Table, and only prevents the future saving of Nulls.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 575 of 726

If you want to know more about a simple Key field, you may click:

• “C.10 What are the Table Key(s) and how should I handle them?”

• “D.6.1 How do I configure a Primary Key with only one field?”

The field as one of the Key fields

Configuring this guarantees that the field has no Nulls and that there are no duplicate

value arrays over the index fields (that include the field). If you try to save Null in the

field, MS-Access will not allow you to do it (click L.4.2.2). If you try to enter or modify

a record with a resulting value in the field that results in a duplicate value array over the

Key fields, MS-Access will not allow you to do it (click L.4.3.2)

If you try to configure a set of fields including the field as the Key fields when they

contain any Null and/or duplicate value arrays, MS-Access will not allow you to do it

(click L.2.6).

Notice that configuring the field as one of the Key fields is not the same as configuring

the same fields as “Required=Yes” (click D.5.1.7) plus configuring an index without

duplicate values over the same fields. The difference is that configuring the same fields

as the Key fields makes it impossible to have Nulls in them, while configuring them as

“Required=Yes” allows Nulls that were already in the Table, and only prevents the

future saving of Nulls.

If you want to know more about the composite Key fields, you may click:

• “C.10 What are the Table Key(s) and how should I handle them?”

• “D.6.2 How do I configure a Primary Key with several fields?”

The field as “Required=Yes”

Configuring this enforces that newly edited values in the field cannot be Null. However,

records already existing in the Table before you configured “Required=Yes” may

contain Null in the field.

If you try to save Null in the field, MS-Access will not allow you to do it (click L.4.2.2).

Notice however that you can edit other fields of an existing record containing Null in

the field, and the resulting edited record with Null in the field will remain in the Table.

If you want to know more about “Required=Yes”, you may click:

• “D.5.1.7 What is the “Required” Table field property?”.

The field validation rule

Configuring this enforces that a newly edited value into the field never violates the field

validation rule (i.e., it does not return False). However, records already existing in the

Table before you configured the field validation rule may have values in the field that

violate the field validation rule.

If you try to save a value in the field that violates the field validation rule, MS-Access

will not allow you to do it (click L.4.2.6). Notice however that you can edit other fields

of an existing record containing a value in the field that violates the field validation rule,

and the resulting edited record with a value in the field that violates the field validation

rule will remain in the Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 576 of 726

The value restrictions that you can enforce with a field validation rule are somehow

limited because its Boolean expression cannot contain user-defined VBA functions.

If you want to know more about the field validation rule, you may click:

• “D.5.1.5 What is the field “Validation Rule” Table field property?”

• “D.5.1.6 What is the field “Validation Text” Table field property?”

The field within the record validation rule

Configuring this enforces that any newly entered or modified record does not have a

value in the field that violates103 the record validation rule (i.e., its Boolean expression

does not return False). However, records already existing in the Table before you

configured the record validation rule may have values in the field that violate the

record validation rule.

If you try to enter a record with a value, or to edit a value, in the field that violates the

record validation rule, MS-Access will not allow you to do it (click L.4.3.1). Notice

however that you can edit other fields (not involved in the field validation rule) of an

existing record containing a value in the field that that violates the record validation

rule, and the resulting edited record with a value in the field that that violates the record

validation rule will remain in the Table.

The value restrictions that you can enforce with a record validation rule are somehow

limited because its Boolean expression cannot contain user-defined VBA functions.

If you want to know more about the record validation rule, you may click:

• “D.8.1 How do I configure a record validation rule?”

• “D.8.2 How do I configure the record validation text?”

The field with a drop-down menu with “Limit to List=Yes”

Configuring this enforces that a newly typed-in value in the field belongs to the set of

values in the drop-down menu. However, notice that:

• Records already existing in the Table before you configured “Limit to List=Yes” may

have values in the field not belonging to the set of values in the drop-down menu.

• Pasted values over the field are not required to belong to the set of values in the drop-

down menu.

• New pasted (click E.5.2.3) records and new inserted (click F.13.2) records, may

have values in the field not belonging to the set of values in the drop-down menu.

If you try to type-in a value in the field that does not belong to the set of values in the

drop-down menu, MS-Access will not allow you to do it (click L.4.2.5). Notice however

that you can edit other fields of an existing record containing a value in the field that

does not belong to the set of values in the drop-down menu, and the resulting edited record

with a value in the field that does not belong to the set of values in the drop-down menu

will remain in the Table.

103 When I say that a field value violates the record validation rule I mean that it violates it jointly with

other field values in the same record.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 577 of 726

If you configure a drop-down menu with “Limit to List=Yes” over the field, and the Table

contains records with values in the field not existing in the drop-down menu, MS-Access

will allow you to do it without even showing a warning message, and all the non-

conformant values will stay in the Table.

If you want to know more about how to properly configure a drop-down menu, you may

click:

• “D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field?”

• “K.1.8 What are good practices in configuring my drop-down menus?”

K.3 How do I structure and optimize a distributed database?

You may click:

• “K.3.1 How do I organize my database files?”

• “K.3.2 How do I create user-specific views of my shared database?”

• “K.3.3 What are frontend files, backend files and source files?”

• “K.3.4 What are local Tables, linked Tables and source Tables?”

• “K.3.5 How do I get a split database?”

• “K.3.6 How do I create a linked Table?”

• “K.3.7 How do I refresh a Table link?”

• “K.3.8 How do I convert a linked Table to a local Table?”

• “K.3.9 How do I view a Table link?”

• “K.3.10 How do I view and manage Table links?”

• “K.3.11 How do I delete a linked Table?”

• “K.3.12 How do I manage Relationships with linked Tables?”

• “K.3.13 Can I change the file path or name of a source file?”

• “K.3.14 What are the options to lock records in a shared database?”

• “K.3.15 What is the delay of network access to a database?”

• “K.3.16 Why should I make temporal Tables local?”

K.3.1 How do I organize my database files?

The first step is to configure your database for concurrent access. If you want to do this,

you may click “D.13 How do I share a database, having multiple concurrent users?”.

The way to organize your database files depends mainly on the number of concurrent

users, on the database size and on the network capacity, as follows.

One user

If the database is just for yourself, or for some people that use the same local computer,

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 578 of 726

you can just have a single MS-Access file (extension “.accdb”) in the computer’s local

drive and use it like you would do with any local file (e.g., an Excel file). This will work

well regardless of the database file size. Since this is local access, network capacity does

not apply to this case.

The advantage of this approach is that it is the simplest one, and you get the best

performance.

You should of course do automatic daily back-up of your database file.

Few users and small database and high-speed network

When there are few users (i.e., two or three), the database file is small (i.e., less than 10

MiBytes) and you have a high-speed network (i.e., a 100 Mbps local Ethernet or better),

you can place the MS-Access file in a windows network drive, and access it as you do

with a local file. MS-Access incorporates options to support concurrent users

(click D.13), so this will work well even if two or three users are simultaneously accessing

the database.

The way this works is that every time you use the database, your local computer opens

the MS-Access file through the network like a regular file, which means transferring a

large part of the file through the network.

The advantage of doing this is that you get concurrent access though the network in a

very simple way. The disadvantages are that response time is not very good because you

have to move through the network a lot of information (click K.3.15), and concurrent

access works but is not very robust.

You should of course do automatic daily back-up of your database file.

Many users or large database or low-speed network

If you have many users (say, four or more) or the database file is large (say, more than

10 MiB or the network connection has high transit delay (click K.3.15) and/or low

throughput (e.g., if you access through mobile data, or through a wide area network), my

advice is that you split (click K.3.5) your database in onw frontend file (having several

copies) and one backend file (both being MS-Access files, click K.3.3).

The backend file contains the Tables (this is, contains the actual data stored in the

Tables).

The frontend file contains the Queries, Forms, Reports, VBA code and links to the

Tables (click K.3.4) stored in the backend file. Each user has a copy of the frontend

file and can run the Queries from it, and also can access the Table’s data stored in the

backend file (placed in a network drive).

The way this works is that MS-Access implements remote access, so when a user runs a

Query in her/his frontend file, the Query is executed in his/her local computer, and

MS-Access brings the required data (and only the required data) from the linked Tables

stored in the backend file.

The advantage of doing this is that you get very robust concurrent access for many users

and/or for a large database and/or accessing through a low capacity network. The

disadvantage is that the database handling is now more complex, because now each user

has his/her own local frontend file. If you do a change in the Queries, Forms, Reports or

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 579 of 726

VBA modules, you have to distribute a new frontend file to all the users.

You should of course do automatic daily back-up of your backend file. The frontend

files are far less critical because they are seldom changed (only when you change the

Queries and/or the VBA code), and you already have several copies of them. You should

anyway also backup it.

General case

In the general case, you split (click K.3.5) your database in several frontend files, several

backend files and/or several other source files (click K.3.3) using linked Tables

(click K.3.4).

Each user may have several local frontend files with linked Tables to several backend

files and/or other source files usually placed on one or more network drives. Each

frontend file contains a given set of Queries and VBA code, and has a number of links

to a number of Tables from backend files and/or other source files. Each user may have

different local frontend files (depending on the type of user). MS-Access supports

linking Tables to other file formats different to MS-Access, like linking Tables to Excel,

text or html source files, so you can have source files on different formats. You can also

have some local Tables (in particular temporal Tables for Query processing) in frontend

files, in addition to linked Tables.

The way this works is the same as in the previous case: every time a user runs a Query

(from one of its frontend files), the Query runs in her/his local computer, and MS-Access

brings the required data (and only the required data) from the linked Tables stored in the

corresponding backend files and/or other source files in the network drives.

This approach gives a lot of flexibility to how to organize the information but is obviously

much more complex to manage. This approach supports many different users, with

different needs, considerably large databases and network access with different

characteristics in a very flexibly way.

You should of course do automatic daily back-up of all of your backend files and/or other

source files. The frontend files are far less critical because they are seldom changed

(only when you change the Queries and/or the VBA code), and you already have several

copies of them. You should anyway also do backup of them.

K.3.2 How do I create user-specific views of my shared database?

By producing specific frontend files (click K.3.3) tailored to the needs of each class of

users.

Because each user has her/his own frontend file, he/she can have a different view of the

database. You, as database designer, may for example remove the objects (Queries,

Forms, Reports, Modules and Table links) that a given user does not need to be aware of

from his/her frontend file. This simplifies the user-interface of each user, and prevents

accidental errors.

In this way, you can create different views of the database, by tailoring each frontend

file to the needs of each class of users. You can have a user only accessing personnel

Tables and having only personnel related Queries. Another user only accessing

economical Tables and having only economical related Queries, and so on.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 580 of 726

A quite frequent case is that different users see the network drive where the backend

file(s) are placed with a different unit letter. One user may see a network drive in unit

“D:” while another user sees the same network drive in unit “F:”. Therefore, if you

produce just one frontend file it will not work for all of users. However, if you produce

a specific frontend file for each group of users that will see the network drive in the same

unit letter, this will work fine. Another solution for this problem is to use shortcuts or

links, as described in “K.3.13 Can I change the file path or name of a source file?”.

K.3.3 What are frontend files, backend files and source files?

I now present the main characteristics of frontend files, backend files and source files:

Frontend files

• Contain Queries, Forms, Reports, VBA modules, some local Tables (typically

temporal), and linked Tables to one (or more) backend files and/or one (or more)

source files.

• They have MS-Access format with “.accdb” extension.

• They are usually stored in the local drive of each user.

• They are usually used by one user, that accesses through them, and through the

networks, to his/her backend files and/or other source file(s).

• Each user usually has one (or more) frontend file(s) used by him/her to access the

database services.

Backend files

• Contain local Tables and Relationships with referential integrity (and may also

contain other database elements)

• They have MS-Access format with “.accdb” extension.

• They are usually stored in a network drive.

• They are usually used simultaneously by many users, that access their Tables

through their frontend file(s) and through the network.

• Each user usually accesses simultaneously to one (or more) backend file(s).

Source files

• Contain local Tables.

• They may have different formats (MS-Access, SQL server, Azure, Excel, text, html,

…).

• They are usually used simultaneously by many users, that access their Tables

through their frontend file(s) and through the network.

• Each user usually accesses simultaneously to one (or more) source file(s).

Notice that there is no specific difference between an MS-Access frontend file and an

MS-Access backend file. Both are MS-Access files with a similar internal format,

capacities and characteristics. The difference is therefore in what content do you store in

them and how do you use them.

Notice also that a backend file is a particular case of a source file, when the source file

format is MS-Access.

K.3.4 What are local Tables, linked Tables and source Tables?

I now present the main characteristics of a local Tables, linked Tables and source

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 581 of 726

Tables:

Local Tables

• Are stored in a source file that can have database format (MS-Access, SQL Server,

Azure, …) or non-database format (Excel, text, html, …).

• In an MS-Access file, each local Table is shown in the “Navigation Pane” with the

icon “ ”.

• The content of a given local Table can be managed (enter/modify/delete records) by

opening the source file where it is stored and also by opening a frontend file with

Tables linked to it.

• The properties of a given local Table (fields, field types, validation rules, …) can be

managed opening the source file where it is stored.

• Can have Relationships with referential integrity within the same database source

file. These Relationships can be established/modified/removed opening the database

source file where the local Table is stored.

Linked Tables

• Seem to be a Table in an MS-Access frontend file, but in fact they are a link to its

source Table, which is local Table in a source file. When I say that a linked Table is

linked to its source Table it means that the path to, and the format of, the source

file where the source Table is stored are recorded in the linked Table.

• Are shown in the “Navigation Pane” with a specific icon depending on the format

of their source file. Some examples of icons are “ ” for MS-Access, “ ” for

Excel, “ ” for html or “ ” for text source file formats.

• Opening the linked Table allows to change (enter, modify and/or delete) the records

of its source Table.

• The linked Table properties (fields, field types, validation rules, …) cannot be

managed opening the file where it is placed: you have to do it in the source file where

its source Table is stored.

• Linked Tables cannot have Relationships with referential integrity: only its

corresponding source Table stored in the source file can have them. Linked Tables

can have Relationships without referential integrity.

Source Tables

• Are Tables that are linked from one (or more) linked Tables that are place in

frontend files.

• The content of a given source Table can be changed (enter, modify and/or delete

records) opening any linked Table (from its corresponding frontend file) that is

linked to the given source Table.

• The file where a source Table is stored is called the source file.

• Source files can have database formats (MS-Access, SQL Server, Azure, …) or non-

database formats (Excel, text, html, …).

• A source Table is always a local Table in the source file where it is stored.

When I say that a source Table is stored in a source file it means that all the source

Table data and all the source Table properties are stored in the source file.

Notice that the links to the source Tables are absolute file paths, starting with the drive

letter (e.g., “D:”, “C:”, etc.), followed by all the folder names, and finally the file name

with the corresponding file extension. This means that if you change the name/and or

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 582 of 726

move a backend file, you will have to refresh its link (i.e., the file path and name) in all

the frontend files that were using source Tables from that backend file. Notice also that

if you move both a frontend field and a backend file together to another folder, you also

have to refresh the link to the backend file, because the link is an absolute file path and

name, and it has changed.

K.3.5 How do I get a split database?

What is splitting a database?

Splitting the database means separating the Queries, Forms, Reports, VBA modules and

Tables in different frontend, backend files (and/or possibly other source files,

click K.3.3). MS-Access frontend files may contain Queries, Forms, Reports and VBA

modules (and possibly some local Tables), while MS-Access backend files typically

contain only source Tables (in MS-Access format) and source files contain source

Tables with formats other than MS-Access. The frontend files with the Queries will

usually have linked Tables (click K.3.4) linked to source Tables stored in backend files

and/or other source files. These links to Tables in other files are called a “linked Table”.

How do I automatically split one database file?

If you have a “normal” MS-Access file with Queries, Forms, Reports, VBA code and

Tables, there is an MS-Access command to automatically split it in one frontend file

and one backend file. The frontend file will have all the Queries, Forms, Reports and

VBA modules, and the backend file will have all the (source) Tables. The frontend file

will have linked Tables to all the source Tables in the backend file.

If you automatically split an MS-Access database file, the file that you split will become

the frontend file and a new backend file will be created. If you want to keep the original

integrated file, you should keep a copy before doing the split operation.

To split an MS-Access file open it, click on “Database Tools” and then on the Access

Database “ ” icon. You will get a warning message explaining what the tool does,

showing two buttons “Split Database” and “Cancel”: click on “Split Database”. You now

get a file manager window where you can decide the name and location of the backend

file. The default file name for the backend file is the current MS-Access file name adding

to it the suffix “_be”, and having the same “.accdb” extension. Once you have selected

the backend file name and location, you click on the “Split” button. After a couple

seconds you will see an informative window with an “OK” button, that you should click

to remove it. MS-Access has now left all Queries, Forms, Reports and VBA modules in

the frontend file, has moved all the Tables to the newly created backend file, and has

created linked Tables in the frontend file to all the source Tables in the backend file.

If you now run any of the Queries, Forms or Reports in the frontend file it will work as

previously. If you now open in “Datasheet View” a (linked) Table in the frontend file,

it will open normally, and you will be able to view, enter, modify and/or delete the

records of the (source) Table, which is actually placed in the backend file.

How do I manually split a database?

You can manually create as many MS-Access frontend and backend files as you need.

You can also manually create as many source files with other formats (e.g., Excel, text,

…) as you need. You can manually copy and/or move Tables, Queries, Forms, Reports

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 583 of 726

and VBA modules between MS-Access files. Doing this you can distribute your Tables,

Queries, Forms, Reports and VBA modules across different files as you want. The only

thing you are missing is how to manually create linked Tables. I explain this in the next

section “K.3.6 How do I create a linked Table?”.

Notice that if you automatically split one MS-Access file as indicated in the previous

question, all the Table links will be automatically created, and you do not need to do it

manually.

K.3.6 How do I create a linked Table?

Creating a linked Table consists of creating a link to a given source Table stored in a

given source file.

A linked Table is somehow like a Form, in the sense that it allows to enter, modify

and/or delete records from the source Table it is linked to, but it is not the Table itself.

In a linked Table you cannot change the field names, delete/add fields nor change the

properties of its source Table. If you open a linked Table in “Design View” you will see

the Table’s properties, and you can even change them, but you cannot save the changes.

If you delete a linked Table, you do not affect its source Table in any way.

You may create linked Tables by clicking on the “External Data” Ribbon name, and then

on the New Data Source “ ” icon. You will get a first pop-up menu, where placing the

mouse over each of the menu-items shown will display an item-specific second pop-up

menu containing the actual options. Clicking on one of the options will select the type

of source file (MS-Access, Azure, Excel, text, …) that you want. A dialog box will be

shown, where you can select the following:

• The file path and name of the source file

Clicking “Browse…” allows you to select the source file using a file selector box.

You can alternatively type-in the file path and name to the source file, but this is

usually cumbersome.

• The type of operation

The available options for the type of operation depend on the type of source file, but

they will always include “Link to the data source…” to create a linked Table: tick

this option. Examples of other options are the two additional ones for an Excel file:

tick “Import the source data…” to create a local Table (importing the data from the

source Table) or tick “Append a copy of…” to add the data from the source Table to

an existing Table.

When you are done, you click on “OK”. Depending on the type of source file, some dialog

boxes will open to assist you in selecting the source Table and/or the proper format. For

the case of a MS-Access file format, a new dialog box is shown, listing all the names of

the Tables stored in the source file. You now select the source Table names that you

want to link by clicking on each of them. Clicking on each source Table name will toggle

it selected/unselected. Selected Tables are highlighted with blue background. The dialog

box has the buttons “Select All” and “Unselect All”, that you can also use to faster select

your desired set of source Tables. Once you have selected all the source Tables you want

to link, you click on “OK”, and you are done.

You can also create linked Tables using the “Add” command of the “Linked Table

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 584 of 726

Manager” (click K.3.10).

K.3.7 How do I refresh a Table link?

Refreshing a Table link consists of linking the linked Table to the corresponding Table

in the corresponding source file. This is done, for example, after having corrected a

wrong source file name or having moved the source file.

You refresh a Table link in either of the following ways:

• Right-click on the linked Table name in the “Navigation Pane” and then click on

“Refresh Link” from the pop-up menu.

• Open the “Linked Table Manager” (click K.3.10) and tick the checkboxes of all the

Table link(s) that you want to refresh. You then click on the “Refresh” button. The

result of the refresh (“Succeeded” or “Failed”) for each Table link will be shown in

the column “Refresh Status”.

Regardless of how you do it, if the refresh fails, you get one dialog box indicating that

the refresh failed. You remove this dialog box by clicking on “OK” or its close icon “X”,

and then MS-Access will open the “Linked Table Manager” (click K.3.10).

An annoying side effect of refreshing a link is that the corresponding linked Table is

unhidden in the “Navigation Pane”. I think this may be an MS-Access bug. If you want

it/them to remain hidden, you will have to manually hide them again.

K.3.8 How do I convert a linked Table to a local Table?

Converting a linked Table to a local Table consists of copying all its data and

properties (field types, validation rules, default values, …) to the local file, removing the

existing link, and removing all the Relationships with referential integrity that the source

Table has in its source file.

To covert a linked Table to a local Table, you right-click over the linked Table name in

the “Navigation Pane”, and then click on “Convert to Local Table” from the pop-up

menu. Depending on the Table’s Relationships, you have three cases:

• The Table does not have any Relationship:

Then, the linked Table is converted into a local Table, and the former Table link is

deleted.

• The Table has at least one Relationship with referential integrity:

Then, MS-Access shows a warning message indicating that the Relationship will be

suppressed, that seems to imply that if you click on “OK” the linked Table will be

converted to a local Table. However, the linked Table will not be converted to a

local Table regardless of you clicking on “OK” or “Cancel”. This may be an MS-

Access bug.

• The Table has no Relationship with referential integrity, and has at least one

Relationship without referential integrity:

Then, the command does nothing, and the linked Table is not converted to a local

Table. This may be an MS-Access bug.

Therefore, if you want to automatically convert a linked Table to a local Table you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 585 of 726

should first remove all its Relationships in the source file. You may afterwards create

Relationships with referential integrity, but only with other local Tables.

You can also convert a linked Table into a local Table by first deleting the linked Table

and then copying (if it is an MS-Access source file) or importing the Table from the

source file (and if needed, renaming the Table). Remind that when you delete a linked

Table you are only deleting the link in the frontend file, and the source Table in the

source file remains totally unaffected.

K.3.9 How do I view a Table link?

Viewing a Table link consists of viewing the file path and name of the source file, plus

the source Table name in the source file.

If you place the mouse over a linked Table name in the “Navigation Pane”, MS-Access

will show (in a small pop-up box) the file path and name of its source file, but it will not

show the source Table name in the source file.

To view a Table link, you open the “Linked Table Manager” (click K.3.10). You then

either manually locate the linked Table whose link you want to view, or you

automatically search for it.

To manually locate a linked Table, you unhide the linked Tables of the source file(s)

that you want to check. To unhide the linked Tables of a given source file, you just click

on the “+” character on the leftmost side of the source file row.

To automatically search for a linked Table, you type-in (in the search box at the top of

the “Linked Table Manager”) a string and all the linked Tables whose name contains

that string will be unhidden, while all the other ones will be hidden.

K.3.10 How do I view and manage Table links?

You view and manage Table links with the “Linked Table Manager”. You open the

“Linked Table Manager” in either of the following ways:

• Right-click on any local or linked Table name in the “Navigation Pane” and then

click on “ Linked Table Manager” from the pop-up menu.

• Click on the “External Data” Ribbon name, and then on the Linked Table Manager

“ ” icon.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 586 of 726

Either way, the “Linked Table Manager” dialog box will be opened, as shown in the

following screenshot:

The “Linked Table Manager” shows each source file that stores one (or more) linked

Tables in a row called “data source”. The same source file may be shown in several

data source rows, if you configured it in this way. Each data source row contains, left

to right, a “+” or “-” character, a checkbox, the name of the data source row, and the

file path and name of the source file in this data source row.

For each data source row, its “+/-” character and its checkbox work as follows:

• If you click on the “+” character, all the linked Tables that are linked in this data

source row are unhidden and shown below the data source row, and the character

becomes a “-”. Each linked Table is shown in its own row, all below the data source

row. Each linked Table row contains, left to right, a checkbox, the name of the linked

Table, the name of the source Table, and the “Refresh Status” (shown only after a

“Refresh” operation).

If you click on the “-” character, all the Tables that are linked in this data source

row are hidden, and the character becomes a “+”.

• If you tick the checkbox, the checkbox of all the Tables linked in this data source

row become ticked.

If you untick the checkbox, the checkbox of all the Tables linked in this data source

row become unticked.

Clicking on one of the buttons placed on the right side will do the following:

• Refresh
Refreshes the links of all the linked Tables that are ticked. The result of the refresh

(“Succeeded” or “Failed”) for each Table link will be shown in the column “Refresh
Status”.

• Relink
Changes the source Table and/or the source file of the linked Tables.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 587 of 726

The result of clicking “Relink” depends on what linked Tables are ticked, as follows:

1. If some, but not all, the linked Tables from a data source row are ticked, a dialog

box is opened where you can type-in the name of a different source Table (from

the same source file). MS-Access will sequentially open one dialog box for each

linked Table that was ticked. The name of the linked Table being relinked is

shown in the heading of each dialog box.

2. If all the linked Tables from a data source row are ticked, a file selector box is

opened: you select the source file that you want and then click on “OK”. The result

now depends on the selected source file being the same as, or different from,

the current source file:

a. If both files are the same, the result is the one in point 1 above: MS-Access

will sequentially open one dialog box for each linked Table that was ticked

(in this case, for all of them).

b. If both files are different, a dialog box is opened asking if you would like to

relink the selected Tables. Be careful because the default option is “Yes”,

and you most likely want to click on “No”. If you click on “No”, MS-Access

will automatically relink each linked Table to the source Table having the

same name. However, if you click on “Yes”, MS-Access will behave as in

points 1) and 2a) above, painfully asking one by one for the name of each

and every source Table that you want.

• Add
Adds a new data source row, with a number of linked Tables. Clicking on “Add”

opens a dialog box where you type-in the name for this data source row, select what

is the format of the source file among four options, and click on “Next”.

You then click on “Browse…” to select the source file using a file selector box. You

can alternatively type-in the file path and name to the source file, but this is usually

cumbersome. You may also type-in the password for the source file, in case it is

password protected. When you are done you click on “Finish”.

A new dialog box is shown, listing all the names of the Tables stored in the source

file. You now select the Table names that you want to link by clicking on each of

them. Clicking on each Table name will toggle it selected/unselected. Selected Tables

are highlighted with blue background. The dialog box has the buttons “Select All”

and “Unselect All”, that you can also use to faster select your desired source Tables.

Once you have selected all the source Tables that you want to link, you click on “OK”,

and you are done.

Each linked Table is created with the same name as its source Table. If the source

Table name already exists in the frontend file, then a number (“1”, “2”, …) is

appended to the linked Table name. You may change the name of any linked Table

as you do with a local Table (click B.4.1.8).

• Delete
Deletes all the linked Tables that are ticked. Remind that this does not delete the

source Table.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 588 of 726

• Edit
Edits an existing data source row. Clicking on “Edit” opens a dialog box for the data

source row that was ticked. There you can change the name of the data source row,

the file path and name of its source file and the password of its source file. When

you are done, click on “Save”.

• Select All
Ticks the checkboxes of all data source rows and all linked Tables.

• Unselect All
Unticks the checkboxes of all data source rows and all linked Tables.

• Expand All
Unhides all the linked Tables from all data source rows.

• Collapse All
Hides all the linked Tables from all data source rows.

• Close
Closes the “Linked Table Manager” dialog box. Clicking on the close icon “X” also

closes the “Linked Table Manager” dialog box.

If you have many linked Tables, you can search for a specific one using the search box

at the top of the “Linked Table Manager”. If you type-in a string in the search box, all

the linked Tables whose name contains that string will be unhidden, while all the other

ones will be hidden.

Some situations (e.g., cancelling a link operation) may cause the “Linked Table Manager”

to be in an inconsistent state and show strange information. If this happens, close it and

open it again and most likely it will come back working well.

K.3.11 How do I delete a linked Table?

If you just want to delete (in the frontend file) the link to the Table, and not its

corresponding Table in the source file, you can do it in the following ways:

• Right-click on the linked Table name in the “Navigation Pane” and then click on

“Delete” from the pop-up menu.

• Select the linked Table in the “Navigation Pane” and then press the “Supr” key.

• Open the “Linked Table Manager” (click K.3.10) and tick the checkbox(es) of all the

linked Table(s) that you want to delete. You then click on the “Delete” button.

Either way you get a dialog box with indicating that this will only delete the Table link,

and it will not delete the actual Table in the source file. If you click on the “Yes” button,

the Table link is deleted. If you rather click on “No”, the delete operation is cancelled.

If you actually want to delete the source Table in the source file, you have to open the

source file and delete the Table there as you would normally delete any Table in the

corresponding application (MS-Access, Excel, …) that manages that specific source file.

K.3.12 How do I manage Relationships with linked Tables?

Each database file (regardless of being frontend or backend) has its local and specific

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 589 of 726

currently configured Relationships. From any given database file you cannot view, nor

do any operation, on the Relationships that are configured on another database file.

You can configure Relationships without referential integrity between local Tables,

between linked Tables and between one linked Table and one local Table. However,

the usefulness of Relationships without referential integrity is quite low and my advice

is you do not configure them.

You can only configure Relationships with referential integrity between local Tables.

If you want to establish a Relationship, you may click “D.9 How do I create and configure

my Table Relationships?”.

K.3.13 Can I change the file path or name of a source file?

Yes, you can do it, but you then have to relink all the corresponding linked Table links

to this source file in all the corresponding frontend files.

To update all the Table links when you have changed the file path or name of a source

file you can:

• Update the Table links in the different types of frontend files that you have, and then

send the updated frontend files to the corresponding users.

• If the users are familiar enough with MS-Access, you can send them a notification

with the new file path and name of the source file, so they do the update themselves.

A good design option is creating the Table links to shortcuts or hard links (in the file

system) to the actual source files, as follows:

• You can create all your Table links to a windows shortcut to each corresponding

source file. If you do this, when you change the file path or name of a source file

you only need to update it in the corresponding shortcut, and then everything will

work the same.

• You can create all your Table links to a windows hard link to each corresponding

source file. If you do this, you can change the file path or name of all the hard links,

except the one used in the frontend files, and everything will work with no changes.

K.3.14 What are the options to lock records in a shared database?

Coherence of the stored data is achieved by “locking” the database records to avoid that

they are modified in parallel by two, or more, users. MS-Access supports three locking

strategies that you can set in the option “FileOptionsClient
SettingsAdvancedDefault record locking”, as follows:

• “No Locks”

• “All Records”

• “Edited Record”

Since concurrent users may modify records simultaneously, we need some way to

guarantee that the stored data will be coherent, and a record will not contain some of its

field values coming from one user, and other values coming from a different user, both

of which were editing the record at the same time. The way to prevent this is by “locking”

a record that is being edited by a user, so no other user can edit it simultaneously. There

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 590 of 726

are three ways in that the system can implement this “locking”, which correspond to the

three possible values of the option “Default record locking”, as I will now explain:

“No Locks”

MS-Access will allow several users to be editing the same Table record. However,

when they attempt to save the record, only the first user will be allowed. The other users

that were editing the record will get an error message when they try to save it. Each of

the other users can decide to discard her/his edits or copy his/her values to the clipboard

or to an external file. Then each of the other users may attempt to edit the record again,

this time over the value that the first concurrent user successfully saved. This locking

strategy is called “optimistic” locking. This is the default value in MS-Access.

All users can view records from any Table.

“All Records”

MS-Access will only allow one user to be editing several records from the same Table.

The moment one user opens one record for editing, the whole Table is locked, and no

other user is allowed to edit any record in this Table until the first user has finished editing

the record.

All users can view records from any Table.

“Edited Record”

MS-Access will only allow one user to be editing each given Table record. The

moment one user opens a given record for editing, that specific record is locked, and

no other user is allowed to edit that record. Other users may edit other record in this Table,

as long as the record is not already being edited by some other user. This locking strategy

is called “pessimistic” locking.

All users can view records from any Table.

Conclusion

My advice is you configure “Edited Record” locking (i.e., pessimistic locking).

K.3.15 What is the delay of network access to a database?

When users access a database through a network there are two types of computers. The

computer of each user is called the “client” and the computers where source files

(click K.3.3) are located are called the “servers”. Each client computer typically contains

the user’s frontend files and the server computers contain the backend files.

When a user runs a Query from a frontend file, the client requests the required

information to the servers. The required information are the corresponding fields and

records from all the innermost SQL operations of the Query. These innermost

operations are the ones that have a Table as their input record-list. The information that

is requested from the client to the server is not the whole Table, for efficiency reasons,

and only the required records and fields are requested. The requested information is

typically only the records that produce True in the “WHERE” Boolean expression from

each of the innermost Select operations, and from those records, only the fields that are

used in the “SELECT” expressions.

When the client requests information from a server, getting it takes some time usually

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 591 of 726

called “delay”, and this worsens the response time of running the Query. This delay has

two very different components:

• Transit delay

This is the time it takes the “request” packet104 to go through the network from

the client to the server. This is also (approximately) the time it takes a packet

containing (part of) the requested information to go through the network from the

server to the client. The transit delay depends mainly on how far away the client

and the server are.

• Transmission delay

This is the time it takes to send all the packets containing all the requested

information. The transmission delay is computed as the amount of information

that has been requested divided by the network throughput in the path from the

server to the client.

The total delay to receive the data is twice the transit delay (which is called the “round

trip” delay) plus the transmission delay.

If you want to visualize this, imagine that you are a skiing instructor (the request packet)

at mountain top, and you notice that all your trainees (the requested data) took the wrong

slope. You need to go fetch your trainees and bring them back to the top, to take the

correct slope. It takes you some time to go down the slope, to meet the trainees at the end

of the slope: this is one transit delay. You tell all your trainees to mount on the chairlift

to go back to the mountain top. The trainees taking the first chairlift (the data packet)

take some time to arrive to the top: this is the second transit delay. The trainees that are

first to arrive still have to wait for all the other trainees to reach the top, chairlift after

chairlift (packet after packet). This waiting time (the transmission delay) is the number

of trainees divided by the throughput of the chairlift: if you have 50 trainees and the

chairlift takes 200 people per hour105 it will take 15 minutes for all of them to arrive at

the top. As you may see, the total waiting time is two transit delays plus the

transmission delay.

K.3.16 Why should I make temporal Tables local?

If you use temporal Tables, and a distributed database (click K.3.1), always make your

temporal Tables local (click K.3.4) in the frontend files (click K.3.3). This will not only

prevent possible collisions between concurrent users, but will also improve the

performance of the database, because local operations are always faster than operations

across the network (click K.3.15).

K.4 What Query design principles should I follow?

You may click:

• “K.4.1 How do I write my SQL Queries?”

• “K.4.2 Why should I incrementally run my SQL code while I write a Query?”

104 A “packet” is a block of information sent through a network. A packet usually has a maximum size of

1,500 bytes.
105 These figures are not realistic but serve better to illustrate this question.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 592 of 726

• “K.4.3 How do I write readable (maintainable) SQL Queries?”

• “K.4.4 Why should I disable changing Table data from Query results?”

• “K.4.5 Why should I qualify all the outermost output field names of my Queries?”

• “K.4.6 When should I remove duplicate records?”

• “K.4.7 Why should I enclose the outermost Union operation in a Select operation?”

• “K.4.8 Why should I restrict the usage of “INNER JOIN”?”

• “K.4.9 Why should I avoid using “SELECT *”?”

• “K.4.10 Why should I avoid using the same name of an input field name for an output

expression?”

• “K.4.11 When are “SELECT” expressions evaluated along Query processing?”

K.4.1 How do I write my SQL Queries?

SQL Queries are written in plain text. My advice is that you write your SQL code using

the plug-in “Access SQL Editor” (click F.5).

When writing a consulting Query, the first SQL operation (i.e., the outermost SQL

operation) in the Query code must be either a Select operation (click F.7), a Union

operation (click F.9) or a Transform operation (click F.10). It cannot be a Join

operation (click F.8).

Although it is possible to have a Union operation as the first expression in the Query, I

strongly advise you do not do it, because if you do, you cannot customize the field

formatting. The solution is just enclosing the outermost Union operation in a Select

operation (click K.4.7).

Every SQL Query should end with a final semi-colon “;”. However, MS-Access does

not enforce this, and therefore, if you forget to add the final semi-colon “;” your Query

will work fine.

Let me show you an example of a simple Select Query.

 SELECT Capital, District

 FROM T_Capital_Temps ;

And the following is an example of a simple Transform Query.

 TRANSFORM Avg(Temp_max)

 SELECT Capital

 FROM T_Capital_Temps

 GROUP BY Capital

 PIVOT Quart ;

K.4.2 Why should I incrementally run my SQL code while I write a

Query?

SQL operations appear to be simple, but they are not. It is extremely easy to think your

code is doing something, while it actually doing something slightly different. The

presence of duplicate records, Nulls and other situations frequently causes your Query

code to do something slightly different to what you intended.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 593 of 726

It is therefore very good practice to write your Query code “inside-out”, and

progressively run your Query code to debug it at the same time as you write it. Doing

this will save you considerable time because you will detect errors earlier in the process.

You will also detect earlier wrong assumptions that you had made over your data and

will then help you redesign your Query to produce your intended results.

By “inside-out” I mean that you start writing the innermost Select operations extracting

data from your Tables, and you progressively combine them with Join and Union

operators, until you build the complete Query.

While you write your Query code, in order to run the specific SQL operation that you

want at any given moment you will have to comment/uncomment (click J.3) your code.

As you have noticed, the technique used to run and debug your Query while you write

it is basically the same used to debug the complete Query. If you want to know more

about this, you may click “Part J. Debugging my SQL Queries”.

K.4.3 How do I write readable (maintainable) SQL Queries?

I provide here a few suggestions to improve the readability, and therefore the

maintainability, of your SQL Queries:

• Align all the clauses of each SQL operation

• Align the Join operator and the “ON” clause with its enclosing Select

• Indent the two input record-lists of Join and Union operators

• Indent the interior SQL operations in your Query code

• Align all the input record-lists in associative operations

• Place the commas “,” at the beginning of each line

• Place parentheses of SQL operations to allow their comment/uncomment

• Add comments throughout your SQL code

• Clearly explain the Query output

• Identify auxiliary Queries

• Trust your current code

• Prefix each and every Table name with “T_”

• Use auxiliary Queries when needed

• Use Union operations as much as possible

I now explain each of these points in more detail.

Align all the clauses of each SQL operation

All the clauses (“SELECT”, “FROM”, “WHERE”, “ORDER BY”,…) of each given SQL

operation should be aligned. This improves readability a lot, because if visually shows

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 594 of 726

what clauses belong to what SQL operation. For example106:

 TRANSFORM 5*Out_fld

 SELECT Log(2*Out_fld) AS Nonsense_1

 FROM T_Capital_temps

 GROUP BY Len(Capital), 2*Cal_Year

 ORDER BY 2*Cal_Year DESC, Len(Capital)

 PIVOT "Q" & Quart ;

Align the Join operator and the “ON” clause with its enclosing Select

When writing a Join operation, it must be enclosed in a Select operation, and the best

practice is to align the Join operator(s) and the “ON” clause with the other clauses of the

enclosing Select operation. For example107:

 SELECT T_House_Owners.Address, Cars.Car, Non_capital_cities, Capital

 FROM

 T_House_Owners

 ,

 (

 SELECT Car

 FROM T_Car_Owners

 WHERE ID > 0

) AS Cars

 ,

 F_Select_nested AS Q

 ,

 (

 SELECT Capital

 FROM T_Capital_Cities

) AS Capitals

Notice how the Cross-Join operator “,” are aligned with the clauses “SELECT” and

“FROM” of their enclosing Select operation.

Another example108, now with an “INNER JOIN”:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 INNER JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID ;

Notice how the “INNER JOIN” operator and its “ON” clause are aligned with the clauses

“SELECT” and “FROM” of their enclosing Select operation.

Indent the two input record-lists of Join and Union operators

Indenting (i.e., adding spaces at the begging of each line) the two input record-lists of

Join and Union operators, visually distinguish them from the Join or Union operator

itself. You may see the two examples of Join operators I have just shown above, where

their input record-lists are indented. Let me show an example109 with the Union operator:

106 This is a subset of the Query “F_Transform_syntax” from file “Company_Database.accdb”.
107 This is the Query “F_Join_nested_Cross” from file “Company_Database.accdb”.
108 This is the Query “F_Join_Inner_1” from file “Company_Database.accdb”.
109 This is a subset of the Query “F_Union_syntax” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 595 of 726

 SELECT Capital, Cal_Year, Rainfall

 FROM T_Capital_Rainfall

 UNION ALL

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

Align all the input record-lists in associative operations

When you have a series of Cross-Join, “UNION” or “UNION ALL” operations, recall that

they are associative. For this reason, it is a good practice to show all their input record-

lists aligned. Let me show an example of the Union operator:

 SELECT Capital, Cal_Year, Rainfall

 FROM T_Capital_Rainfall

 UNION ALL

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

 UNION ALL

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps

 UNION ALL

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps

Indent the interior SQL operations in your Query code

Indenting (i.e., adding spaces at the begging of each line) the interior SQL operations

visually shows the structure of the Query in terms of its different internal components.

This makes your SQL code much more readable and will be much easier to debug and

maintain. You should progressively indent the interior SQL operations to facilitate

understanding the structure of the Query code. Proper code indenting is a must in any

programming language. One example110 of SQL code indenting is:

 SELECT City AS Non_capital_cities

 FROM

 (

 SELECT City

 FROM

 (SELECT City

 FROM T_Subsidiary_sites

 WHERE City <> "Washington")

 WHERE City <> "Paris"

)

 WHERE City <> "Madrid"

Notice how each interior Select operation is indented in respect to its enclosing Select.

Notice also that I have colored matching parentheses for your convenience.

Place the commas “,” at the beginning of each line

When you split in several lines a list of elements separated with commas (e.g.,

“SELECT” expressions, “GROUP BY” expressions, “IN” list, …), place the separating

comma “,” of the elements between lines at the beginning of each line, instead of at the

end of each line. This may look strange at first, but I can tell you it will save you

considerable time preventing to forget the comma (or having two commas). Look at the

110 This is the Query “F_Select_nested” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 596 of 726

following example111:

 SELECT TOP 80 PERCENT

 Len("City_" & Capital) AS Out_fld

 , 2 * Len(Out_fld) AS Nonsense_2

 , 3 * Sum(3 + Temp_Max) AS Nonsense_3

 , 4 * (1+(9+Temp_min) + Max(5*Temp_Max)) AS Nonsense_4

 , 5 * Avg(Len(Out_fld)) AS Nonsense_5

Notice how each comma “,” that is separating two elements in consecutive lines is placed

at the beginning of the line, instead of at the end of the line.

Place parentheses of SQL operations to allow their comment/uncomment

You debug your SQL by commenting/uncommenting whole SQL operations (click J.3).

It is therefore very convenient to place the parentheses that enclose each SQL operation

in a way that allows for the automatic commenting/uncommenting (see the

comment/uncomment commands in F.5.5.1) of the operation. This typically implies

placing each enclosing parenthesis in its own line, except for the enclosing parentheses

of a single Select operation without an “AS” clause, which can be in the same lines as the

code of the Select operation. The following example112 shows how not to place

parentheses:

 ((SELECT ID AS New_1, Name AS New_2, Address AS New_3

 FROM T_House_Owners)

 UNION

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

 UNION

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps)

 UNION ALL

 (SELECT Capital, Cal_Year, Rainfall

 FROM T_Capital_Rainfall)

If you now wanted to run only the first Select, or the third Select or the first block of

Unions, you cannot add automatic comments to do it, and you have to manually edit

your code!

111 This is a subset of the Query “F_Select_w_group_by_aggreg_Syn” from file

“Company_Database.accdb”.
112 This is the Query “F_Parentheses_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 597 of 726

However, if you rather write the parentheses in the following way113:

 (

 (SELECT ID AS New_1, Name AS New_2, Address AS New_3

 FROM T_House_Owners)

 UNION

 SELECT ID, Name, Len(Car)

 FROM T_Car_Owners

 UNION

 SELECT Capital, District, Temp_Min

 FROM T_Capital_Temps

)

 UNION ALL

 (SELECT Capital, Cal_Year, Rainfall

 FROM T_Capital_Rainfall)

you can now do automatic comment/uncomment to isolate any part of the Query that

you want to run individually for debugging purposes. An added advantage is that

parentheses matching is also much clearer. The only disadvantage is that the Query

becomes longer in terms of code lines, but on my view, the advantages outweigh this.

Add comments throughout your SQL code

It is an absolute must to write comments within your Query code. Comments are text

that you write in plain English, within the SQL code, to explain what the SQL code means.

Comments are essential every time that you want to review a Query, to facilitate

understanding the logic of the Query code. An SQL comment can be written within any

SQL line of by placing it after two consecutive hyphens. This means that any text after

two consecutive hyphens is ignored for the purpose of SQL processing. Let me show

you an example of a Query with comments (highlighted in green so you see them better):

 -- This Query produces a cross table of average maximum temperatures by

 -- quarters

 -- The expression after the "TRANSFORM" clause computes the average max

 -- temperature for each quarter. "Avg()" is an SQL aggregate function.

 TRANSFORM Avg(Temp_max)

 -- This is the "SELECT" clause of the Transform operation

 SELECT Capital -- This is the "SELECT" output field of the Select operation

 FROM T_Capital_Temps -- This is the input record-list

 GROUP BY Capital -- This is the "GROUP BY" expression ("Capital")

 -- The PIVOT expression (in this case "Quart") computes the "PIVOT"

 -- field names of the Transform operation

 PIVOT Quart ;

When you write a Query everything is in your head and may seem obvious. However, six

months later when you need to fix a bug, or you want to modify the Query, you look at

the code and most likely you do not understand it, as if somebody else had wrote the code!

It is therefore essential to add clear comments throughout the code, explaining why the

code is like that. Do not mind if they look too verbose: they have to be as verbose as it is

needed to clearly explain each SQL operation and each complex expression in your

Query code.

Clearly explain the Query output

At the begging of each Query, add an overall comment clearly explaining what the

output record-list is and what the precise meaning of each output field is. An example

113 This is the Query “F_Parentheses_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 598 of 726

of a bad, unprecise, comment may be:

 -- Six-month large unpaid invoices and time unpaid.

An example of a better, more precise, comment would be:

 -- Invoices with issue date in the six calendar months prior to the

 -- current month that are unpaid and have an amount (without VAT)

 -- larger or equal than 1,000 dollars.

 -- The field "Time_unpaid" contains the number of calendar days between

 -- the reception date of the invoice and the current date.

Identify auxiliary Queries

In every Query that is used by other Queries and/or in drop-down menus, add at the very

begging a comment indicating this. In this way, you avoid happily modifying its

functionality because of being unaware that modifying it will cause side effects! Before

modifying its functionality, you must check (using a dependency checker tool, click I.3)

what are the database objects that depend on this Query and analyze one by one if your

intended modification will have a side effect or not. If you want to know more about side

effects of Query modifications, you may click “I.6 What are the side effects of modifying

my Queries?”.

Trust your current code

When you fix a bug or modify the functionality of one of your Queries, it is very frequent

that you find it unnecessarily complex and/or inefficient, and you feel there is a

simpler/faster way to code the Query. You should definitely refrain from happily

changing the code of a test and proven Query. First of all, because a test and proven Query

is a treasure, and if you change it you risk losing this value. Second, because most likely

the Query code must be like it is, and it is not likely that you found a way to make it

better in just a glance. Before trying to make a Query code simpler, faster of better in any

way, you must carefully read all the comments. This will allow you to really understand

the Query code, and only after having done this, you should make a careful decision on

whether it is really possible to improve the Query code.

Prefix each and every Table name with “T_”

This allows you to very easily distinguish Table names from Query names in your SQL

code. This distinction is important in a number of situations. Adding the prefix “T_” only

makes your Table names two characters longer and does not reduce the meaningfulness

or the rest of the name. The advantages of doing this are clearly worth the small effort

required.

Use auxiliary Queries when needed

Using an auxiliary Query (i.e., a Query that is invoked within a Query) is very useful in

the following cases:

• When you want to make sure you are doing exactly the same Select operation over

your Tables, for efficiency reasons. If you want more detail on this, you may click

“K.7.3 How do I design faster Select operations over Tables?”.

• When your Query code becomes too long to debug properly (and/or exceeds the

65,535 character limit of the plug “Access SQL Editor”, in case you are using it). As a

rule of thumb, a Query longer than 300 lines may be worth dividing in two or more

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 599 of 726

auxiliary Queries.

• When inside your Query you are using several times (e.g., three or more) the same

fragment of SQL code that is reasonably large (e.g., twenty or more lines). Replacing

that fragment by an auxiliary Query name that contains the SQL code in the fragment

improves the readability of the Query. An added advantage is that it is likely that you

will also use this auxiliary Query in other related Queries.

Use Union operations as much as possible

On many occasions, the output record-list of the SQL operation that you are writing is

logically composed of several sets or records, each of which arise from a specific logic

of the Query code. In all such cases, it is very useful to write the SQL operation as a

Union operation, where each set of records is produced by each of the Select operations

bound by the Union operations. Notice that Union operations are extremely good both

for code readability and for ease of debugging.

K.4.4 Why should I disable changing Table data from Query results?

Because changing Table data from Query results in “Datasheet View” creates a great

risk of the user unwillingly changing the Table data. If this happens, data in your Tables

becomes wrong, and the results returned by Queries will also be wrong.

My advice is that you disable the feature of changing Table data from Query results in

“Datasheet View”. This is done by setting the “RecordsetType” property (of the Query

as a whole) to “Snapshot” in all your Queries. If you want to set Query’s properties, you

may click “B.7.2 How do I configure a Query’s “Property Sheet” in “Design View”?”.

If for some reason you want/need to keep the “RecordsetType” property with its default

“Dynaset” value (or even set it to the riskiest “Dynaset (Inconsistent Updates)” value),

you can use the following trick to disable changing Table data from Query results in

“Datasheet View”: never use one field name as an outermost “SELECT” expression of

a Query and always use an expression. In case you actually want to have the value of

one Table field in a Query result, you can create (in the outermost Select) a “SELECT”

expression that does not modify its value: if it is a numeric-like field you can just add 0

(i.e., “Field_name+0”); if it is a Short Text field, you can just append the zero-length

string (i.e., “Field_name & ""”).

This trick works because it is only possible to change Table data from Query results in

“Datasheet View” in the following cases:

• An outermost “SELECT” expression of a Query corresponds exactly to one Table

field (even if the Table field name has been changed): this allows to change the values

of this Table field from the Query results in “Datasheet View”.

• Each and every outermost “SELECT” expression of a Query correspond exactly to

one Table field (even if the Table field name has been changed): this allows (in

addition to changing any Table field value) to enter, modify and/or delete Table

records from the Query results in “Datasheet View”.

One of the relevant advantages of databases over spreadsheets is that databases separate

the data, the data processing code, and the results. This separation prevents the user

from mistakenly modifying the data and/or the data processing code while viewing data

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 600 of 726

or viewing results. In a spreadsheet the data (cells with values), the data processing code

(formulas inside cells) and the results (cells with formulas) are all mixed up. This is very

convenient, because you can arrange them in the layout that you want, and it is very easy

to modify the data entry and/or the data processing. However, it is also very risky. In a

database the data (Tables), the data processing code (SQL Query code) and the data

viewing (Query results in “Datasheet View”) are perfectly separated.

Having the data completely separated from the data processing is one of the strong

advantages of databases over spreadsheets. If database users can modify Table data from

the Query result, this creates a huge risk of unintentional database data corruption.

This is why my strong advice is that you always disable Table editing from Query results,

as I have indicated along this section.

K.4.5 Why should I qualify all the outermost output field names of my

Queries?

Qualifying the outermost output field names of a Query prevents (almost always) that

your Query field formatting is lost each time that you do a modification on the SQL code

of the Query.

Doing the field formatting of a Query in its “Datasheet View” (click H.6) is essential to

show properly formatted values, but it requires some work. Repeating this formatting

work over and over each time that you do an adjustment to your Query code is something

you want to avoid!

Qualifying the outermost output field names of your Query is something you only do

once (when you write your Query) and the benefit of not losing the field formatting is

clearly worth it. Notice that if you modify the SQL code of the Query outermost output

fields, then you will lose the field formatting, but this is only one small case among the

many other modifications you can do in your Query where you do not lose your

formatting.

Remind that qualifying a field name consists of prefixing each field name with the name

of the SQL operation where the field name is defined (click C.2.2). This implies that you

have to assign a name to the input record-lists of your outermost Select operation or

Transform operation. The input record-lists are either one (either another Select

operation or a set of associative Union operation) or two (two Select operations in a Join

operation), so the work of assigning them a name is really low.

K.4.6 When should I remove duplicate records?

Each time that you are designing an SQL operation you have two cases:

• If you want to allow duplicate output records or you are completely sure that the

output record-list will not have duplicates because of the Table/Query design, then

do not add clauses to remove duplicates to the SQL operation you are designing.

• If you are reasonably sure that you do not want duplicate output records and you

are not completely sure that the Table/Query design prevents them, then you should

add clauses to remove duplicates to the SQL operation you are designing.

Duplicates are acceptable in some cases and removing them would cause wrong Query

results. You should first make reasonably sure that you do not want duplicates.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 601 of 726

Duplicates are sometimes prevented by the Table and/or Query design. Therefore, in

case that the design already prevents duplicates, you should not add clauses to remove

them because this slows down your Queries unnecessarily.

Let me show an example where the Table/Query design guarantees that there are no

duplicates. Imagine you are doing a Select over an input SQL operation, and its output

fields are its input fields and its output records are just some of its input records. This

is, the added value of this Select operation is to suppress some records from its input

record-list. In case the input record-list is duplicate-free, it is guaranteed that the output

record-list will also be duplicate free. For example, the input record-list would be

duplicate-free in the following cases:

• It is a Union operation with the “UNION” operator.

• It is a Select operation with the “DISTINCT” clause.

• It is a Select-total_aggreg.

• It is a Select-group_by_aggreg where each and every of the “GROUP BY”

expressions are, as such, an output field. Notice there may be other output fields.

• It is a Select operation over a Table and its output fields include as such (i.e., not as

part of an expression) the fields of the Primary Key and/or the fields of a candidate

Key of the Table.

• It is a Query name whose outermost SQL operation falls in either of the cases above.

If you actually want to remove duplicate records, you can use the “UNION” operator or

the “DISTINCT” clause114. Remind that this operator and clause will introduce some

delay in your Query responses (notice MS-Access needs to check for duplicates even if

there are none), so use them only in case you need to.

If you want more detail on this, you may click “K.7.2.1 Why should I use “DISTINCT”,

“UNION” and “ORDER BY” only if needed?”.

K.4.7 Why should I enclose the outermost Union operation in a Select

operation?

Because MS-Access does not allow to open a Union operation Query in “Design View”,

and therefore, you cannot configure the formatting of this Query fields. A Union

operation Query is a Query where the outermost SQL operation is a Union operation.

You will most likely want to format the fields of your Query, so the results are properly

shown. The solution is very simple, and it consists of enclosing your outermost Union

operation in a Select operation. Doing this will allow you to open the Query in “Design
View”, and therefore, to configure the formatting of the Query result columns shown in

“Datasheet View”.

Enclosing the outermost Union operation in a Select operation has the added advantage

of allowing you to sort the output record-list with the “ORDER BY” clause.

114 You can also use the “DISTINCTROW” clause, but my advice is you do not use it (click F.7.8).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 602 of 726

K.4.8 Why should I restrict the usage of “INNER JOIN”?

Because “INNER JOIN” will not output records that do not match its “ON” Boolean

expression. This may seem ridiculous, because this is exactly what “INNER JOIN” is

expected to do, but it has tricky implications. On many occasions, you give for granted

that the two input record-lists of the “INNER JOIN” will have the matching records that

you expect. However, if one of the two input record-lists does not work as expected, and

it does not contain the expected matching records, this will destroy the records from the

other input record-list that are now not matching. This error may be very difficult to

detect.

It is a much safer practice, whenever possible, to use an Outer-Join (e.g., a

“LEFT JOIN”) instead of an “INNER JOIN”. In this way, if one of the input record-

lists is missing, by mistake, some records, the Outer-Join will show Null in the

corresponding fields of its output record-list. Nulls cause some effect on the Query much

more likely than missing records. Therefore, it is much preferable that a possible mistake

creates Nulls rather than suppresses records.

My advice is therefore that you restrict as much as possible the usage of the

“INNER JOIN” operator, using it only if it is an absolute must to suppress all non-

matching records. Otherwise, use an Outer-Join operator.

K.4.9 Why should I avoid using “SELECT *”?

Because it may create problems in field formatting, field ordering, field names, and when

making database modifications.

It may seem convenient to use “SELECT *” because whenever possible you avoid

writing all the output field names. In spite of being convenient, my advice is you never

use “SELECT *” as the outermost Select operation of a Query nor as an input record-

list to a Union operation. As a general rule, my advice is that you avoid using use

“SELECT *”.

I briefly explain some of the problems that you may face if you use it.

If you use “SELECT *” as the outermost Select operation of a Query MS-Access will

not show the Query fields in “Design View”, and therefore, you cannot configure the

format in which you want MS-Access to present each field of the Query results in
“Datasheet View”.

Is you use “SELECT *” as an input record-list to a Union operation, it is easy to make

mistakes with the field order because of the possible differences of field order in

“Datasheet View”, “Design View” and “SQL View”. In case you really want to use

asterisk, I will explain what is the field order it produces. The field order that

“SELECT *” produces over an input Table is the field order of the Table in “Design
View”. The field order that “SELECT *” produces over an input Query is the field order

of the Query in “SQL View” (and not the field order of the Query in “Datasheet View”,

nor the one in “Design View”).

If you use “SELECT *”, its output field order is the same as its input field order. If at

a given moment you modify the Query code, and you change the order of records in

some inner operation of the Query, this change propagates to outer SQL operations.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 603 of 726

Since the Union operations are order-dependent, a change in the field order may cause

them to malfunction. This problem does not happen if you use Select with an explicit list

of fields, because its output field order is totally independent of its input field order.

If you use “SELECT *” you may have problems when you do modifications to your

database design. If you want more detail on this, you may click I.4, I.5 and I.6.

K.4.10 Why should I avoid using the same name of an input field name

for an output expression?

Because this will force you to qualify the usage of all such duplicated input field names,

and in case you forget to qualify it once, it will cause an error. In the following example,

the SQL code of “Inner_select” contains an output field named “Age”. The outer

Select wants to present “Age” to the square and “Age” plus 3. The SQL code115 would

be:

 SELECT (Inner_select.Age^2) AS Age, Age+3 AS Age_plus_3

 FROM

 (SELECT Num AS Age FROM T_Numbers) AS Inner_select

However, the value of “Age_plus_3” is not the value of the input field name “Age”

plus 3. Rather, it is the value of the output field name Age (i.e., the input field Age to

the square) plus 3.

In cases where you want to use a similar name for an output field as the name of an

input field, my advice is to use as output field name the input field name with the “_”

suffix. This can be alternated as a series of Queries (chains of unions,) to distinguish

the input field names and the output field names in every Query. This is clearer, and you

avoid having to qualify the input field name. The resulting code would be:

 SELECT Age^2 AS Age_, Age+3 AS Age_plus_3

 FROM

 (SELECT Num AS Age FROM T_Numbers) AS Inner_select

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

K.4.11 When are “SELECT” expressions evaluated along Query

processing?

You may believe that each “SELECT” expression is evaluated when computing the SQL

operation where it belongs, and its result is passed-on to its enclosing SQL operation.

However, this is not correct! Each “SELECT” expression is not evaluated in each SQL

operation and rather the expression itself is passed-on as such to its enclosing SQL

operation. Each SQL operation builds larger expressions using, as such, the “SELECT”

expressions received from its enclosed SQL operation(s) and passes, as such, the larger

expressions it has built to its enclosing SQL operation.

An expression is only evaluated116 when it is required in an SQL clause (e.g., a “WHERE”,

115 This example and the next one are included in the Query “J_Field_names” from file

“Company_Database.accdb”.
116 The way the database engine works is actually more complex than this, but this is explanation is a

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 604 of 726

“HAVING” or “ON” clause) and in the outermost “SELECT” expressions of the Query

that you are running. Notice that if a Query invokes auxiliary Queries, the expressions

will not be evaluated in the outermost “SELECT” expressions of the auxiliary Queries

and will only be evaluated in the outermost “SELECT” expressions of the Query you are

running.

This implies that it is a very bad practice to handle Nulls in some enclosing SQL

operation. It is much better practice to handle Nulls right in the SQL operation that has a

database Table as an input record-list (click K.5).

K.5 Why and how should I carefully handle Nulls in my

Queries?

Because otherwise you will get a Query crash or an exception-value. For more

information you may click:

• “K.5.1 What is a Null?”

• “K.5.2 What problems can Null produce?”

• “K.5.3 How is a Null produced?”

• “K.5.4 How do I handle Nulls in my Queries?”

• “K.5.5 Where do I handle Nulls in my Queries?”

• “K.5.6 Why is MS-Access not handling Null fields as I indicated?”

K.5.1 What is a Null?

If at this moment you are reading this Lightning Guide linearly, click to read “C.6 What

is a Null?” and then return here (you return simultaneously pressing the “Alt” and “”

keys).

K.5.2 What problems can Null produce?

If at this moment you are reading this Lightning Guide linearly, click to read “J.14 What

Null-related bugs can I get?” and then return here (you return by simultaneously pressing

the “Alt” and “” keys).

K.5.3 How is a Null produced?

Nulls can appear in:

• Fields from Tables and from auxiliary Queries.

• Results from functions and operators.

Nulls in fields from Tables and from auxiliary Queries

• Nulls can exist in any Table field configured as “Required=No”.

Remind that Nulls can even exist in a Table field configured as “Required=Yes” if

they were already in the Table before the field had that configuration. I strongly

advice that you configure almost all your Table fields as “Required=Yes” and to make

reasonable compromise between clarity and correctness.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 605 of 726

sure that they do not contain pre-existing Nulls. Doing this will both prevent Nulls,

and allow the Table field to belong to Key fields and candidate Key indexes.

• Nulls should not exist in any field returned by an auxiliary Query.

They should not exist because you should program your Queries not to return Null.

However, it is possibly that an auxiliary Query returns Nulls, so you should be aware

of this.

• Nulls are created in pointers to fields from Tables by the “LEFT JOIN” and

“RIGHT JOIN” operators.

The SQL “LEFT JOIN” operator creates Null in all the pointers to used fields from

all Tables contained in its right (second) SQL operation, including those in auxiliary

Queries (recursively!). These Nulls are created in all the pointers to Table fields

used in the “SELECT” expressions of the left input records that did not match the

“ON” Boolean expression.

The SQL “RIGHT JOIN” operator does the same but exchanging the left (first) input

SQL operation and fields with the right (second) one.

Nulls in results from functions and operators

• All aggregate functions, except “Count(*)”, “DCount("*")”, “Count()” and

“DCount()”, create a returned Null if all the records in its input record-list produce

Null in the argument expression, or, if the input record-list is empty. Just for

completeness, notice that the four functions “Count(*)”, “DCount("*")”,

“Count()” and “DCount()” return the valid value “0” in that case.

• The aggregate functions “StDev()”, “DStDev()”, “StDevP()”, “DStDevP()”,

“Var()”, “DVar()”, “VarP()” and “DVarP()” create a returned Null if their input

record-list contains zero or one record(s) that produce a non-Null value in their

argument expression.

• User-defined VBA functions may create a returned Null even if none of its arguments

is Null.

• Value operators and most built-in VBA functions will not create a returned Null.

However, most of them will return Null if one (or more) of their operands/arguments

is Null.

K.5.4 How do I handle Nulls in my Queries?

You usually handle them differently depending on the expression:

• Boolean expressions

These are the “WHERE”, “ON” and “HAVING” expressions.

• Non-Boolean expressions

These are the “TRANSFORM”, “SELECT”, “GROUP BY”, “PIVOT” and

“ORDER BY” expressions.

Handling Nulls in Boolean expressions

These are the “WHERE”, “ON” and “HAVING” expressions.

You usually handle existing or created Nulls by carefully designing your Boolean

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 606 of 726

expressions. There are three main reasons for this:

• The Boolean operators (click G.5.5) neither crash nor produce an exception-value

when having Null argument(s). They just produce the corresponding result, which is

the result you would expect interpreting Null as “unknown”.

• The SQL clauses using Boolean expressions work well (i.e., do not crash or produce

an exception-value) if the Boolean expression returns Null: they will just interpret the

Null as a no-match, this is, the same as False.

• The Boolean expressions from these clauses are not used in any other expression,

unlike it happens with other ones (e.g., “GROUP BY” expressions are used in

“SELECT” expressions).

If you wanted to handle a field or function/operator result called “Suspect_Null” that

can be Null, you would just write a suitable Boolean expression. Some examples of

suitable Boolean expression could be the following:

 ON Suspect_Null AND Right_op.Right_field

 WHERE Nz(Suspect_Null, True) XOR Some_field

 HAVING Iif(IsNull(Suspect_Null), Field_A AND Field_B, Field_C XOR Field D)

Handling Nulls in Non-Boolean expressions

These are the “TRANSFORM”, “SELECT”, “GROUP BY”, “PIVOT” and “ORDER BY”

expressions.

You usually handle existing or created Nulls using functions that check if a field or

function/operator result is Null and in case it is Null they return a suitable valid value.

If you wanted to handle a field or function/operator result called “Suspect_Null” that

can be Null, you would typically enclose it in an “Iif()” function as follows:

 Iif(IsNull(Suspect_Null), Valid_value, Suspect_Null), ...

where “Valid_value” represents a valid value that can be correctly handled in other

expressions that can later evaluate this field.

As indicated above, I use mainly “Iif()”combined with “IsNull()” to handle “Nulls”, and

I use very seldom “Nz()”, “Switch() and “Choose()”. I do this because “Nz()”,

“Switch()” and “Choose()” (see below) evaluate all the expressions in their arguments,

regardless of the returned value. This makes these functions less efficient and also more

vulnerable to a crash in case one of the non-returned expression produces a fatal error.

Also, “Nz()” always returns a String when used in SQL, and this has some drawbacks.

Finally, I prefer to use the “IsNull()” function instead of the “IS NULL” operator

because the operand of “IS NULL” goes before the operator, and on my view this has

worse readability.

To handle Nulls, you can also use the use the very useful built-in functions “Switch()”

and “Choose()” (although the safest way is using “Iif()” with “IsNull()”). You can find

a brief description of each of these functions clicking G.6.1.

Remind that even if none of your Table fields contains any Null, Query processing will

likely create Nulls. If you want to know how a Null is created in your Queries, you may

click “K.5.3 How is a Null produced?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 607 of 726

K.5.5 Where do I handle Nulls in my Queries?

You must handle existing or created Nulls at the very first SQL operation where they

appear. If you handle them instead in an enclosing SQL operation, you risk that the Null

is evaluated in an intermediate expression, causing an exception-value or a Query

crash. Depending on the cause of a Null, you handle it in the following way:

• A created Null from a function result:

You must handle the Null at each and every expression where the function is used.

• An existing or created Null from a Table field

You must handle the field at each and every expression in the SQL operation (even

if they are inside auxiliary Queries) where the Table field is used as an input record-

list. Notice that you must individually handle each and every usage of the Table

field in all the expressions (“ON”, “TRANSFORM”, “SELECT”, “WHERE”,

“GROUP BY”, “HAVING”, “PIVOT” and “ORDER BY” expressions) of the

corresponding SQL operation.

Let me add a little more detail for the case of Nulls created by the “LEFT JOIN” (or

“RIGHT JOIN) operators in pointers to fields of Tables:

• If the right (or left, respectively) input record-list is a Table name, then you must

handle each and every Table field that is used in the “ON” expression, and also,

in all the expressions in all the clauses of its enclosing Select operation.

• If the right (or left, respectively) input record-list is an SQL operation, then you

must handle each and every Table field that is used in each and every expression

from each and every enclosed SQL operation that has a Table as its input record-

list. In case the SQL operation is itself an auxiliary Query name, or it contains

auxiliary Query names, then you must handle each and every Table field that is

used in each and every expression from each and every SQL operation from

each and every auxiliary Query that has a Table as its input record-list. In case

the auxiliary Queries have themselves other auxiliary Queries, you have to

recursively apply this.

If you want more detail on how to properly handle created Nulls from “LEFT JOIN”

and “RIGHT JOIN”, you may click “K.5.6 Why is MS-Access not handling Null fields

as I indicated?”.

K.5.6 Why is MS-Access not handling Null fields as I indicated?

The most frequent causes of this are:

• You are handling “LEFT JOIN” (or “RIGHT JOIN”) Nulls as if their output fields

become Null, when it is rather all the pointers to used fields from all Tables

contained in their right (or left, respectively) SQL expression what become Null. If

you want to know more about this, you may click:

o “K.5.6.1 How are Null fields created in “LEFT JOIN” and “RIGHT JOIN”?”

• You are not handling “LEFT JOIN” and “RIGHT JOIN” Nulls in each and every

SQL operation that has a Table name as its input record-list (doing this recursively

inside all auxiliary Queries). If you want to know more about this, you may click:

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 608 of 726

o “K.5.6.2 Why should I handle Null fields in all the innermost SQL operations?”

K.5.6.1 How are Null fields created in “LEFT JOIN” and “RIGHT JOIN”?

When you handle Nulls produced by “LEFT JOIN” and “RIGHT JOIN”, you may

think that the operator produces a Null in its corresponding output field, and therefore

you handle the Null enclosing the output field in an “Iff()” function (you may click

“K.5.4 How do I handle Nulls in my Queries?”).

However, this assumption is not correct! “LEFT JOIN” and “RIGHT JOIN” do not

produce Null in their output fields. What they do is produce Null in all the pointers to

used fields from all Tables and auxiliary Queries contained in their right or left

(respectively) SQL expression.

Let me show you the difference with an example over same two Tables that I used for the

Join operators (click F.8). One Table is a list of house owners, and the other Table is a

list of car owners. The field “ID” represents a unique identification number to avoid

mistaking two different persons that have the same name. The example Tables are:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

Now let us try the following Query117:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 (

 SELECT ID, Name, Address, 1 AS Null_expected

 FROM T_House_Owners

) AS Houses

 RIGHT JOIN

 T_Car_Owners AS Cars

 ON Houses.ID = Cars.ID

 WHERE IsNull(Null_expected)

If the “RIGHT JOIN” produced Null in all the left fields of non-matching right

records, this SQL operation would produce the non-matching records from the right

record-list, because I have used the “WHERE” expression:

 IsNull(Null_expected)

This “WHERE” expression should remove all the matching records (because in these

records the field “Null_expected” is expected to be 1) and it should retain all the non-

matching right records (because in these records the field “Null_expected” is

expected to be Null). However, the output record-list from the previous SQL operation

117 This is the Query “J_Nulls_constant_1” from file “Company_Database.accdb”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 609 of 726

is empty: there is no record that satisfies the “WHERE” expression!

To check what is happening, let us modify the Query above by removing the “WHERE”

clause, and adding the “SELECT” expression “Null_expected”, to see what is going

on118:

 SELECT Houses.ID, Houses.Name, Address, Null_expected

 , Cars.ID, Cars.Name, Car

 FROM

 (

 SELECT ID, Name, Address, 1 AS Null_expected

 FROM T_House_Owners

) AS Houses

 RIGHT JOIN

 T_Car_Owners AS Cars

 ON Houses.ID = Cars.ID

The output from this Query is:

J_Nulls_constant_1

Houses.ID Houses.Name Address Null_expected Cars.Name Car

3 Peter Sellers 345 Bolton St. 1 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 1 Xi Liu Ford Focus

1 John Welsh Opel Zafira

1 Juan Perez Ford Mustang

You may see that all the records from this “RIGHT JOIN”, even the non-matching ones

(the last two), have the left field “Null_expected” with value “1”.

The reason is precisely what I indicated at the beginning of his section: “LEFT JOIN”

and “RIGHT JOIN” do not produce Null in their output fields. What they do is produce

Null in the pointers to Table fields used in expressions. In this example, there are no

Table fields used to compute “Null_expected” and it is just the constant value “1”.

Therefore, the “LEFT JOIN” produces in the field “Null_expected” the constant

value “1” and does not produce Null.

If you want to know how to write an SQL operation that produces all the non-matching

left or right records of an Join, you may click “K.6.7 How do I produce the non-matching

records of a Join operation?”.

K.5.6.2 Why should I handle Null fields in all the innermost SQL operations?

Because “LEFT JOIN” and “RIGHT JOIN” unhandled Null in pointers to Table fields

will likely produce a Query crash or an exception-value (click J.15.1) when evaluated

in an expression from an enclosing SQL operation. If an exception-value has been

produced, it cannot be handled (click “J.15.3 How do I prevent exception-values?”)

using functions such as “Iif()”, “IsNumeric()” or “IsError()”. The exception-value will

then either crash the Query or be shown in the Query results.

You must therefore handle Null pointers to Table fields in each and every “innermost”

SQL operation. By “innermost” SQL operation I mean an SQL operation that has a Table

118 This is the Query “J_Nulls_constant_2” from file “Company_Database.accdb”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 610 of 726

as its input record-list. In case there are auxiliary Queries, then you have to handle Null

fields in each and every “innermost” SQL operation, recursively across all auxiliary

Queries.

Let me show you this with an example over the Table “T_Capital_Rainfall”

from F.10. The following two Select operations119 work well, and do not produce Null:

 SELECT Capital

 FROM T_Capital_Rainfall

 SELECT Capital, Cdbl(Cal_Year) AS Cdbl_Year

 FROM T_Capital_Rainfall

 WHERE Capital = "Beijing"

You now build the following “LEFT JOIN” with both of them, using the “Iif()” and

“IsNull()” functions to handle the Nulls created in the Table fields inside the right

SQL operation (in the non-matching records)120:

 SELECT Left_op.Capital

 , Iif(IsNull(Cdbl_Year), 1900, Cdbl_Year) AS Correct_Year

 FROM

 (

 SELECT Capital

 FROM T_Capital_Rainfall

) AS Left_op

 LEFT JOIN

 (

 SELECT Capital, Cdbl(Cal_Year) AS Cdbl_Year

 FROM T_Capital_Rainfall

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

You probably expect this Query to show the year from Table “T_Capital_Rainfall”

for the case of Beijing, and the year “1900” for all other capital cities in

“T_Capital_Rainfall”. If you try it, you will see that this is not the result. The result

is the year from “T_Capital_Rainfall” for the case of Beijing, and the exception-

value “#Error” for all other capital cities in “T_Capital_Rainfall”.

The reason is that the pointers to Table fields “Capital” and “Cal_year” become Null

in the right SQL operation. This is, the outermost “SELECT” expressions are evaluated

119 These are the Queries “J_Nulls_SQL_Operators_1” and “J_Nulls_SQL_Operators_2” from file

“Company_Database.accdb”.
120 This is the Query “J_Nulls_SQL_Operators_3” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 611 of 726

(click K.4.11) as if the SQL operation was written in the following way121:

 SELECT Left_op.Capital

 , Iif(IsNull(Cdbl(Cal_Year)), 1900, Cdbl(Cal_Year)) AS Correct_Year

 FROM

 (

 SELECT Capital

 FROM T_Capital_Rainfall

) AS Left_op

 LEFT JOIN

 (

 SELECT Capital, Cal_Year

 FROM T_Capital_Rainfall

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

As you may see in this example, MS-Access replaces the “SELECT” expression names

(what I have called “Output-field-names” in other parts of this book) along your

SQL operations by the actual expressions corresponding to the expression names. This

produces expanded “SELECT” expressions in the outermost SQL operation (and in

intermediate clauses along the way) that use the raw Table field names from the

innermost SQL operations that do not contain any expression name. In this example,

the resulting outermost “SELECT” expression is:

 Iif(IsNull(Cdbl(Cal_Year)), 1900, Cdbl(Cal_Year)) AS Correct_Year

You may be thinking “so what”. The problem is that the “LEFT JOIN” operator will

create Nulls in the Table field “Cal_Year” (click K.5.6.1) from the right SQL

operation. Therefore, the expression above does not handle these Nulls properly, and

rather the expression produces the exception-value “#Error”. This happens because the

“IsNull()” function is applied over “Cdbl(Cal_Year)” and not over “Cal_Year”,

and “Cdbl(Cal_Year)” returns “#Error”: once the exception-value has been produced,

it cannot be handled, and the Query produces “#Error” instead of the desired value

“1900”.

You fix this by adjusting your Query, so the Null pointer to the Table field is handled

right when it appears, in the left input record-list of the “LEFT JOIN”, and not in its

output record-list. You can code this in the following way122:

 SELECT Left_op.Capital, Cdbl_Year AS Correct_Year

 FROM

 (

 SELECT Capital

 FROM T_Capital_Rainfall

) AS Left_op

 LEFT JOIN

 (

 SELECT Capital

 , Cdbl(Iif(IsNull(Cal_Year), 1900, Cal_Year)) AS Cdbl_Year

 FROM T_Capital_Rainfall

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

121 This is the Query “J_Nulls_SQL_Operators_4” from file “Company_Database.accdb”.
122 This is the Query “J_Nulls_SQL_Operators_5” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 612 of 726

This last Query produces the desired result: the year in the Table for Beijing and “1900”

for all other capital cities.

Notice that the field “Capital” is used in the “WHERE” and in the “ON” Boolean

expressions, and it is handled just by writing the Boolean expressions that produce the

desired result. As you may see, in SQL clauses with Boolean expressions it is not

required to handle Null fields using the “Iif()” and “IsNull()” functions.

Let me show you another example123 with additional nested SQL expressions:

 SELECT Left_op.Capital, Cdbl_Year AS Correct_Year

 FROM

 T_Capital_Rainfall AS Left_op

 LEFT JOIN

 (

 SELECT Capital

 , Cdbl(Iif(IsNull(CInt_Year, 1900, CInt_Year)) AS CDbl_Year

 FROM

 (

 SELECT Capital, CInt_Year

 FROM

 (SELECT Capital, CInt(Cal_Year) AS CInt_Year

 FROM T_Capital_Rainfall)

)

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

Notice that I am handling the Null field “Capital” in the outermost right Select

operation, just like I did in the previous example. The problem is that in this current

example the outermost right Select operation is not the one having the Table as its input

record-list, and also, that there is an intermediate expression “CInt(Cal_Year)” that

produces an exception-value when processing the unhandled Null.

You might think that a solution could be enclosing the two innermost Select operations

in an auxiliary Query, and the auxiliary Query would behave as a Table. This is, you

would first create the following auxiliary Query124 with the name

“J_Nulls_SQL_Operators_7”:

 SELECT Capital, CInt_Year

 FROM

 (SELECT Capital, CInt(Cal_Year) AS CInt_Year

 FROM T_Capital_Rainfall)

123 This is the Query “J_Nulls_SQL_Operators_6” from file “Company_Database.accdb”.
124 This is the Query “J_Nulls_SQL_Operators_7” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 613 of 726

and then you would use it by modifying the main Query as follows125:

 SELECT Left_op.Capital, Cdbl_Year AS Correct_Year

 FROM

 T_Capital_Rainfall AS Left_op

 LEFT JOIN

 (

 SELECT Capital

 , Cdbl(Iif(IsNull(CInt_Year), 1900, CInt_Year)) AS CDbl_Year

 FROM J_Nulls_SQL_Operators_7

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

However, this does not work! The reason is that an auxiliary Query does not behave as

a Table, and all the pointers to actual Table fields inside the auxiliary Query become

Null!

You therefore have to handle the Null pointers to Table fields in all the SQL operations

that have a Table name as it its input record-list. In this case, this means handling the

Null fields in the Select operation that has the Table “T_Capital_Rainfall” as its

input record-list. This can be done with the following SQL code126, that is now correct:

 SELECT Left_op.Capital, Cdbl_Year AS Correct_Year

 FROM

 T_Capital_Rainfall AS Left_op

 LEFT JOIN

 (

 SELECT Capital

 , Cdbl(CInt_Year) AS CDbl_Year

 FROM

 (

 SELECT Capital, CInt_Year

 FROM

 (SELECT Capital, CInt(Iif(IsNull(Cal_Year), 1900, Cal_Year))

 AS CInt_Year

 FROM T_Capital_Rainfall)

)

 WHERE Capital = "Beijing"

) AS Right_op

 ON Left_op.Capital = Right_op.Capital

Notice that the field “Capital” is used in the “WHERE” and in the “ON” Boolean

expressions, and it is handled just by writing the Boolean expressions that produce the

desired result. As you may see, in SQL clauses with Boolean expressions it is not

required to handle Null fields using the “Iif()” and “IsNull()” functions.

K.6 What are some useful models of SQL code?

You may click:

• “K.6.1 How do I generate/create record-lists?”

• “K.6.2 How do I replicate record-lists?”

• “K.6.3 How do I produce totals in addition to individual results?”

125 This is the Query “J_Nulls_SQL_Operators_8” from file “Company_Database.accdb”.
126 This is the Query “J_Nulls_SQL_Operators_9” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 614 of 726

• “K.6.4 How do I convert rows into columns?”

• “K.6.5 How do I convert columns into rows?”

• “K.6.6 How do I use a Transform operation to show a cross table?”

• “K.6.7 How do I produce the non-matching records of a Join operation?”

• “K.6.8 How do I write a Full-Outer-Join?”

• “K.6.9 How do I “merge” two record-lists?”

• “K.6.10 How do I produce a weighted average?”

• “K.6.11 How do I design a data check Query?”

• “K.6.12 How do I get the exact record ordering I want?”

• “K.6.13 How do I use String fields to display different data types in the same Query

column?”

• “K.6.14 What are useful tricks with SQL aggregate functions?”

K.6.1 How do I generate/create record-lists?

A Select operation over an auxiliary Table of numbers generates record-lists.

For example, the following SQL operation127:

 SELECT Date()+Num AS Next_30_Days

 FROM T_Numbers

 WHERE Num BETWEEN 1 AND 30

generates a record-list with 30 records, each of them containing a date between tomorrow

and tomorrow plus 30 days.

Another example is the following SQL operation128 that produces a record-list where each

record has a date in the next month:

 SELECT Dateserial(Year(Date()), Month(Date())+1, Num) AS Days_Next_Month

 FROM T_Numbers

 WHERE (Num BETWEEN 1 AND 31)

 AND (Month(Dateserial(Year(Date()), Month(Date())+1, Num))

 = (Month(Date())+1))

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

As you can see from the examples above, using more complex expression in the output-

fields, and more complex expressions in the “WHERE” clause, will allow you to flexibly

generate the record-lists that you need in a simple and efficient way.

You should also know that SQL allows you to create record-lists without the need of any

Table, but this can only produce one output record, and it must be the only SQL operation

of the Query. The following is an example129:

 SELECT "New York" AS City, "Manhattan" AS District ;

127 This is the Query “K_Next_30_dates” from file “Company_Database.accdb”.
128 This is the Query “K_Dates_next_month” from file “Company_Database.accdb”.
129 This is the Query “F_Select_without_FROM” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 615 of 726

this SQL Query code creates one output record with fields “City” and “District”,

and the values indicated in each field. Since you can only generate one record, and you

cannot combine the SQL operation above with other similar ones using the Union

operator, this SQL operation is only useful to do tests and in very few other particular

cases.

K.6.2 How do I replicate record-lists?

A Cross-Join (click F.8.2 and F.8.5) between a given input record-list and a record-list

with “n” records replicates the input record-list “n” times.

For example, the following SQL operation:

 (

 SELECT Num

 FROM T_Numbers

 WHERE Num BETWEEN 1 AND 2

) AS Replicator

 , -- The comma in this line is the Cross-Join operator

 T_Capital_Rainfall_Q AS Records_to_Replicate

duplicates the record-list from the Table “T_Capital_Rainfall_Q” (see at the end of this

section) and adds the field “Num” to distinguish the records belonging to each of the two

copies. One of the input record-list replicas has field “Num” with value “1” and the other

one with value “2”. If you wanted more copies, it is as simple as replacing the “2” in the

SQL operation above by the number of copies that you want.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

One useful application of replicating record-lists is producing partial and total results in

addition to the individual results. For example, if you want to show the rainfall data by

quarters, by years and by periods of five consecutive years. If you want to know more

about this, you may click “K.6.3 How do I produce totals in addition to individual

results?”.

You can also replicate record-lists with a Union operation. However, if you do it with the

Union operation you need to copy the whole SQL code of the operation whose records

want to replicate as many times as you want to replicate it, and also, you have to edit

each copy in case you want a differentiator field to distinguish each copy. This will make

your Query code longer, more difficult to read and more difficult to write. My advice is

you always use a Cross-Join as the one in the example above when you want to replicate

record-lists.

The Table “T_Capital_Rainfall_Q” used in the example above is the one of quarterly

rainfall measurements in capital cities used in several other examples along this Lightning

Guide:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 616 of 726

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

K.6.3 How do I produce totals in addition to individual results?

If you just want one aggregate total row, you may click “H.8 How do I show aggregate

values (e.g., totals) in a Table/Query/Form?”.

Otherwise, a Select-group_by_aggreg (click F.7.2 and F.7.6.2) over a duplicated

record-list (click the previous section K.6.2) produces totals in addition to individual

results.

Let me show you an example130 over the Table “T_Capital_Rainfall_Q” that I just showed

at the end of the previous section K.6.2:

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 , Iif(Num=1, "TOTAL", Quart) AS Quarter

 , Sum(Quart_Rainfall) AS Rainfall

 FROM

 (

 SELECT Num

 FROM T_Numbers

 WHERE Num BETWEEN 1 AND 2

) AS Duplicator

 , -- The comma in this line is the Cross-Join operator

 T_Capital_Rainfall_Q AS Records_to_Duplicate

 GROUP BY Capital, Cal_Year, Iif(Num=1, "TOTAL", Quart) ;

this SQL operation above produces each capital city with its quarterly rainfall data

(individual results), and also, its yearly totals. Its output record-list will be:

K_Partials_and_Totals

Cap_City C_Year Quarter Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Beijing 2018 TOTAL 28.8

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

Washington 2018 TOTAL 32.76

130 This is the Query “K_Partials_and_Totals” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 617 of 726

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

The guidelines to produce totals in addition to individual results in a general case are

the following:

1. You do a Cross-Join between the input record-list and a record-list having two

records and having a field (that I will call “Num”) with distinct values. This

record-list that has a fixed number of distinct records you can copy from the

example above (click K.6.1 for an explanation).

2. You enclose the Cross-Join from point 1 in a Select-group_by_aggreg using as

“GROUP BY” expressions the input fields, such that for each distinct joint

combination of their values you get one “TOTAL” record.

3. You add one additional “GROUP BY” expression consisting of an “Iif()”

function. The first argument of the “Iif()” function is “Num=1”, the second

argument is the string “"TOTAL"” and the third argument is the input field that

identifies each individual value.

4. The “SELECT” expressions are the “GROUP BY” expressions plus the “Sum()”

SQL aggregate function over the input field that contains each individual value.

Let us check how I followed these guidelines in the example above:

1. I did a Cross-Join between the input record-list “T_Capital_Rainfall_Q”

and a record-list having two records and having a field (called “Num”) with

distinct values.

2. I enclosed the Cross-Join from point 1 in a Select-group_by_aggreg using as

“GROUP BY” expressions the input fields such that for each distinct joint

combination of their values you get one “TOTAL” record. In the example these

fields are “Capital” and “Cal_Year”.

3. I added one additional “GROUP BY” expression consisting of an “Iif()” function.

The first argument of the “Iif()” function is “Num=1”, the second argument is the

string “"TOTAL"” and the third argument is the input field that identifies each

individual value, that in this case is “Quart”.

4. The “SELECT” expressions are the “GROUP BY” expressions plus the “Sum()”

SQL aggregate function over the input field that contains each individual value,

that in this case is “Quart_Rainfall”.

Notice that totals can be produced at several levels. You could have for example rainfall

by Quarter, the total by calendar year, and the total by period of 10 years. To do this

you would need to replicate three times the record-list (click K.6.1) and change the

“Iif()” expression in the “GROUP BY” and “SELECT” clauses. Notice further that instead

of doing the sum, you may want the average, or the maximum, or the minimum. This

is trivial to do just by using the corresponding SQL aggregate function “Avg()”,

“Max()” or “Min()” respectively.

As I indicated at the beginning of this section, in case you want only one total row for

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 618 of 726

the whole Query results, then you do not need to code it in SQL because MS-Access has

a tool to produce one total row for you. If you want to know how to produce this total

row, you may click “H.8 How do I show aggregate values (e.g., totals) in a

Table/Query/Form?”. Showing “Datasheet View” aggregate values using the Total “ ”

icon (click H.8) is very useful. However, on many cases you may want to produce several

aggregate records (e.g., totals per Quarter), or selective aggregates (e.g., average only of

the top branches). Also, you may want the aggregate records being part of the output

record-list of a Query, instead of being a value shown by MS-Access in “Datasheet
View”: for example, if you want the aggregate values of a Query to be further processed

by other Queries.

K.6.4 How do I convert rows into columns?

A Select-group_by_aggreg (click F.7.2 and F.7.6.2) converts rows into columns.

Let me show you an example131 over the Table “T_Capital_Rainfall_Q” (see at the end of

this section):

 SELECT Capital, Cal_Year

 , Max(Iif(Quart="Q1", Quart_Rainfall, Null)) AS Q1

 , Max(Iif(Quart="Q2", Quart_Rainfall, Null)) AS Q2

 , Max(Iif(Quart="Q3", Quart_Rainfall, Null)) AS Q3

 , Max(Iif(Quart="Q4", Quart_Rainfall, Null)) AS Q4

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year ;

this SQL operation above produces the following output record-list:

K_Rows_into_columns_1

Capital Cal_Year Q1 Q2 Q3 Q4

Beijing 2018 0 4 7.8 17

Washington 2018 12.13 5.67 2.26 12.7

If you compare this output record-list with the Table “T_Capital_Rainfall_Q”

(copied below), you will see what I mean by “convert rows into columns”: it means

producing one record for each group of four quarterly records, where the record contains

the values of the four quarters. I am therefore turning rows (i.e., four records) into

columns (i.e., the four fields in the new records with different structure).

The guidelines to convert rows into columns in a general case are the following:

1. You identify one “PIVOT” expression (over input field names) such that each

of its distinct values will produce one “PIVOT” column (i.e., one “PIVOT”

field). It is quite frequent to use one input field name as “PIVOT” expression.

2. You identify several “GROUP BY” expressions whose distinct joint values

determine the number of output records, and also uniquely identify each output

record. Each “GROUP BY” expression is built over the input field names

(without using SQL aggregate functions). It is quite frequent to use as

“GROUP BY” expressions some of the input fields that you want to stay the

131 This is the Query “K_Rows_into_columns_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 619 of 726

same in the output records.

3. You identify one “TRANSFORM” expression built over the input field names

(without using SQL aggregate functions). The “TRANSFORM” expression

produces the field values of the “PIVOT” fields (i.e., “PIVOT” columns). It is

quite frequent to use one input field name as “TRANSFORM” expression.

4. You do a Select-group_by_aggreg over the input record-list using the

“GROUP BY” expressions. The “SELECT” expressions are the “GROUP BY”

expressions, plus a number of “other” “SELECT” expressions that you want,

plus as many “Max()” functions as distinct values are produced by the “PIVOT”

expression. It is quite frequent to use none “other” “SELECT” expressions.

5. The argument to each “Max()” function is an “Iif()” function. The first argument

of each “Iif()” function is an equality comparison between the “PIVOT”

expression and one of the distinct values that it produces. The second argument

is the “TRANSFORM” expression and the third argument is Null.

6. It is quite frequent to use as “SELECT” field name corresponding to each

“Max()” function the value (converted to String) in the comparison operator of

the first argument of its “Iif()” function. This is, one of the distinct values

produced by the “PIVOT” expression.

The reason why you should use the SQL aggregate function “Max()” (or “Min()”) is

that the “Iif()” functions will produce only one (or none) non-Null “TRANSFORM”

expression value in each group of records, and this is the value that you want to show.

Notice that you should not use “First()” (nor “Last()”) because they return the value

from an unknown record even if it is Null. If you used “First()” (or “Last()”) you

would get a pseudo-random combination of meaningless Null values and meaningful

values from the “TRANSFORM” expression. However, “Max()” (and “Min()”) always

return a non-Null value (as long as there is one) which is precisely what you want.

Let us check how I followed the guidelines in the example above:

1. I identified (as a frequent case) one input field name, “Quart”, as the “PIVOT”

expression. Each of its distinct values will produce one “PIVOT” column (i.e.,

one “PIVOT” field). Therefore, we will have four “PIVOT” fields,

corresponding to the four distinct values “"Q1"”, “"Q2"”, “"Q3"”, and

“"Q4"”.

2. I identified (as a frequent case) one input field name as each of the two

“GROUP BY” expressions: “Capital” and “Cal_Year”. The two distinct joint

values of these fields determine the number of output records, and also uniquely

identify each output record.

3. I identified (as a frequent case) one input field name as the “TRANSFORM”

expression: “Quart_rainfall”. This field will produce the field values of the

“PIVOT” fields (i.e., “PIVOT” columns).

4. I did a Select-group_by_aggreg over the input record-list using the

“GROUP BY” expressions “Capital” and “Cal_Year”. The “SELECT”

expressions are the “GROUP BY” expressions (there are no “other” “SELECT”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 620 of 726

expressions), plus four “Max()” SQL aggregate functions (one for each of the

four distinct values of the “PIVOT” expression “Quart”: “"Q1"”, “"Q2"”,

“"Q3"”, and “"Q4"”).

5. The argument to each “Max()” function is an “Iif()” function. The first argument

of the “Iif()” function is an equality comparison between the “PIVOT”

expression “Quart” and one of the four distinct values that it produces (i.e.,

“"Q1"”, “"Q2"”, “"Q3"”, and “"Q4"”). The second argument is the

“transform” expression “Quart_rainfall” and the third argument is Null.

6. As a frequent case, I used as the output field name corresponding to each

“Max()” function the value (converted to String) in the comparison operator of

the first argument of its “Iif()” function. These four “PIVOT” field names are

therefore “Q1”, “Q2”, “Q3”, and “Q4”.

You can also turn rows into columns using a Transform operation (click K.6.6 and F.10).

The following Transform operation132 will produce exactly the same output record-list

shown above:

 TRANSFORM First(Quart_Rainfall) AS GenVals

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

 PIVOT Quart ;

Since there are two options (Select-group_by_aggreg and Transform), you may wonder

“which one should I use to covert rows into columns?”. The answer is:

• If you do not need to do further processing of the record-list, use a Transform

operation.

• Otherwise, use a Select-group_by_aggreg.

The reason is that a Transform operation works for a variable number of rows to be

turned into columns, you do not need to know in advance the values that will characterize

each column produced from rows, and it is easier to write. These are big advantages of

using a Transform operation. The drawback is that the Transform operation must be

the outermost SQL operation in the Query, and therefore, it is not possible to do any

further processing of its output record-list.

The main disadvantages of using a Select-group_by_aggreg are that the number of rows

you turn into columns is totally fixed (in the example above is fixed to four) in the SQL

code, and also, that you need to know in advance the field values that identify each

column, in order to write the corresponding “Iif()” expressions in the SQL code.

Notice that converting rows into columns is the reciprocal operation to the one in the

next section K.6.5, that addresses converting columns into rows.

The Table “T_Capital_Rainfall_Q” used in the example above is the one of quarterly

132 This is the Query “K_Rows_into_columns_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 621 of 726

rainfall measurements in capital cities used in several other examples of this Guide:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

K.6.5 How do I convert columns into rows?

Replicating the record-list (click K.6.2) as many times as rows you want converts

columns into rows.

Let me show you the following example133 over the results of the Query

“K_Rows_into_columns_1” from the previous section K.6.4:

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 , Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4,"Q4") AS Quart

 , Switch(Num=1, Q1, Num=2,Q2, Num=3,Q3, Num=4,Q4) AS Quart_rainfall

 FROM

 (SELECT Num FROM T_Numbers WHERE Num BETWEEN 1 AND 4) AS Quadr

 ,

 K_Rows_into_columns_1

 ORDER BY Capital, Switch(Num=1,"Q1", Num=2,"Q2", Num=3,"Q3", Num=4,"Q4")

this SQL operation above produces the same record-list as the one in the Table

“T_Capital_Rainfall_Q” (copied at the end of the previous section K.6.4).

If you compare the results of “K_Rows_into_columns_1” and the records of Table

“T_Capital_Rainfall_Q”, you will see what I mean by “converting columns into

rows”: it means producing four records, each with one quarterly value, from each record

that has four quarterly values. I am therefore turning columns (i.e., four fields) into rows

(i.e., four records).

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

The guidelines to convert columns into rows in a general case are the following:

1. You do a Cross-Join between the input record-list and a record-list having as

many records as the number of columns that you want to convert into rows and

having a field (that I will call “Num”) with distinct values. This record-list that

has a fixed number of distinct records you can copy from the example above

(click K.6.2 for an explanation).

133 This is the Query “K_Columns_into_rows” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 622 of 726

2. You enclose the Cross-Join from point 1 in a Select. Its “SELECT” expressions

are each of the “columns” (i.e., fields) that you do not want to convert into rows,

plus two specific “Switch()” functions (click G.6).

3. Both “Switch()” functions from point 2 have the same Boolean expression

arguments (the odd arguments). Each odd argument is an equality function

between the “Num” field and each of the distinct values (constants) that it has in

the record-list from point 1.

4. The even arguments of one of the “Switch()” functions are the field names of the

“columns” that you want to convert into rows.

5. The even arguments of the other “Switch()” function are the fields (i.e.,

“columns”) that you want to convert into rows, in the same order as in the

“Switch()” from point 4.

Let us check how I followed these guidelines in the example above:

1. I did a Cross-Join between the input record-list (the Query

“K_rows_into_columns_1”) and a record-list having 4 records, because I want

to convert 4 columns into rows. This second record-list has a field “Num” with

distinct values.

2. I enclosed the Cross-Join from point 1 in a Select. Its “SELECT” expressions

are each of the “columns” (i.e., fields) that I do not want to convert into rows

(“Capital” and “Cal_Year”) plus two specific “Switch()” functions

(click G.6).

3. Both “Switch()” functions from point 2 have the same Boolean expression

arguments (the odd arguments). Each odd argument is an equality function

between the “Num” field and each of the distinct values (constants) that it has in

the record-list from point 1: “Num=1”, “Num=2”, “Num=3” and “Num=4”.

4. The even arguments of one of the “Switch()” functions are the field names of the

“columns” that I wanted to convert into rows: “"Q1"”, “"Q2"”, “"Q3"” and

“"Q4"”.

5. The even arguments of the other “Switch()” function are the fields (i.e.

“columns”) that I wanted to convert into rows, in the same order as in the

“Switch()” from point 4: “Q1”, “Q2”, “Q3” and “Q4”.

Notice that converting columns into rows is the reciprocal operation to the one in the

previous section K.6.4, that addresses converting rows into columns.

K.6.6 How do I use a Transform operation to show a cross table?

A Transform (click F.10) allows to show your data as a cross table.

Let me show you an example134 over the Table “T_Capital_Rainfall_Q” (see at the end of

134 This is the Query “K_Rows_into_columns_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 623 of 726

this section):

 TRANSFORM First(Quart_Rainfall) AS GenVals

 SELECT Capital AS Cap_City, Cal_Year AS C_Year

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

 PIVOT Quart ;

this SQL operation above produces the following output record-list:

K_Rows_into_columns_2

Capital Cal_Year Q1 Q2 Q3 Q4

Beijing 2018 0 4 7,8 17

Washington 2018 12.13 5.67 2.26 12.7

As you may see, this is a cross table of the data from the Table

“T_Capital_Rainfall_Q” (copied below). This cross table contains one record for

each group of four quarterly records, where the record contains the values of the four

quarters.

The guidelines to write a cross table with a Transform expression in a general case are

the following:

1. You identify one “PIVOT” expression (over input field names) such that each

of its distinct values will produce one “PIVOT” column (i.e., one “PIVOT”

field). It is quite frequent to use one input field name as “PIVOT” expression.

2. You identify several “GROUP BY” expressions whose distinct joint values

determine the number of output records, and also uniquely identify each output

record. Each “GROUP BY” expression is built over the input field names

(without using SQL aggregate functions). It is quite frequent to use as

“GROUP BY” expressions some of the input fields that you want to stay the

same in the output records.

3. You identify one “TRANSFORM” expression built over the “GROUP BY”

expressions, the “PIVOT” expression and SQL aggregate functions over

expressions over the input field names. The “TRANSFORM” expression

produces the “PIVOT” field values (i.e., the values in the “PIVOT” columns). It

is quite frequent to use the “First()” SQL aggregate function over one input

field name as “TRANSFORM” expression.

4. You identify the “SELECT” expressions that you want. It is quite frequent to use

the “GROUP BY” expressions as the “SELECT” expressions, because their joint

values uniquely identify each output record.

Let us check how I followed the guidelines in the example above:

1. I identified (as a frequent case) one input field name, “Quart”, as the “PIVOT”

expression. Each of its distinct values will produce one “PIVOT” column (i.e.,

one “PIVOT” field). Therefore, we will have four “PIVOT” fields,

corresponding to the four distinct values “"Q1"”, “"Q2"”, “"Q3"”, and

“"Q4"”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 624 of 726

2. I identified (as a frequent case) one input field name as each of the two

“GROUP BY” expressions: “Capital” and “Cal_Year”. The two distinct joint

values of these fields determine the number of output records, and also uniquely

identify each output record.

3. I identified (as a frequent case) the “First()” SQL aggregate function over the

input field name “Quart_Rainfall” as “TRANSFORM” expression.

4. As a frequent case, I identified the “GROUP BY” expressions “Capital” and

“Cal_Year” as “SELECT” expressions.

You can make the most out of the Transform operation by converting different data types

to String through a suitable “TRANSFORM” expression. This will allow you to present

your Query results in an extremely flexible way, combining numbers, strings, dates and

Boolean values in a seamless way. If you want to know more, you may click “K.6.13 How

do I use String fields to display different data types in the same Query column?”.

The Table “T_Capital_Rainfall_Q” used in the example above is the one of quarterly

rainfall measurements in capital cities used in several other examples of this Guide:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

K.6.7 How do I produce the non-matching records of a Join operation?

A Select-no_aggreg over a “LEFT JOIN” or a “RIGHT JOIN” and a “WHERE” clause

using the “IsNull()” function produces the left or right (respectively) records that do not

match the “ON” Boolean expression.

Let me show it with the following example over the Tables “T_House_Owners” and

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 625 of 726

“T_Car_Owners” (copied at the end of this section). See the following Query code135:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 (

 SELECT ID, Name, Address, Not_Null

 FROM

 T_House_owners

 ,

 (

 SELECT Num AS Not_Null FROM T_Numbers WHERE Num=1

) AS Nums

) AS Houses

 RIGHT JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID

 WHERE IsNull(Not_Null) ;

This Query produces the following output record-list:

K_Non_matching_Records_1

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

18 John Welsh Opel Zafira

23 Juan Perez Ford Mustang

If you check the content of the Tables below, you will see that these records are exactly

the non-matching records from the right record-list of the “ON” expression.

The Table “T_Numbers” is an auxiliary Table of integer numbers (click K.2.2) with

just one field named “Num”.

The guidelines to produce the non-matching records of a Join in a general case are the

following:

1. You do a Cross-Join between one input record-list and a record-list having only

one record with one non-Null field (it can be exactly the same Select over

“T_Numbers” in the example above, highlighted in green). The Cross-Join is

enclosed in a Select that exposes all the fields from the Cross-Join operation,

including the field “Num” (changing name to “Not_Null”, if you want) from

“T_Numbers”.

2. You do a “RIGHT JOIN” having as left record-list the Select from point 1 and

as right input record-list the one not used in point 1. The “ON” expression is the

one you want for the Join.

3. The “RIGHT JOIN” from point 2 is enclosed in a Select that exposes all the

fields from the left and right input record-lists. This Select has the “WHERE”

expression “IsNull(Not_Null)”, where “Not_Null” is the field from point 1.

Let us check how I followed these guidelines in the example above:

1. I did a Cross-Join between one input record-list “T_House_owners” and a

record-list having only one record with one non-Null field (it is the Select over

“T_Numbers” in the example above, highlighted in green). The Cross-Join is

135 This is the Query “K_Non_matching_Records_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 626 of 726

enclosed in a Select that exposes all the fields from the Cross-Join operation,

including the field “Num” from “T_Numbers” that I renamed to field

“Not_Null”.

2. You do a “RIGHT JOIN” having as left record-list the Select from point 1 and

as right input record-list the one not used in point 1 which is “T_Car_owners”.

The “ON” expression is the one you want for the Join, which in the example is

“Houses.ID = Cars.ID”.

3. The “RIGHT JOIN” from point 2 is enclosed in a Select that exposes all the

fields from the left and right input record-lists. This Select has the “WHERE”

expression “IsNull(Not_Null)”, where “Not_Null” is the name I gave to the

“Num” field from point 1.

You may be puzzled by my having added a Cross-Join operation with just one record

from the Table “T_Numbers” (highlighted in green above). This Cross-Join operation

is mandatory when you are not sure if the left fields may contain Null or not. Without

it, the Query would produce matching records that have Null in the field to which you

apply the “IsNull()” function. Even if you wrote a “WHERE” expression checking that all

the left fields are Null, it could be the (quite strange) case that the left input record-list

contained records with all fields having Null, and this would again produce a wrong

result.

However, if you were absolutely sure that one of the left fields cannot be Null, then you

can write a simpler Query. You can be absolutely sure of that, for example, when the field

is part of the Primary Key of the Table. In this example, the field “ID” is the Primary

Key of Table “T_House_Owners”. Therefore, we could write the following simpler

Query136 that would do the job:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_owners AS Houses

 RIGHT JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID

 WHERE IsNull(Houses.ID) ;

If you want to know more about the Join operators, and what are matching records, you

may click “F.8.2 What are the Join operators?”.

I am copying here the Tables “T_House_Owners” and “T_Car_Owners” for your

136 This is the Query “K_Non_matching_Records_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 627 of 726

convenience:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

K.6.8 How do I write a Full-Outer-Join?

Full-Outer-Join is considered undesirable because it produces Nulls, which need to be

handled properly, weakens indexing and results in worse performance. Avoid Full-

Outer-Join as much as possible.

In many cases what you want is to “merge” two record-lists into a single one, and you

can get this using “UNION ALL” and “GROUP BY” instead of using a Full-Outer-Join.

If you want to “merge” two record-lists, you may click “K.6.9 How do I “merge” two

record-lists?”.

However, on a few occasions you may actually need a Full-Outer-Join. You get a Full-

Outer-Join by doing a “LEFT JOIN” plus a “UNION ALL” with the non-matching

records from the right record-list. Of course, you can also do it with a “RIGHT JOIN”

plus a “UNION ALL” with the non-matching records from the left record-list.

Let us then combine the “LEFT JOIN” example from F.8.7.2, with the non-matching

records example from K.6.7. The result would be the Query137:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM F_Join_Left_1

 UNION ALL

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM K_Non_matching_Records_1

If you ran this Query, you would get the following output record-list:

K_Full_Outer_Join_1

Houses.ID Houses.Name Address Cars.ID Cars.Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St.

18 John Welsh Opel Zafira

23 Juan Perez Ford Mustang

If you check the two Tables copied at the end of this section, you will see that this is

precisely the result of a Full-Outer-Join: the first two records are the matching records,

the third one is the non-matching record from the left record-list and the fourth and

137 This is the Query “K_Full_Outer_Join_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 628 of 726

fifth are the non-matching records from the right record-list.

If you want to check the specific SQL code that produces the Full-Outer-Join, I am

expanding below the code of the Queries “F_Join_Left_1” and

“K_Non_matching_Records_1” for your convenience138:

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 T_House_Owners AS Houses

 LEFT JOIN

 T_Car_Owners AS Cars

 ON Houses.ID = Cars.ID

 UNION ALL

 SELECT Houses.ID, Houses.Name, Address, Cars.ID, Cars.Name, Car

 FROM

 (

 SELECT ID, Name, Address, Not_Null

 FROM

 T_House_owners

 ,

 (

 SELECT Num AS Not_Null FROM T_Numbers WHERE Num=1

) AS Nums

) AS Houses

 RIGHT JOIN

 T_Car_owners AS Cars

 ON Houses.ID = Cars.ID

 WHERE IsNull(Not_Null) ;

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

The guidelines to do a Full-Outer-Join in a general case are the following:

1. You do a “LEFT JOIN” (enclosed in a Select operation) between the two input

record-lists. If one of the two input record-lists has one (or more) fields that for

sure cannot be Null, that will be the left input record-list. The “ON” Boolean

expression is the one that you want for the Full-Outer-Join.

2. If the left record-list has one (or more) fields that for sure cannot be Null, you

skip this step. Otherwise, you do a Cross-Join between the left record-list and a

record-list having only one record with one non-Null field (it can be exactly the

same Select over “T_Numbers” in the example above, highlighted in green). The

Cross-Join is enclosed in a Select that exposes all the fields from the Cross-Join

operation, including the field “Num” from “T_Numbers” (with another field name,

if you want).

3. You do a “RIGHT JOIN” having the same right input record-list from point 1.

Its left record-list is either the Select from point 2, or the left input record-list

from point 1, as corresponds (see point 2). The “ON” expression must be exactly

the same as the one of the “LEFT JOIN” from point 1.

4. The “RIGHT JOIN” from point 3 is enclosed in a Select that exposes all the

fields from the left and right input record-lists from point 1. This Select has the

“WHERE” expression “IsNull(field)”, where “field” is either the “Num”

138 This is the Query “K_Full_Outer_Join_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 629 of 726

field from point 2, or the field from left input record-list that for sure cannot be

Null, as corresponds (see point 2).

5. You do a “UNION ALL” with the Select enclosing the “RIGHT JOIN” from

point one and the Select enclosing the “RIGHT JOIN” from point 4.

Let us check how I followed these guidelines in the example above:

1. I did a “LEFT JOIN” (enclosed in a Select operation) between

“T_House_Owners” and “T_Car_Owners”. The “ON” Boolean expression is

“Houses.ID = Cars.ID”.

2. I knew that both record-lists have one field (“ID”) that for sure cannot be Null,

but I preferred to show in the example the general case, so I applied this point 2,

even when it was not need. I therefore did a Cross-Join between the left record-

list and a record-list having only one record with one non-Null field. I enclosed

the Cross-Join a Select that exposes all the fields from the Cross-Join operation,

including the field “Num” from “T_Numbers”, that I renamed to “Not_Null”.

3. I did a “RIGHT JOIN” having the same right input record-list from point 1

“T_Car_Owners”. Its left record-list is the Select from point 2. The “ON”

expression is exactly the same as the one in the “LEFT JOIN”.

4. I enclosed the “RIGHT JOIN” from point 3 in a Select that exposes all the fields

from the left and right input record-lists from point 1. This Select has the

“WHERE” expression “IsNull(Not_Null)”, where “Not_Null” is the “Num”

field from point 2 that I renamed to “Not_Null”.

5. I did “UNION ALL” with the Select enclosing the “RIGHT JOIN” from point 1

and the Select enclosing the “RIGHT JOIN” from point 4.

If you want to know more about a Full-Outer-Join, you may click “F.8.8 What is the

output record-list of a Full-Outer-Join?”.

If you want to compare a Full-Outer-Join with the other Join operators, you may click

“F.8.2 What are the Join operators?”.

I am copying here the Tables “T_House_Owners” and “T_Car_Owners” for your

convenience:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

K.6.9 How do I “merge” two record-lists?

When I say “merge” two record-lists I mean joining records from two input record-lists

when both records have the same values in some common specific fields that uniquely

identify each record. This is equivalent to say that the common specific fields are a

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 630 of 726

composite (candidate) Key of each of the input record-lists.

Let me show this to you by merging the same Tables “T_House_Owners” and

“T_Car_owners” (copied at the end of this section) that I used for the Full-Outer-Join.

One way of merging both Tables is doing a Full-Outer-Join (click K.6.8), and then

merging the two “ID” fields into a single field. This would be done with the following

Query139:

SELECT Iif(IsNull(Houses.ID), Cars.ID, Houses.ID) AS ID

 , Houses.Name AS Houses_Name, Houses.Address AS Houses_Address

 , Cars.Name AS Cars_Name, Cars.Car AS Cars_Car

FROM K_Full_Outer_Join_1

The Query “K_Full_Outer_Join_1” from K.6.8 performs the Full-Outer-Join. The

merging of the two “ID” fields is done with the “Iif()” and “IsNull()” functions. The

other fields from the Full-Outer-Join are just renamed. The result of the Query above is:

K_Merge_Tables_1

ID Houses_Name Houses_Address Cars_Name Cars_Car

3 Peter Sellers 345 Bolton St. Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. Xi Liu Ford Focus

14 Xi Liu 580 Beacon St.

18

John Welsh Opel Zafira

23

Juan Perez Ford Mustang

You may see that we achieved the desired result.

However, the Full-Outer-Join operation has some disadvantages (click F.8.2), and you

should avoid it as much as possible. This is why I am showing you here how to merge

two record-lists using “UNION ALL” and “GROUP BY”.

The following Query140 achieves exactly the same result just using “UNION ALL” and

“GROUP BY”:

 SELECT ID, Max(Name) AS Houses_Name, Max(Address) AS Houses_Address

 , Max(C_Name) AS Cars_Name, Max(Car) AS Cars_Car

 FROM

 (

 SELECT ID, Name, Address, Null AS C_Name, Null AS Car

 FROM T_House_Owners

 UNION ALL

 SELECT ID, Null, Null , Name , Car

 FROM T_Car_Owners

)

 GROUP BY ID

The guidelines to merge two record-lists in a general case are the following:

1. You enclose each of the two record-lists that you want to merge in a Select

operation. The field(s) that identify each record in both record-lists that you want

to merge (that must be completely equivalent one-to-one) are placed in the same

139 This is the Query “K_Merge_Tables_1” from file “Company_Database.accdb”.
140 This is the Query “K_Merge_Tables_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 631 of 726

output field positions.

2. The remaining fields are placed on output field positions mutually disjoint

between the two record-lists.

3. The values of the fields in positions that correspond to the other record-list are

set to Null.

4. Having done the above, you do a “UNION ALL” over both Select operations.

5. Having done the above, you enclose the Union operation in a Select-

group_by_aggreg operation, where the “GROUP BY” expressions are the fields

from point 1 above. These fields from point 1 are placed as such as “SELECT”

expressions of the Select-group_by_aggreg. Each of the other “SELECT”

expressions is the “Max()” SQL aggregate function over the corresponding

fields.

Let us check how I followed these guidelines in the example above:

1. I enclosed each of the two record-lists (the Tables “T_House_Owners” and

“T_Car_Owners” in a Select operation. The “ID” field that identifies each

record in both record-lists (that is completely equivalent one-to-one) are placed

in the same output field position: they are both placed in position one (left to

right).

2. The remaining fields are placed on output field positions mutually disjoint

between the two record-lists. I placed the fields “Houses.name” and

“Houses.Address” in positions two and three, and the fields “Cars.Name”

and “Cars.Car” in positions four and five (left to right), respectively.

3. The values of the fields in positions that correspond to the other record-list are

set to Null. I did this easily setting to “Null” the corresponding “SELECT”

expressions of each of the two innermost Select operations.

4. Having done the above, I did a “UNION ALL” over both Select operations.

5. Having done the above, I enclosed the Union operation in a Select-

group_by_aggreg operation, where the “GROUP BY” expressions is the field

from point 1 above: this is the field “ID”. This field “ID” from point 1 I placed

as such in the first “SELECT” expression. Each of the other “SELECT”

expressions is the “Max()” SQL aggregate function over the corresponding fields.

Notice that you must use the SQL aggregate function “Max()” (or “Min()”) and you

must not use “First()” (nor “Last()”). The reason is that “First()” (and

“Last()”) return the value from an unknown record even if it is Null. However,

“Max()” (and “Min()”) always return a non-Null value (as long as there is one) which

is precisely what we want.

I am copying here the Tables “T_House_Owners” and “T_Car_Owners” for your

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 632 of 726

convenience:

T_House_owners T_Car_owners

ID Name Address ID Name Car

3 Peter Sellers 345 Bolton St. 3 Peter Sellers Renault Clio

6 Xi Liu 1342 Main St. 6 Xi Liu Ford Focus

14 Xi Liu 580 Beacon St. 18 John Welsh Opel Zafira

 23 Juan Perez Ford Mustang

K.6.10 How do I produce a weighted average?

Doing an “INNER JOIN” with a Select-group_by_aggreg and the “Sum()” SQL

aggregate function.

Let me show you an example141 over the Table “T_Capital_Rainfall_Q” (see at the end of

this section):

 SELECT Q.Capital, Q.Cal_Year, Q.Quart

 , Quart_Rainfall/Yearly_Rainfall AS Yearly_fraction

 FROM

 T_Capital_Rainfall_Q AS Q

 INNER JOIN

 (

 SELECT Capital, Cal_Year, Sum(Quart_Rainfall) AS Yearly_Rainfall

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

) AS Y

 ON (Q.Capital=Y.Capital) AND (Q.Cal_Year=Y.Cal_Year)

The output record-list would be:

K_Weighted_Average

Capital Cal_Year Quart Yearly_fraction

Beijing 2018 Q1 0.0%

Beijing 2018 Q2 13.9%

Beijing 2018 Q3 27.1%

Beijing 2018 Q4 59.0%

Washington 2018 Q1 37.0%

Washington 2018 Q2 17.3%

Washington 2018 Q3 6.9%

Washington 2018 Q4 38.8%

As you may see, the field “Yearly_fraction” has the weights of the quarterly rainfall

within each calendar year. If you wanted to do a weighted average, you only need to

multiply the value that you want to weight by “Yearly_fraction”.

141 This is the Query “K_Weighted_Average” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 633 of 726

The guidelines to do a weighted average in a general case are the following:

1. You enclose the input record-list in a Select-group_by_aggreg operation. The

“GROUP BY” expressions assign each record to a group within which you will

do a weighted average. Each distinct set of values of the “GROUP BY”

expressions identifies one such group. Each group has one total value that will

be the divisor(s) (the number in the lower part of a division) of the weights in

each group. The total value is obtained with the “Sum()” SQL aggregate function

over the value of each dividend (the number in the upper part of a division) of

each weight.

2. You do an Inner-Join of the Select-group_by_aggreg (from point 1) with the

input record-list, where the “ON” expression is a set of pairwise equality

expressions (combined with “AND”) between the values of the “GROUP BY”

expressions coming from the Select-group_by_aggreg and the input record-list.

3. The “SELECT” expressions of the Select enclosing the Inner-Join operation

(from point 2) are the “GROUP BY” expressions (that identify each group of

weighted averages), the expression that identifies each individual value within

each group and the weight, which is the division between each dividend (this is,

the argument of the “Sum()”) and its divisor (this is, the result of the “Sum()”).

Let us check how I followed these guidelines in the example above:

1. I enclosed the input record-list “T_Capital_Rainfall_Q” in a Select-

group_by_aggreg operation. The “GROUP BY” expressions have been

“Capital” and “Cal_Year”. The distinct values of these two expressions

identify each group within which I will do a weighted average. Each group has

one total value that will be the divisor(s) (the number in the lower part of a

division) of the weights in each group. The total value is obtained with the

“Sum()” SQL aggregate function over “Quart_Rainfall”, which is the value

of each dividend (the number in the upper part of a division) of each weight.

2. I did an Inner-Join of the Select-group_by_aggreg (from point 1) with the input

record-list “T_Capital_Rainfall_Q”, where the “ON” expression is a set of

pairwise equality expressions (combined with “AND”) between the values of the

“GROUP BY” expressions coming from the Select-group_by_aggreg (named

“Y” in this example) and the input record-list (named “Q”):

 ON (Q.Capital=Y.Capital) AND (Q.Cal_Year=Y.Cal_Year)

3. I chose the following “SELECT” expressions of the Select enclosing the Inner-

Join operation (from point 2):

o The “GROUP BY” expressions (that identify each group of weighted

averages): “Capital” and “Cal_Year”.

o The expression that identifies each individual value within each group:

“Quart”

o The weight, which is the division between each dividend (this is, the

argument of the “Sum()”) and its divisor (this is, the result of the “Sum()”):

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 634 of 726

“Quart_Rainfall/Yearly_Rainfall”

Notice that in case the group of values over which “Sum()” is applied contains one or

more Null, all of the Null are ignored in the computation of the weights, because the

“Sum()” SQL aggregate function ignores Nulls. If you wanted to take the Null into

account (e.g., considering them as the value zero), it is easy to modify the expression that

is an argument to “Sum()”. For example, you could do:

 Sum(Iif(IsNull(Quart_Rainfall), 0, Quart_Rainfall)) AS Yearly_Rainfall

If you want to know more about “INNER JOIN” and/or “Sum()”, you may click

“F.8.6.2 What are the output records of an “INNER JOIN”?” and “F.7.18.5 What are

the “Sum()” and “Avg()” SQL aggregate functions?”.

The Table “T_Capital_Rainfall_Q” used in the example above is the one of quarterly

rainfall measurements in capital cities used in several other examples of this Guide:

T_Capital_Rainfall_Q

Capital Cal_Year Quart Quart_Rainfall

Beijing 2018 Q1 0

Beijing 2018 Q2 4

Beijing 2018 Q3 7.8

Beijing 2018 Q4 17

Washington 2018 Q1 12.13

Washington 2018 Q2 5.67

Washington 2018 Q3 2.26

Washington 2018 Q4 12.7

K.6.11 How do I design a data check Query?

A data check Query is composed of a long list of Union operations. Each Select operation

in the long list of Union operations checks for errors on a specific Table, or on a specific

set of Tables. Each Select operation takes a number of records from a Table (or a number

of joined records from several Tables) and performs a number of error checks over each

of them. For each erroneous record or joined-records the Query will produce one output

record with an informative error message.

It is important to highlight that the Query should avoid retrieving the same records several

times, to prevent the data check Query from becoming very slow (click K.7). Therefore,

for each record, or joined records, that you retrieve, do all the checks over it/them in a

given Select operation and do not have several Select operations, each checking a

different error over the same record-list.

Since there are many different error checks that you may need to do, over records with

very different record-types, the best is that the data check Query has only one output field

of Short Text type. In this way, the output of each and every Select operation are also

records with just one Short Text field, and the Union operations binding all these Select

operations work perfectly.

To avoid the data check Query becoming very slow, do not check all data in your Tables.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 635 of 726

In order to limit the amount of data checked, you should design the data check Query to

check only the “most recent” Table data (e.g., the latest “n” invoices, or all the invoices

in the “n” last years). The concrete interpretation of “most recent” can be hardwired in

the Query, where the value of “n” is fixed in the Query code, or you can add a parameter

to the Query indicating the extent of Table data that should be checked. You could for

example add a Date/Time parameter that indicates to check all data more recent that the

date provided as the parameter. The approach I personally like best is to have the Query

without a parameter and design it to check the data from the last “n” years. The value of

“n” you choose depends on the yearly volume of data added to your database, but frequent

values are between 1 and 5 years.

Some examples of error checks that you may find useful are:

• In a Table of contracts, check that no person has two contracts that overlap in time.

This can be achieved doing a self-join (i.e., a join of the Table records with

themselves), where the “ON” Boolean expression requires that the person name in the

two input record-lists is the same, and the contract dates overlap. You then have to

remove the matching of a contract with itself, which is not difficult, and you can thus

detect overlapping contracts. The output-expression has to be designed to produce one

single Short Text field, with one error message out of the different fields of each

erroneous contract record.

• In a Table of project expenses, where each expense may be partially charged to a

project, check that the expense amounts charged to different projects add up to the

total amount of the expense. You can do this by first selecting only the records that

correspond to expenses partially charged, for example, by putting a “WHERE” clause

requiring that the “Total_amount” of the expense and the “Amount_charged” to the

project are different. You then add up the values of “Amount_charged” for each

expense using a “GROUP BY” clause over the field that identifies the expense (e.g.,

“Invoice_number”, or whatever field identifies each expense). Then, you add a

“HAVING” clause requiring that the sum of partials is different from the total), and

this gives you the expenses that do not add up correctly. The “HAVING” clause would

be:

 HAVING Sum(Amount_charged) <> First(Total_amount)

The “SELECT” expression has to be designed to produce one single Short Text field,

with one error message out of the different fields of each erroneous contract record.

• Between a Table of projects and a Table of project expenses, check that the date of

every project expense is within the start and end dates of the project. This can be

achieved doing a “LEFT JOIN” between the project expenses Table and the projects

Table where the “ON” Boolean expression requires that the project in each record is

the same. Then you add a “WHERE” clause requiring that the expense date is outside

of the project start and end dates. The “SELECT” expression has to be designed to

produce one single Short Text field, with one error message out of the different fields

of each erroneous contract record.

You must run the data check Query quite frequently (e.g., once a day), to detect as soon

as possible any possible data error in your database. Also, you should run the data check

Query when you have detected an error in the results of a test and proven Query, because

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 636 of 726

very likely the error in test and proven Queries comes from erroneous Table data.

K.6.12 How do I get the exact record ordering I want?

A Select with “DISTINCT” and a Transform have severe limitations on how you can

design its “ORDER BY” expressions (click F.7.12 and F.10.8). For the case of the Select,

this is trivial to solve by enclosing it inside another Select operation, where you can

design the “ORDER BY” expressions as you want. For the case of a Transform, it

cannot be solved: each “ORDER BY” expression can only be exactly the same as one

of the “GROUP BY” expressions. However, you can create specific “GROUP BY”

expressions in the Transform to order your records (click K.6.12.4).

For the Select operation, there are many useful ways of writing the list of “ORDER BY”

expressions. I show a few of them in:

• “K.6.12.1 How do I order over several expressions?”

• “K.6.12.2 How do I order over only one expression?”

• “K.6.12.3 How do I order over user-defined functions?”

• “K.6.12.4 How do I order over “GROUP BY” expressions?”

• “K.6.12.5 How do the four ordering approaches compare among themselves?”

K.6.12.1 How do I order over several expressions?

Designing several expressions that placed in your “ORDER BY” clause will produce the

record-ordering that you want.

Imagine that you have the Table “T_Contracts” with fields “Pers” (person name),

“Branch” (the branch where the person works), “Salary” and “RenD” (contract renewal

date). Imagine that you want the following order: people with a salary higher than

$100,000, followed by people with a salary lower than $40,000, followed by the other

people. Order the people in the first group by descending salary. Order the people in the

second group by ascending salary. Order the people in the third group by ascending

contract renewal date. An “ORDER BY” expression142 that does this is:

 ORDER BY Switch(Salary > 100000, 1

 , Salary < 40000, 2

 , True , 3)

 , Switch(Salary > 100000, -Salary

 , Salary < 40000, Salary

 , True , RenD)

Notice how ordering over one (or more) initial “Switch()” function(s) allows to order

records in arbitrary groups. Notice how ordering over a last “Switch()” function allows

to use a different ordering criterion within each group. Notice how the records that have

the same values on the first “n” ordering criteria of the “ORDER BY” clause are ordered

among themselves according to criterion “n+1”.

K.6.12.2 How do I order over only one expression?

Designing only one expression that placed in your “ORDER BY” clause produces the

142 This is the Query “K_Order_by_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 637 of 726

record-ordering that you want.

Using the same example from the previous subsection K.6.12.1, you could write the

following “ORDER BY” expression143 that produces the same ordering:

 ORDER BY Switch(Salary > 100000, 100+Salary/100000

 , Salary < 40000 , 50-Salary/100000

 , True , -RenD/100000) DESC

K.6.12.3 How do I order over user-defined functions?

Writing user-defined VBA functions that takes as arguments the fields that you need for

your ordering and produces a value according to the ordering that you want.

K.6.12.4 How do I order over “GROUP BY” expressions?

In a Transform operation, each “ORDER BY” expression can only be exactly the same

as one of the “GROUP BY” expression(s). This is a very severe limitation, but you can

create specific “GROUP BY” expression(s) to order your records. You have to do it so it

will not modify the grouping of the records that you want to produce. This is trivial to

do if the ordering “GROUP BY” expression(s) are built using the other “GROUP BY”

expression(s) as their elements.

Doing this you get a flexible way of ordering the records of a Transform operation. My

advice is that you include each and every of the ordering “GROUP BY” expression(s)

as a “SELECT” expression of the Transform operation. In this way, the user can see (as

a field in the Query results) the values over which the records are ordered, and also, she/he

can modify the record sorting interactively (click H.2.3).

K.6.12.5 How do the four ordering approaches compare among themselves?

The four ordering approaches shown in K.6.12.1, K.6.12.2, K.6.12.3 and K.6.12.4 are

complementary and not disjoint. You can therefore use the one most convenient for each

specific SQL operation, as well as combinations of them, as you see fit.

Regarding simplicity of coding and code maintenance, the simplest approach is ordering

over several expressions, followed by ordering over one expression, ordering over user-

defined functions and finally ordering over “GROUP BY” expression(s) which is the

most complex.

The advantages of ordering over several expressions or over a user-defined function is

that you can combine ordering over String fields combined with numeric-like fields.

However, trying to order over a combination of String fields and numeric-like fields

over only one expression has very severe limitations.

The advantage of using only one expression or user-defined function, is that you can use

the ordering value as an output field called for example “Ord”. This allows you to change

the ordering (e.g., based on other fields) while you are seeing the Query results in

“Datasheet View” (click H.2.3) and recover the original ordering at any moment by

ordering on the field “Ord”. It is true that you can always recover the original ordering by

running the Query again, without needing an “Ord” field, but some Queries are slow, and

143 This is the Query “K_Order_by_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 638 of 726

doing this would have a performance penalty.

The advantage of ordering over a user-defined function is that it is the most flexible and

you can change the ordering by modifying your VBA code, without having to modify

your SQL code.

The advantage of ordering over “GROUP BY” expression(s) is that you can flexibly order

the output records of a Transform operation.

K.6.13 How do I use String fields to display different data types in the

same Query column?

This section indicates how to display values from different data types in the same field

(in different records) in Query results (i.e., a “column” displaying values of different

data types). If what you want is to store, in one Table field (“column”), a list of values,

you may click “K.2.8 How do I store a list of values, instead of a single value, in a Table

field?”.

You display values from different data types in the same field (in different records) by

converting all the values to the String data type. In order to display the values properly,

you use the “Format()” function and Program Flow functions (click M.15) to convert all

numeric-like144 values to String data type, while formatting each specific value (Boolean,

Integer, Date) in the required way.

For example, imagine that you want the following output record-list145:

K_Output_formatting

Data_element Zone_A Zone_B Zone_C

State California Spain Germany

Top Employee Cindy Carpenter Juan del Rio Steffan Schmidt

Employee Sales 230,945.78 204,546.34 203,478.52

Company Sales 25,254,478.85 27,234,497.42 30,234,478.78

Top Sales Day 3-Jan-2025 23-Apr-2025 17-Nov-2025

Labor Conflict Yes No No

as you may see, each column appears to combine values from String, Double, Date and

Boolean data types. In fact, all these values are of String data type.

Converting all values to String is extremely useful and flexible to present the final results

of your Queries. However, if you do this, you should be aware of the following problems:

• No further processing

If you want to use the results of this Query in another Query, you can do it, but since

you have values from different data types in the same field, the processing you can

do is extremely limited. For this reason, this technique of combining values of

different data types converting them to String is mainly used to present the final

results of a Query, that will not have further processing.

144 Remind that numeric-like data types include Date and Boolean.
145 This is the Query “K_Output_formatting” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 639 of 726

• Same Alignment

All the values in each column must have the same alignment. This is, within the

same column, you cannot have left justification in some values and right

justification in other values: all the values in each column are either right justified,

left justified, or whatever other justification you configure. The default String field

justification is left justified. If you want a field to be right justified just configure the

field property “Format” as “Standard”. If you want to know how to do this, you may

click “H.7 How do I configure the column text alignment in a Table/Query/Form?”.

• String ordering

All the values are String. Therefore, if you sort the results over a given column, the

records will be ordered based on String ordering, and not according to the “apparent”

value. For example, if you sort a column with values “20-Aug-2018”, “15-Dec-2019”

and “3-Jan-2020” in “AtoZ” ordering you will get:

15-Dec-2019

20-Aug-2018

3-Jan-2020

which is the alphabetical ordering used in String, which is clearly different from the

sorting if these values were Date.

• Copy and Paste into Excel

When you copy and paste values into Excel (or any other application that enforces

data types), all the values will be passed as text strings, even if they look like

numbers, dates or Booleans, because the default pasting maintains the original data

types. Therefore, if you try to sum in Excel a column of values that look like numbers,

the result will be zero, because they are all text strings.

What you can do is paste as unformatted text, and then Excel will interpret each string

of unformatted text and will most likely (but not always) paste the values correctly.

As a conclusion, I would like to point out that databases have lots of advantages over

spreadsheets, but one disadvantage is that, in principle, the values in a given Query

column in “Datasheet View” must all have the same data type and the same formatting.

This greatly restricts the possibilities of designing your Query results in a way that show

the information in the way you want. However, as we have seen along this section, by

converting all values to String, you can combine in the same Query column values of

very different data types, achieving a very high data-presentation flexibility.

K.6.14 What are useful tricks with SQL aggregate functions?

MS-Access does not allow to code user-defined SQL aggregate functions in VBA. You

can therefore only use the built-in SQL aggregate functions (click F.7.18). This section

explains how to use the available built-in SQL aggregate functions to produce results that

you may need, as if other SQL aggregate functions would exist:

• “AllNull(exp())”:

Returns True if all the results of the expression in its argument are Null.

You may click “K.6.14.1 How do I use the “AllNull()” SQL aggregate

function?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 640 of 726

• “AllEqual(exp())”:

Returns True if all the results of the expression in its argument have the same

value.

You may click “K.6.14.2 How do I use the “AllEqual()” SQL aggregate

function?”.

• “Or(exp())” and “And(exp())”:

Returns the “OR” or “AND” (respectively) over all the results of the expression in

its argument.

You may click “K.6.14.3 How do I use the “Or()” or “And()” SQL aggregate

functions?”.

K.6.14.1 How do I use the “AllNull()” SQL aggregate function?

Using the expression “Count(*) <> Count(exp(INOUT-field-names))”.

MS-Access does not provide the “AllNull()” SQL aggregate function to return True

when all the records in the group of records produce Null in a given expression

“exp(INOUT-field-names)”.

However, if you use the expression “Count(*) <> Count(exp(INOUT-field-

names))” it produces the same result.

Let me show you an example146 over the Table “T_Capital_Rainfall_Q” (see at the end

of K.6.10):

 SELECT Capital, Cal_Year, Count(*) <> Count(Quart_Rainfall) AS Any_Null

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

The output record-list is the following one, with all values of the field “Any_Null” being

False (remind that False is numerically represented as “0”):

K_AllNull

Capital Cal_Year Any_Null

Beijing 2018 0

Washington 2018 0

because in “T_Capital_Rainfall_Q” there is no Null in the field

“Quart_Rainfall”.

If you want to know more about “Count(*)” and “Count()”, you may click:

• “F.7.18.1 What is the “Count(*)” SQL aggregate function?”

• “F.7.18.2 What is the “Count()” SQL aggregate function?”.

K.6.14.2 How do I use the “AllEqual()” SQL aggregate function?

This subsection also answers the question:

• How do I check if all field values in a group of records are the same?

146 This is the Query “K_AnyNull” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 641 of 726

You do it using the expression:

“Min(exp(INOUT-field-names)) = Max(exp(INOUT-field-names))”

MS-Access does not provide the “AllEqual()” SQL aggregate function to return True

if all the values in a given field value-list are the same in each group of records.

However, using the expression “Min(exp()) = Max(exp())” produces the same

result.

Let me show you an example147 over the Table “T_Capital_Rainfall_Q” (see at the end

of K.6.10):

 SELECT Capital, Cal_Year

 , Min(Quart_Rainfall) = Max(Quart_Rainfall) AS Equal_values

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

The output record-list is the following one, with all values of the field “Equal_values”

being False (remind that False is numerically represented as “0”):

K_AllEqual_1

Capital Cal_Year Equal_values

Beijing 2018 0

Washington 2018 0

because in Table “T_Capital_Rainfall_Q” there is no capital city and year were all

the “Quart_Rainfall” values are the same.

Notice that in case the list of field values of a group of records contains one or more Null,

the Null are ignored, because both “Min()” and “Max()” SQL aggregate functions

ignore Nulls. If you want to check if all the values are the same, and that there are no

Nulls, you can combine the expression in this subsection with the one of the previous

one. The result would be the expression:

 (Min(Field_name) = Max(Field_name)) AND (Count(*) = Count(Field_name))

In the previous example, the resulting SQL code148 would be:

 SELECT Capital, Cal_Year

 , (Min(Quart_Rainfall) = Max(Quart_Rainfall))

 AND (Count(*) = Count(Quart_Rainfall)) AS Equal_values

 FROM T_Capital_Rainfall_Q

 GROUP BY Capital, Cal_Year

If you want to know more about “Min()” and “Max()”, you may click “F.7.18.4 What

are the “Min()” and “Max()” SQL aggregate functions?”.

K.6.14.3 How do I use the “Or()” or “And()” SQL aggregate functions?

Using “Min() to produce the same result as “Or()” and using Max() to produce the

same result as “And()”.

MS-Access provides neither the “Or()” (computing an “OR” over all the values of a field

147 This is the Query “K_AllEqual_1” from file “Company_Database.accdb”.
148 This is the Query “K_AllEqual_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 642 of 726

value-list in each group of records) SQL aggregate function nor the “And()”

(computing and “AND” over all the values of a field value-list in each group of records)

SQL aggregate function. However, because True is internally represented as “-1” and

False is internally represented as “0” (click D.4.7), the result of “Min()” over Boolean

values is equivalent to “Or()” and the result of “Max()” over Boolean values is

equivalent to “And()”.

Notice that in case the field value-list of a group of records contains one or more Null,

the Null are ignored, because both “Max()” and “Min()” SQL aggregate functions

ignore Nulls. If you want to do an “Or()” or “And()” making sure that there are no

Nulls, you should make an “AND” with the expression:

 Count(*) = Count(Field_name))

If you want to know more about “Min()” and “Max()”, you may click “F.7.18.4 What

are the “Min()” and “Max()” SQL aggregate functions?”.

K.7 Why and how do I design a fast database and fast Queries?

Because you may have very big differences in processing time between doing an

efficient design and a non-efficient design. If you want a quite clear example about this,

you may click K.7.2.2. In respect to how to do it, you will find a number of indications in

the following sections within in this chapter.

MS-Access contains a Query optimizer, which is a software tool that analyzes the logic

underlaying each Query’s SQL code and decides what is the most efficient (i.e., fastest)

way to produce that result. This implies that even if you write not very efficient SQL

Queries, the Query optimizer may actually make them run fast. However, it is quite risky

to relay on the intelligence of the Query optimizer because if you do a bad database

design and/or bad Query designs, your Queries may run really slow.

For small amounts of data (a few records and fields) you may not perceive the

advantages of doing efficient designs because the processing time is very small. For

example, if you have a Query processed in 50 milliseconds and another one in ten times

more (i.e., 500 milliseconds), you will perceive both Queries as “instantaneous”.

However, if one takes 5 seconds and the other 50 seconds to be processed, which is also

ten times more, you will perceive a huge difference between both Queries.

Along this chapter K.7 I will explain how do to an efficient database design and an

efficient Query design. The SQL examples will be presented over four Tables called

“T_Effic_10”, “T_Effic_100”, “T_Effic_1000” and “T_Effic_3000”. Each of these Tables

has a Number-Long Integer field called “Num” and a Short Text field called “Strng”. The

first Table has 10 records, the second one has 100 records, the third one has 1,000 records

and the fourth one has 3,000 records. The content of these four Tables is outlined as

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 643 of 726

follows:

T_Effic_10 T_Effic_100 T_Effic_1000 T_Effic_3000

Num Strng Num Strng Num Strng Num Strng

0 0000 0 0000 0 0000 0 0000

1 0001 1 0001 1 0001

... 999 0999

9 0009 98 0098 99 0099 1,000 1000

 99 0099 100 0100

 2,000 2000

 999 0999 2,001 2001

 2,999 2999

If you want to know more about this, you may click:

• “K.7.1 How do I design a fast database?”

• “K.7.2 How do I design faster Select operations over Queries?”

• “K.7.3 How do I design faster Select operations over Tables?”

• “K.7.4 How do I design faster Union operations?”

• “K.7.5 How do I design faster Join operations?”

• “K.7.6 How do I design a faster Select-group_by when I have bound values in all my

records?”

K.7.1 How do I design a fast database?

The summary of recommendations for making a fast database design is:

• Add a Primary Key

You should add a (simple or composite) Primary Key to (almost) all your Tables. If

you want to know more about Primary Keys, you may click “C.10.1 What is the

Primary Key of a Table?” and “D.6 How do I configure the Primary Key field(s) of a

Table?”. In the example “T_Effic_” Tables (described in K.7) you have two simple

candidate Keys: “Num” and “Strng” (either can be used).

• Index (almost) all your Table fields,

You should index every Table field that may be included in a “WHERE”, “ON” or

“HAVING” Boolean expression, or in an “ORDER BY”·or “GROUP BY” expression.

This basically means indexing (with or without duplicate values, as corresponds)

almost all your Tables’ fields. In the example Tables “T_Effic_” (described in K.7)

you should index without duplicates the field that was not configured as the Key field.

If you want to know more about indexing, you may click “C.8 What is indexing?” and

“D.7 How do I add simple and/or composite index(es) to a Table?”.

• Add composite indexes when possible

You should add a composite index over every group of Table fields that may be

jointly included in a “WHERE”, “ON” or “HAVING” Boolean expression, or in an

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 644 of 726

“ORDER BY”·or “GROUP BY” expression. This basically means adding a composite

index to every group of fields that may have some joint semantics. In the example

Tables “T_Effic_” (described in K.7) it does not make much sense to add a composite

index because there is no joint semantics between the two fields. If you want to know

more about composite indexes, you may click “C.8.3.1 What are simple indexes and

composite indexes?” and “D.7.2 How do I add composite (and simple) indexes to a

Table?”.

• Configure as many Relationships as makes sense

You should configure as many Relationships with referential integrity as it is possible.

Relationships not only make your Queries run faster, but they also provide guarantees

of integrity for your database data. If you want to know more about Relationships,

you may click “C.11 What is a Relationship?” and “D.9 How do I create and

configure my Table Relationships?”.

MS-Access has a tool that checks your Tables and makes suggestions in respect to adding

indexes and/or Relationships. Click on “Database Tools” from the Ribbon-bar, and then

click on the Analyze Performance “ ” icon. This will open a dialog box where you can

select different database elements (Tables, Queries, …) by clicking on the corresponding

tabs. Once you have selected a tab, you may individually select objects (ticking their

checkbox), or rather, select all of them clicking the “Select All” button. When you are

done selecting objects, click the “OK” button. MS-Access will analyze the selected objects

and will present a list of suggestions to improve performance.

K.7.2 How do I design faster Select operations over Queries?

You may click:

• “K.7.2.1 Why should I use “DISTINCT”, “UNION” and “ORDER BY” only if

needed?”

• “K.7.2.2 Why should I use the most restrictive “WHERE” and “HAVING” expressions

in my Select operations?”

• “K.7.2.3 Why should I mainly use comparison and logical operators in my “WHERE”

and “HAVING” expressions?”

K.7.2.1 Why should I use “DISTINCT”, “UNION” and “ORDER BY” only if

needed?

Because the “DISTINCT”, “UNION” and “ORDER BY” require that MS-Access

processes the whole output record-list to remove duplicates or to order the records

(respectively) which will make your Query slower. If the record-list is long and/or with

many fields, the required processing time may be considerable, in particular if there is

no indexing (click C.8).

You should only use “DISTINCT” if the output record-list may have duplicate records

and you do not want duplicate records. This exact same advice applies to using “UNION”

in Union operations.

You should only use “ORDER BY”, if required, in the outermost Select operation of the

Query. Never use it in inner Select operations within your Query because the ordering

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 645 of 726

will be lost in the enclosing SQL operations and therefore you are making your Query

slower for no reason. An “ORDER BY” may be useful in your outermost Select operation

only if this is Query is invoked by the user (i.e., it is not only an auxiliary Query).

K.7.2.2 Why should I use the most restrictive “WHERE” and “HAVING”

expressions in my Select operations?

Because the smaller are the record-list operands of SQL operations, the faster the

processing will be. If you keep processing huge record-lists all along your Query code,

only to be filtered in the outermost Select operation your Queries may become really

slow.

Let me show the difference using an example over the Tables “T_Effic_” (described

in K.7). The following Query149 takes in my laptop FOURTY FIVE seconds to run!!

 SELECT T_A.Num, T_B.Num, T_C.Num

 FROM

 T_Effic_1000 AS T_A

 , -- "Comma" is the Cross-Join operator

 T_Effic_1000 AS T_B

 , -- "Comma" is the Cross-Join operator

 T_Effic_10 AS T_C

 WHERE Switch(T_A.Num = 347

 , Switch(T_B.Num = 678

 , Switch(T_C.Num = 7, True, True, False)

 , True, False)

 , True, False) ;

If running this Query in your computer takes excessive time and you want to abort it, you

may press “Ctrl-Pause/Interr” (click J.11.18).

The reason for taking so much time is that the Cross-Join operation is first producing a

record-list with 10,000,000 records, and only afterwards the system is looking into these

very many records one by one, to find which ones satisfy the “WHERE” Boolean

expression. I have intentionally used the “Switch()” function in the “WHERE” Boolean

expression to prevent the usage indexing thus forcing to process the records one by one.

However, if you replace the most restrictive “WHERE” Boolean expressions in inner

Queries (even preventing the usage of indexing), you get the following Query150 that

149 This is the Query “K_Efficiency_Select_Queries_1” from file “Company_Database.accdb”.
150 This is the Query “K_Efficiency_Select_Queries_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 646 of 726

produces the same result and runs in less than a second:

 SELECT T_A.Num, T_B.Num, T_C.Num

 FROM

 (

 SELECT Num

 FROM T_Effic_1000

 WHERE Switch(Num = 347, True, True, False)

) AS T_A

 , -- "Comma" is the Cross-Join operator

 (

 SELECT Num

 FROM T_Effic_1000

 WHERE Switch(Num = 678, True, True, False)

) AS T_B

 , -- "Comma" is the Cross-Join operator

 (

 SELECT Num

 FROM T_Effic_10

 WHERE Switch(Num = 7, True, True, False)

) AS T_C ;

The reason is that in this case we produce first three record-lists, each with only one

record, and afterwards we do the Cross-Join among the three records, producing just

one output record. Even though we have also prevented the usage of indexing, it is much

faster to search one by one over 2,100 records (the total number of records in the three

input record-lists), than over 10,000,000 records (the result of the Cross-Join over the

three Tables).

Notice that both Queries above bring from the database server the same record-lists, and

therefore, network transfer is not the cause of the big performance difference. If you

want to know more about performance and network transfer, you may click “K.3.15 What

is the delay of network access to a database?”.

The same we have just seen for Join operations applies also to Union operations and

Select operations: the smaller the record-lists of the operands, the faster they are

processed.

In summary, you should always try to use the most restrictive “WHERE” and “HAVING”

Boolean expressions.

K.7.2.3 Why should I mainly use comparison and logical operators in my

“WHERE” and “HAVING” expressions?

Because Comparison and Logical operators combined with indexing cause a much

faster processing than if you use other operators and/or functions. You should therefore

try to use only Comparison and Logical operators in your “WHERE” and “HAVING”

Boolean expressions.

If you use the “IN” operator, the Select operation will run slower. If you use functions,

or much worse, user-defined functions, this makes your indexes useless, and the Query

processing may be much slower.

This is the same advice I am giving for your “ON” Boolean expressions.

Let me show the difference using the same example151 from K.7.2.2. The following Query

151 This is the Query “K_Efficiency_Select_Queries_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 647 of 726

takes FOURTY FIVE seconds to run!

 SELECT T_A.Num, T_B.Num, T_C.Num

 FROM

 T_Effic_1000 AS T_A

 , -- "Comma" is the Cross-Join operator

 T_Effic_1000 AS T_B

 , -- "Comma" is the Cross-Join operator

 T_Effic_10 AS T_C

 WHERE Switch(T_A.Num = 347

 , Switch(T_B.Num = 678

 , Switch(T_C.Num = 7, True, True, False)

 , True, False)

 , True, False) ;

If running this Query in your computer takes excessive time and you want to abort it, you

may press “Ctrl-Pause/Interr” (click J.11.18).

If you replace the “Switch()” function in the Query above by an expression composed of

Comparison operators combined with Logical operators, you get the following Query152

that produces the same result, and runs in less than a second, because indexing can be

used:

 SELECT T_A.Num, T_B.Num, T_C.Num

 FROM

 T_Effic_1000 AS T_A

 , -- "Comma" is the Cross-Join operator

 T_Effic_1000 AS T_B

 , -- "Comma" is the Cross-Join operator

 T_Effic_10 AS T_C

 WHERE (T_A.Num = 347) AND (T_B.Num = 678) AND (T_C.Num = 7) ;

Even though this Query is very efficient, it is not the advisable way to write this SQL

operation, because it contains a large Cross-Join. The advisable way to write this

operation is using a Select operation over the Tables that contain the most restrictive

possible “WHERE” Boolean expression (click K.7.2.2).

K.7.3 How do I design faster Select operations over Tables?

In addition to the general recommendations from the previous section “K.7.2 How do I

design faster Select operations over Queries?”, when writing a Select operation over a

Table, it is important that you take into account the following two additional efficiency

considerations:

• “K.7.3.1 Why should I avoid bringing unnecessary data from Tables?”

• “K.7.3.2 Why should I consider using uncorrelated Subqueries and/or domain

aggregate functions in “WHERE” expressions over Tables?”

K.7.3.1 Why should I avoid bringing unnecessary data from Tables?

Because the output record-list of each Select operation over a Table is usually brought,

over the network153, from the database server to your computer. The smaller the record-

list, the faster the network data transfer will be (click K.3.15). In summary, avoid

bringing unnecessary data (neither records nor fields) from your Tables by carefully

152 This is the Query “K_Efficiency_Select_Queries_3” from file “Company_Database.accdb”.
153 Unless the database Tables are stored in your local disk drive, which is quite unusual.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 648 of 726

writing your “WHERE” expressions.

You can unwillingly bring unnecessary data in two ways:

• Bringing records and/or fields that are not needed for the Query processing.

• Bringing records and/or fields that are needed for the Query processing, but that are

brought multiple times.

I explain this in more detail with a couple examples over the example Table

“T_Effic_3000” (described in K.7).

The following Query154 is not efficient, because it brings over the network 999

unnecessary records, and also brings the unnecessary field “Strng”:

 SELECT Num+78 AS Result

 FROM

 (SELECT Num, Strng FROM T_Effic_3000)

 WHERE Num = 456 ;

You can instead use the following Query, which is much faster, because it only brings

over the network the one record that is needed, and the one field that is needed:

 SELECT Num+78 AS Result

 FROM T_Effic_3000

 WHERE Num = 456 ;

Another example: a given Query containing the following two Select operations is not

efficient, because it brings 600 fields twice over the network. The 600 fields brought

twice correspond to field “Num” with values from “200” to “799”.

 SELECT Num, Strng FROM T_Effic_3000 WHERE Num BETWEEN 100 AND 799

and

 SELECT Num FROM T_Effic_3000 WHERE Num BETWEEN 200 AND 899

The Query optimizer will most likely fix this, but it is better practice to write your code

efficiently just in case the Query optimizer is not as good as you thought. To avoid

bringing data twice, you could replace the two Select operations above by:

 SELECT Num, Strng

 FROM

 (SELECT Num, Strng FROM T_Effic_3000 WHERE Num BETWEEN 100 AND 899)

 WHERE Num BETWEEN 100 AND 799

and

 SELECT Num

 FROM

 (SELECT Num, Strng FROM T_Effic_3000 WHERE Num BETWEEN 100 AND 899)

 WHERE Num BETWEEN 200 AND 899

which would be more efficient.

You probably have noticed that although these two Select operations are a great

improvement over the first ones, they are still bringing some unnecessary data.

Specifically, the values of field “Strng” from “"0799"” to “"0899"” are brought

154 All the SQL operations in this section may be found in the Query “K_Efficiency_Select_Tables” from

file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 649 of 726

unnecessarily. You could remove this unnecessary data using the following third case of

Select operations:

 SELECT Num, Strng FROM T_Effic_3000 WHERE Num BETWEEN 100 AND 799

and

 SELECT Num

 FROM

 (SELECT Num, Strng FROM T_Effic_3000 WHERE Num BETWEEN 100 AND 799)

 WHERE Num BETWEEN 200 AND 799

 UNION

 SELECT Num FROM T_Effic_3000 WHERE Num BETWEEN 800 AND 899

However, in order to gain some efficiency in bringing data over the network, we are

making the SQL code more complex to understand and debug, and we are losing some

efficiency increasing the processing time. Therefore, there is a trade-off between

avoiding bringing unnecessary data and making your SQL code more complex and

inefficient. The best design depends mainly on the size of record-lists handled. For large

record-lists, it is more important avoiding bringing unnecessary data. For small record-

lists, it is more important the code readability and code efficiency.

K.7.3.2 Why should I consider using uncorrelated Subqueries and/or domain

aggregate functions in “WHERE” expressions over Tables?

Because uncorrelated Subqueries (click G.8.4) and/or domain aggregate functions

(click G.6.2) in a “WHERE” expression can be quite useful to avoid bringing unnecessary

data from Tables (click K.7.2.2).

Imagine that you have a Table of projects “T_Projects” with fields “Begin” and “End”

indicating the begin and end date of each project. You also have a Table of invoices

“T_Invoices”, that has the field “Project” to identify to what project belongs the

invoice. Imagine now that you want all the invoices of projects that are active along the

current calendar year. The Query that would get them is:

 SELECT Invoice_ID, Invoice_Amount, Invoice_Date, Project, ...

 FROM T_Invoices

 WHERE Project IN (SELECT Project

 FROM T_Projects

 WHERE Year(Date()) BETWEEN Year(Begin) AND Year(End))

I have highlighted the Subquery in turquoise.

As you may see, using uncorrelated Subqueries and/or domain aggregate functions in

your “WHERE” Boolean expressions is very useful to minimize the size of record-lists

brought from your Tables across the network.

However, in order to gain some efficiency in bringing data over the network, we are

making the SQL code more complex to understand and debug, and we are losing some

efficiency increasing the processing time. Therefore, there is a trade-off between

avoiding bringing unnecessary data and making your SQL code more complex and

inefficient. The best design depends mainly on the size of record-lists handled. For large

record-lists, it is more important avoiding bringing unnecessary data. For small record-

lists, it is more important the code readability and code efficiency.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 650 of 726

K.7.4 How do I design faster Union operations?

You should only use “UNION” if the output record-list may have duplicate records and

you do not want duplicate records. This is exactly the same advice as the one for using

the “DISTINCT” clause in Select operations (click K.7.2.1).

K.7.5 How do I design faster Join operations?

I now provide a few recommendations for designing faster Join operations.

As a first advice, always use the most restrictive “WHERE” Boolean expressions in both

input record-lists (click K.7.2.2).

You may also click:

• “K.7.5.1 Why should I always restrict in inner Selects?”

• “K.7.5.2 Why should I mainly use comparison and logical operators in my “ON”

expressions?”

K.7.5.1 Why should I always restrict in inner Selects?

If you want to write a Boolean expression over the fields of an input record-list, always

write it in the “WHERE” clause of that input record-list, and never write it in the “ON”

clause, nor in the “WHERE” clause of the enclosing Select operation.

Let me show the difference using an example over the Tables “T_Effic_” (described

in K.7). The following Query155 takes in my laptop THIRTY seconds to run:

 SELECT T_A.Num, T_B.Num

 FROM

 T_Effic_3000 AS T_A

 INNER JOIN

 T_Effic_3000 AS T_B

 ON Switch(T_A.Num = T_B.Num, True, True, False)

 WHERE Switch(T_A.Num = 1234, Switch(T_B.Num = 1234, True, True, False)

 , True, False);

If running this Query in your computer takes excessive time and you want to abort it, you

may press “Ctrl-Pause/Interr” (click J.11.18).

If you replace the outermost “WHERE” clause in the Query above by two innermost

“WHERE” clauses, you get the following Query156 that produces the same result and runs

155 This is the Query “K_Efficiency_Join_innermost_1” from file “Company_Database.accdb”.
156 This is the Query “K_Efficiency_Join_innermost_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 651 of 726

in less than a second:

 SELECT T_A.Num, T_B.Num

 FROM

 (

 SELECT Num

 FROM T_Effic_3000

 WHERE Switch(Num = 1234, True, True, False)

) AS T_A

 INNER JOIN

 (

 SELECT Num

 FROM T_Effic_3000

 WHERE Switch(Num = 1234, True, True, False)

) AS T_B

 ON Switch(T_A.Num = T_B.Num, True, True, False) ;

K.7.5.2 Why should I mainly use comparison and logical operators in my

“ON” expressions?

Because Comparison and Logical operators combined with indexing cause a much

faster processing than if you use other operators and/or functions. You should therefore

try to use only Comparison and Logical operators in your “ON” Boolean expressions.

If you use the “IN” operator, the Join operation will run slower. If you use functions, or

much worse, user-defined functions, this makes your indexes useless, and the Query

processing may be much slower.

This is the same advice I am giving for your Boolean expressions in your “WHERE” and

“HAVING” clauses.

Let me show the difference using an example over the Tables “T_Effic_” (described

in K.7). The following Query157 takes in my laptop TWENTY seconds to run!!

 SELECT T_A.Num, T_B.Num

 FROM

 T_Effic_3000 AS T_A

 INNER JOIN

 T_Effic_3000 AS T_B

 ON Switch(T_A.Num = T_B.Num, True, True, False)

 ORDER BY T_A.Num ;

If running this Query in your computer takes excessive time and you want to abort it, you

may press “Ctrl-Pause/Interr” (click J.11.18).

If you replace the “Switch()” function in the Query above by a Comparison operator, you

get the following Query158 that produces the same result and runs in less than a second,

because indexing can be used:

 SELECT T_A.Num, T_B.Num

 FROM

 T_Effic_3000 AS T_A

 INNER JOIN

 T_Effic_3000 AS T_B

 ON T_A.Num = T_B.Num

 ORDER BY T_A.Num ;

157 This is the Query “K_Efficiency_Join_on_exp_1” from file “Company_Database.accdb”.
158 This is the Query “K_Efficiency_Join_on_exp_2” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 652 of 726

Why should I use “INNER JOIN” instead of Cross-Join plus “WHERE”?

Because it will produce faster Queries. Even though the Query optimizer will most likely

make a Cross-Join plus a “WHERE” clause as fast as an “INNER JOIN”, using a Cross-

Join plus a “WHERE” clause is still a bad programming practice that should be avoided.

The following Query159 is an example of a Cross-Join plus a “WHERE” clause:

 SELECT T_A.Num, T_B.Num

 FROM

 T_Effic_3000 AS T_A

 ,

 T_Effic_3000 AS T_B

 WHERE Switch(T_A.Num > Log(T_B.Num+100), True, True, False)

 ORDER BY T_A.Num ;

And the following is an example of a Query that produces exactly the same result, but

coding it with an “INNER JOIN”, which is the advisable way to do it:

 SELECT T_A.Num, T_B.Num

 FROM

 T_Effic_3000 AS T_A

 INNER JOIN

 T_Effic_3000 AS T_B

 ON Switch(T_A.Num > Log(T_B.Num+100), True, True, False)

 ORDER BY T_A.Num ;

K.7.6 How do I design a faster Select-group_by when I have bound

values in all my records?

Because when you have two or more fields that have bound values, and you want to do

a “GROUP BY” over them, it is more efficient to do the “GROUP BY” over only one of

the fields, and use “First()” over each of the other ones. You may click “F.7.18.3 What

are the “First()” and “Last()” SQL aggregate functions?”.

Imagine that you have records that have the month name, the first day of the month, the

last day of the month, and for each month you have several records each with the daily

number of cars across a bridge. The field names could be “Month_name”,

“Start_Month”, “End_Month” and “Daily_Cars”. If you wanted to get the monthly

average number of cars across the bridge, you could write:

 SELECT Month_name, Avg(Daily_Cars)

 *(End_Month-Start_Month+1) AS Monthly_Cars

 FROM T_Bridge_Cars_per_Day

 GROUP BY Month_name, Start_Month, End_Month

However, it is more efficient to write:

 SELECT Month_name, Avg(Daily_Cars)

 * (First(End_month)-First(Start_Month)+1) AS Monthly_Cars

 FROM T_Bridge_Cars_per_Day

 GROUP BY Month_name

The reason is that the first SQL operation has to group all the records on the values of

three fields, while the second one groups them on only one field, and the latter requires

less processing time.

159 This is the Query “K_Efficiency_Join_inner_1” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 653 of 726

K.8 Why should I avoid using Decimal data types?

Because decimal data types may cause a Query crash, errors and other problems.

This chapter has the following content:

• “K.8.1 What are the Decimal data types?”

• “K.8.2 Why should I avoid using the Number-Decimal Table field type?”

• “K.8.3 Why should I avoid using the Variant-Decimal VBA data type?”

• “K.8.4 How do Decimal data types work?”

K.8.1 What are the Decimal data types?

In MS-Access there are two different decimal data types:

• The Number-Decimal Table field type

This is the “Number” Table field type with property “Field Size=Decimal”.

• The VBA Variant-Decimal data type

This is the Decimal subtype within the VBA Variant data type.

The following table shows the main characteristics of Number-Decimal Table field type

and Variant-Decimal VBA data type, and you may see that they are very different:

Table VBA

Field
Type

Field Size
Data

Type

Storage

(Bytes)
Range of Values

Number

Decimal
Precis.=1

N/A 12

 -9

to: 9

Precision: 1 significant digit

Decimal
Precis.=28

N/A 12

 -9,999,999,999,999,999,999,999,999,999

to: 9,999,999,999,999,999,999,999,999,999

 -(1028-1) to (1028-1)

Precision: 28 significant digits

N/A
Variant-

Decimal
16

 ±0,0000000000000000000000000001

to: ±79,228,162,514,264,337,593,543,950,335

 ±(20)*(10-28) to ±(296-1)*(100)

Precision: 29 significant decimal digits

K.8.2 Why should I avoid using the Number-Decimal Table field type?

Because of the following relevant problems that you will have in case you use it:

• Calculations will be much slower, because operations with Number-Decimal values

may be made in software, instead of being done in hardware by the ALU of your

computer processor.

• There are no equivalent data types between the Table field Number-Decimal and

VBA data type Variant-Decimal. There are no other field type or VBA data type that

can do an equivalence between both types.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 654 of 726

• You cannot do a type conversion to Variant-Decimal in your SQL Queries because

the “CDec()” function does not work in the SQL code. This is a known bug of MS-

Access. You may check it at:

https://support.microsoft.com/en-us/help/225931/error-message-when-you-use-the-

cdec-function-in-an-access-query-the-ex

Microsoft indicates that the workaround is to write a user-defined function that

invokes “CDec()” in VBA, but I have tried this and encountered problems, like the

function sometimes returning a String instead of a Variant-Decimal, which totally

destroyed my calculations.

• If you do a Union operation such that a given field in one of the input record-lists

holds the Decimal value:

 999999999999999999999999 (25 nines)

and the same field in the other input record-list holds the value:

 0.001

the Query will crash with the error message “The decimal field's precision is too small
to accept the numeric you attempted to add.”. The Query does not only crash in this

particular case and will also crash with any combination of values that require more

than 28 significant digits to be represented. Notice that if you convert the above values

to Double using the “CDbl()” type conversion function, then the Query will work

normally.

• If you do a Union operation such that a given field in one of the input record-lists

holds the Decimal value:

 999999999999999999999999 (25 nines)

and the same field in the other input record-list holds the Currency value:

 CCur(.1234)

the Query will crash showing the error message “Data type mismatch in criteria
expression.”. The Query does not only crash in this particular case and will also crash

with any combination of values that require more than 28 significant digits to be

represented.

• If you do a Union operation such that a given field in one of the input record-lists

holds the Decimal value:

 999999999999999999999999999 (28 nines)

and the same field in the other input record-list holds the value:

 1E-26

the Query will convert the 28 nines decimal value to:

 34,27600634352091577081397248

which is obviously wrong. This may be an MS-Access bug.

K.8.3 Why should I avoid using the Variant-Decimal VBA data type?

Because of the following relevant problems that you will have in case you use it:

• Calculations will be much slower, because operations with Variant-Decimal values

may be made in software, instead of being done in hardware by the ALU of your

computer processor.

https://support.microsoft.com/en-us/help/225931/error-message-when-you-use-the-cdec-function-in-an-access-query-the-ex
https://support.microsoft.com/en-us/help/225931/error-message-when-you-use-the-cdec-function-in-an-access-query-the-ex

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 655 of 726

• Decimal is not a proper VBA data type. You cannot declare a VBA variable with the

Decimal data type. In VBA, Decimal is a subtype of the Variant data type, and this

is why I call it “Variant-Decimal”. This creates ambiguity in many circumstances,

and a value that you think is Decimal, may actually be interpreted differently by VBA.

• You cannot enter large Variant-Decimal constants because the VBA editor will

rewrite them to a rounded value. You have therefore to build the constants by

adding/multiplying other constant values that the VBA editor allows you to write.

K.8.4 How do Decimal data types work?

If in spite of my advice that you avoid using Decimal data types, you want to use them,

in this section I describe their most relevant characteristics.

How does the Number-Decimal Table field type work?

It stores integer numbers digit by digit, with the range of values ±9.999...*10Precision, where

the number of nines is the value that you configure in the “Precision” property of this

field. The precision of this field (significant digits) is the value configured in its

“Precision” property. The value of the “Precision” property can range from 1 to 28. This

Table field type requires 12 bytes of storage. It has no rounding errors from/to

decimal/binary.

How does the Variant-Decimal VBA data type work?

It stores fractional decimal numbers with 29 significant digits. The largest number it can

store is:

 ±79,228,162,514,264,337,593,543,950,335

and the smallest non-zero value it can store is:

 ±0,0000000000000000000000000001

Therefore, the range of values it can store is:

 ±(20)*(10-28) to ±(296-1)*(100)

This field type requires 16 byes of storage. It has no rounding errors from/to

decimal/binary.

How do I write Decimal constants?

Decimal constants are written as positive and negative fractional numbers in decimal and

in scientific notation. You cannot write a character for separation of thousands.

Some examples of fractional number constants are: 4.0346, 730, -325.234, 235.67E26,

.258E-15 and -12.87E+25

K.9 How do I write my user-defined VBA functions and

database Subroutines?

You may click:

• “K.9.1 How do I create VBA modules and open the VBA editor?”

• “K.9.2 How do I write a VBA function that inserts/updates/deletes Table’s records?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 656 of 726

• “K.9.3 How do I write a VBA function that reads database records?”

• “K.9.4 How do I write a VBA function that requests a parameter to the user?”

• “K.9.5 How do I test my user-defined VBA functions?”

• “K.9.6 How do I write VBA Subroutines associated to Form Events?”

• “K.9.7 How do I close the VBA editor?”

K.9.1 How do I create VBA modules and open the VBA editor?

MS-Access allows you to write user-defined VBA functions that can be used in Table

menus, Queries and Forms, providing a very powerful and flexible processing

environment.

Click on the “Create” Ribbon name, and then on the Module “ ” icon, in the top right

corner of the “Macros & Code” Ribbon group. This will create a new VBA module, and

open the VBA editor. The VBA editor will be opened in a different window to the MS-

Access window. Click on the save “ ” icon from the VBA editor, and you will be

prompted to enter the name of the module. Type-in a name and either press the “Enter”

key or click on the “Yes” button. You have now created a VBA module in your database

to store you user-defined functions. Each VBA module is placed as an object in the

“Navigation Pane”, under the category “Modules”.

My advice is you write the following text:

 Option Compare Database

 Option Explicit

at the top of your module.

The option “Compare Database” will make string comparison be based on the same

ordering of your MS-Access database. This is extremely useful to avoid puzzling results

arising from having two different ordering criteria in your VBA and SQL code.

The option “Explicit” obliges you to write a variable declaration of all the variables

you use in your VBA code. This may sound like more work, but it is much, much, safer

and it is certainly worth the extra work. It has an added advantage that your VBA code

will run faster.

Below these two options you may write one by one all your user-defined VBA functions.

Once you are done editing your VBA module, save your changes by clicking on the save

“ ” icon, and close the VBA editor by clicking on the close icon “X” in the top right

corner of its window.

You may open a VBA module with the “Navigation Pane” (click B.4.1.3). This will open

the VBA editor window, with your VBA module opened inside it.

You can invoke all your user-defined VBA functions both from other of your user-defined

VBA functions and from any expression in your SQL code.

After you have completed some modifications in your VBA code, I strongly advise that

you to click on “Debug” (on the top window frame) and then click on “Compile
VBA_project_name” from the pop-up menu (where VBA_project_name is the name of

your VBA Module, most frequently “Database1”). This will cause the VBA editor to

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 657 of 726

compile your code and will show you any error(s) it may find, so you can fix them.

The editor also has the following commands to debug your VBA code:

• Introduce/clear an execution breakpoint

You may introduce/clear a breakpoint in either of the following ways:

• Double-click on the gray vertical margin on the left of your VBA code, aligned

with the line of code where you want to introduce/clear the breakpoint.

• Press the “F9” key. The breakpoint will be introduced in the line of code where

the text cursor (not the mouse pointer) is currently placed.

• Click on “Toggle Breakpoint ” from the “Debug” pop-up menu. The breakpoint

will be introduced in the line of code where the text cursor (not the mouse pointer)

is currently placed.

• Advance the program flow one step

Either press the “F8” key or click on “Step Into ” from the “Debug” pop-up menu.

• Advance the program flow one step, without entering procedures

Either simultaneously press the “Shift” and “F8” keys, or rather, click on “Step

Over ” from the “Debug” pop-up menu.

• Advance the program flow out of the current procedure

Either press “Ctrl-Shift-F8” (i.e., simultaneously press the “Ctrl” and “Shift” keys,

and without releasing them, press the “F8” key), or rather, click on “Step Out ”

from the “Debug” pop-up menu.

• Advance the program flow up to the line where the cursor (not the mouse

pointer) is currently placed

Either press “Ctrl-F8” (i.e., press the “Ctrl” key, and without releasing it, press the

“F8” key), or rather, click on “Run to Cursor ” from the “Debug” pop-up menu.

• Clear ALL the execution breakpoints

Either press “Ctrl-Shift-F9” (i.e., simultaneously press the “Ctrl” and “Shift” keys,

and without releasing them, press the “F9” key), or rather, click on “Clear All
Breakpoints” from the “Debug” pop-up menu.

Breakpoints are shown as a dark red circle “ ” placed, at the beginning of the

corresponding code line, in the gray vertical margin on the left of your VBA code. Also,

the whole code line is highlighted in dark red color.

When the program execution is stopped you may see the content of any variable by

placing the mouse pointer over it (a box showing the value will pop-up).

If you write user-defined VBA functions or macros, when you open an MS-Access file

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 658 of 726

you may get the yellow warning message shown in the following screenshot:

You should always click on “Enable Content” and continue working normally. This is

the standard MS-Office security policy, and you will get the same warning when you

open a file with user defined functions/macros in any MS-Office application.

K.9.2 How do I write a VBA function that inserts/updates/deletes Table’s

records?

Using the VBA built-in method “Execute” over the built-in database object

“CurrentDb”.

You first assign to a VBA text string variable the SQL Insert, Update or Delete operation

(click F.13) that you want. For example:

 Dim SQL_command As String

 SQL_command = "DELETE FROM T_Insert_Delete WHERE Capital=""Brussels"" ; "

Notice that in order to include one double quote character inside a text string you have

to write two double quote characters. Notice you cannot use the single quote character

as string delimiter because in VBA it is interpreted as a comment delimiter.

The SQL operation contained in the String variable “SQL_command” above will output

all the records from the Table “T_Capital_Rainfall” where the value of “Capital” is equal

to “Brussels”.

To run the SQL code contained in the String variable “SQL_command” you invoke the

method “Execute” from the object “CurrentDb”. Continuing with the example, the

resulting VBA code is:

 Dim SQL_command As String

 SQL_command = "DELETE FROM T_Insert_Delete WHERE Capital=""Brussels"" ; "

 CurrentDb.Execute SQL_command

And this is all you need to run the SQL code that Inserts, Updates or Deletes records

into the database.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 659 of 726

In case that you want that the SQL code depends on a VBA variable, you just need to

replace the corresponding text in the SQL command string. Continuing with the example,

imagine that you want “Brussels” to be the content of a VBA String variable called

“MyCity”. Then, the resulting VBA code would be:

 Dim SQL_command As String

 SQL_command = "DELETE FROM T_Insert_Delete WHERE Capital="""

 SQL_command = SQL_command & MyCity & """ ; "

 CurrentDb.Execute SQL_command

Notice that in order to include one double quote character inside a text string you have

to write two double quote characters, and the third double quote that you see is the one

that marks the end of the text string. Notice you cannot use the single quote character as

string delimiter because in VBA it is interpreted as a comment delimiter.

K.9.3 How do I write a VBA function that reads database records?

Using the VBA built-in method “OpenRecordset” over the built-in database object

“CurrentDb”.

You first assign to a VBA text string variable the SQL operation that produces the output

record-list that you want to read from the database. For example:

 Dim SQL_command As String

 SQL_command = "SELECT Cal_Year, Quart, Quart_Rainfall FROM

 T_Capital_Rainfall WHERE Capital = ""Washington"";"

Notice that in order to include one double quote character inside a text string you have

to write two double quote characters. Notice you cannot use the single quote character

as string delimiter because in VBA it is interpreted as a comment delimiter.

The SQL operation contained in the String variable “SQL_command” above will output

all the records from the Table “T_Capital_Rainfall” where the value of “Capital” is equal

to “Washington”.

To run the SQL code contained in the String variable “SQL_command” above, you define

a variable to store the resulting output record-list (data type Recordset) and you invoke the

method “OpenRecordsest” from the object “CurrentDb”. Continuing with the

example, the resulting VBA code is:

 Dim SQL_command As String, Output_records As Recordset

 SQL_command = "SELECT Cal_Year, Quart, Quart_Rainfall FROM

 T_Capital_Rainfall WHERE Capital = ""Washington"";"

 Output_Records = CurrentDb.OpenRecordset(SQL_command)

You now have the resulting output record-list accessible through the variable

“Output_Records”, of VBA data type Recordset. You can apply the following methods

over this variable:

• MoveFirst: moves the record pointer to the first record of the Recordset

variable.

• MoveLast: moves the record pointer to the last record of the Recordset variable.

• MoveNext: moves the record pointer to the next record of the Recordset variable.

• MovePrevious: moves the record pointer to the previous record of the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 660 of 726

Recordset variable.

• Move: moves the record pointer n positions forward of the Recordset variable.

• Edit: opens the current record to modify its field values.

• Update: updates in the database the current record with the field values that

have been modified with the “Edit” method.

• EOF: returns True if there is the current record is Null. This tells you that you

have reached the end of the record-list.

A usual way to handle a record-list is by doing a while-loop until the “EOF” method

returns True, in which case the full record-list has been processed.

K.9.4 How do I write a VBA function that requests a parameter to the

user?

Invoking the built-in function “InputBox()” that returns the text string typed-in by the

user. The function “InputBox()” pops-up a dialogue-box on the screen and returns the

text string that has been typed-in by the user into the dialogue-box. The way to write

(syntax) an invocation of “InputBox()” is:

 String_variable = InputBox(prompt [[[, title], default], Other])

Optional arguments are enclosed between square brackets.

Argument “prompt” is a String. It is the text string that will be shown to the user in the

dialogue-box that requests him to enter data. The maximum length of the “prompt”

String is around 1,024 characters, depending on the width of the characters used. You

may split the text that is shown in several lines by including line feed “Chr(10)” inside

the text string of “prompt”.

Optional argument “title” is the text string shown as the title of the dialogue-box. If

it is not used, then the application name will be shown.

Optional argument “default” is the default text string returned by the function

“InputBox()” in case the user does not provide any value.

Other optional arguments allow you to select the position of the dialogue-box and other

side issues, that you can check on-line in case you need to use them.

K.9.5 How do I test my user-defined VBA functions?

My advice is that you test each of your user-defined VBA function using a specific test-

Query. The advantages of doing this are the following:

• Queries are quite good for generating different value combinations to test your user-

defined functions.

• Queries are quite good for visually checking the results of the function over different

value combinations.

• Queries can be easily saved in a MS-Access file to use them the next time you do any

modification on your user-defined function that does not modify its intended

functionality (e.g., making it more efficient). Even if the VBA modification implies a

change in the functionality of your user-defined VBA function, it is usually worth the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 661 of 726

work to adjust the test Query.

Linking with the last bullet point, I strongly advise you to run the test-Query associated

to a given user-defined function always after having made any modification on the VBA

code of the user-defined function. Remember it is extremely easy to introduce an error

in your VBA code, even if you think that the change you made cannot produce any side

effect.

My advice to write your test-Queries is the following.

Each test case is written as a Select operation like the following one:

 SELECT value_1 AS arg_1, value_2 AS arg_2, ..., value_n AS arg_n

 , Func_name(arg_1, arg_2, , arg_n) AS Result

 , Iif(Result = Expected_value_1, "OK", "ERROR") AS CHECK

 FROM T_Numbers WHERE Num = 1

The first line:

 SELECT value_1 AS arg_1, value_2 AS arg_2, ..., value_n AS arg_n

is the value combination of arguments that you want to use in this test case. This first

line is different in each test case, because in each test case you will want to use a different

combination of values as arguments of your VBA user-defined function.

The second line:
 , Func_name(arg_1, arg_2, , arg_n) AS Result

is the actual invocation of the VBA user-defined function. The value returned by the user-

defined function is assigned the value name “Result”, to be used in the expression in

the third line. This second line is the same in all your test-cases.

The third line:
 , Iif(Result = Expected_value_1, "OK", "ERROR") AS CHECK

checks if the value returned by the function (called “Result”), is what you expect for

this test case. The way to check this is by using an “Iif()” function where the Boolean

expression compares the actual result “Result” with your expected result

“Expected_value” for the arguments contained in the first line. If the Boolean

expression is True, the “Iif()” returns “OK” and it otherwise returns “ERROR”. This third

line is the same in all your test-cases, except “Expected_value” that will be different.

The fourth line:
 FROM T_Numbers WHERE Num = 1

is only needed to produce one record with the values indicated after the “SELECT” clause.

For the case of fractional results, it may be convenient to get an approximate result instead

of an exact result, to avoid problems with decimal-binary conversion. If this is what you

want, then you may replace the third line by the following one:

 , Iif(abs(Expected_result - Result) < 1e-6, "OK", "ERROR") AS CHECK

As you may see, in the example above we are getting the same result with a precision of

10-6, but of course you may change this precision level by the one required in each

particular case.

You build as many test cases as you want using the Select operation template that I have

indicated, and you connect them with the “UNION ALL” SQL operator. The resulting

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 662 of 726

test-Query would be:

 SELECT value_1 AS arg_1, value_2 AS arg_2, ..., value_n AS arg_n

 , Func_name(arg_1, arg_2, , arg_n) AS Result

 , Iif(Result = Expected_value_1, "OK", "ERROR") AS CHECK

 FROM T_Numbers WHERE Num = 1

 UNION ALL

 ...

 UNION ALL

 SELECT value_x AS arg_1, value_y AS arg_2, ..., value_z AS arg_n

 , Func_name(arg_1, arg_2, , arg_n) AS Result

 , Iif(Result = Expected_value_k, "OK", "ERROR") AS CHECK

 FROM T_Numbers WHERE Num = 1

Imagine that you want to test your user-defined function “Weekend_Days()” that

returns the number of Saturdays or Sundays between two dates, both included. Following

my advice, you could write the following Query160 code:

 SELECT #1/1/2013# AS Begin, #5/1/2013# AS End

 , Weekend_days(Begin, End) AS Result

 , Iif(Result=34, "OK", "ERROR") AS CHECK

 FROM T_Numbers WHERE Num = 1

 UNION ALL

 SELECT #1/1/2013# AS Begin, #5/1/2014# AS End

 , Weekend_days(Begin, End) AS Result

 , Iif(Result=138, "OK", "ERROR") AS CHECK

 FROM T_Numbers WHERE Num = 1

If you run the Query above, you would get the following result:

K_Test_functions

Begin End Result CHECK

01/01/2013 01/05/2013 34 OK

01/01/2013 01/05/2014 138 OK

Obviously, for a realistic test-Query you would write many more test-cases than only just

two, as in the example above. If the number of test-cases is large, it may be convenient to

enclose all of them in a Select with the “WHERE” clause:

 WHERE Check = "ERROR"

in order to show only the wrong results, thus avoiding possible errors from visually

looking for them.

The Table “T_Numbers” used in the example above is an auxiliary Table with only one

field (named “Num”) that just contains integer numbers (click K.2.2).

K.9.6 How do I write VBA Subroutines associated to Form Events?

If you want to do this, you may click “D.10.4 How do I configure VBA action code

associated to Form Events?”.

K.9.7 How do I close the VBA editor?

If at this moment you are reading this Lightning Guide linearly, click to read

“D.10.4.5 How do I close the VBA editor?” and then return here (you return by

160 This is the Query “K_Test_functions” from file “Company_Database.accdb”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 663 of 726

simultaneously pressing the “Alt” and “” keys).

K.10 What elements/concepts are explained in various places?

Some elements affect database design in several ways and for this reason appear

explained in different places of this Lightning Guide. To simplify your looking for the

correct place, you may click on the topic you want from the following list:

• “K.10.1 Where are names and identifiers explained?”

• “K.10.2 Where are drop-down menus explained?”

• “K.10.3 Where are duplicates explained?”

• “K.10.4 Where are indexes explained?”

• “K.10.5 Where are Key fields explained?”

• “K.10.6 Where are Relationships explained?”

• “K.10.7 Where is Query results ordering explained?”

• “ “H.2.3 How do I change the sorting of rows in a Table/Query/Form?”

• “K.6.12 How do I get the exact record ordering I want?”

• Where are data types explained?”

• “K.10.9 Where are zero-length and invisible strings explained?”

• “K.10.10 Where are exception-values explained?”

• “K.10.11 Where are aggregate functions explained?”

• “K.10.12 Where is remote database access explained?”

• “K.10.13 Where is VBA code explained?”

• “K.10.14 Where are Nulls explained?”

K.10.1 Where are names and identifiers explained?

• “C.2.1 What is an object and a name?”

• “C.2.2 What is a qualified field name?”

• “D.2 How do I carefully assign good names from the very beginning?”

K.10.2 Where are drop-down menus explained?

• “B.11 Can I use a drop-down/expression menu even if its icon is not shown?”

• “D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field?”

• “K.1.7 Why should I configure drop-down menus to enter data?”

• “K.1.8 What are good practices in configuring my drop-down menus?”

• “K.1.9 How do I configure a drop-down menu in a Date/Time field?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 664 of 726

• “L.4.2.5 How do I fix a value rejected because it is not in the list?”

• “L.5.10 How do I fix a value not in the drop-down menu in a Table/Form field?”

K.10.3 Where are duplicates explained?

• “C.7 What are duplicate records and duplicate field values?”

• “C.8.3.2 What are indexes with duplicate values and without duplicate values?”

• “C.8.3.5 What is an index without duplicate values and without Nulls?”

• “C.9 How do I prevent duplicate field values and duplicate records?”

• “F.7.8 What is the “DISTINCTROW” clause of a Select?”

• “F.7.11 What is the “DISTINCT” clause of a Select?”

• “F.9.1 What are the Union operators?”

• “F.9.4.2 What are the output records of a Union?”

• “J.14.6 What effects does Null cause in SQL operators that remove duplicate

records?”

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?

• “K.4.6 When should I remove duplicate records?”

• “L.2.6 How do I fix “Key/Index with duplicate values” when saving my Table

design?”

• “L.4.3.2 How do I fix erroneous records because of duplicate values?”

K.10.4 Where are indexes explained?

• “B.6.2 How do I manage Table indexes in “Design View”?”

• “C.8 What is indexing?”

• “D.5 How do I configure a Table field validation rule, indexing, and other

properties?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

• “I.5.6 What are the side effects of modifying the indexes or the Key fields of a Table?”

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?”

• “K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes?”

• “L.2.6 How do I fix “Key/Index with duplicate values” when saving my Table

design?”

K.10.5 Where are Key fields explained?

• “C.10 What are the Table Key(s) and how should I handle them?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 665 of 726

• “D.6 How do I configure the Primary Key field(s) of a Table?”

• “D.7 How do I add simple and/or composite index(es) to a Table?”

• “I.5.6 What are the side effects of modifying the indexes or the Key fields of a Table?”

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?”

• “K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes?”

• “L.2.6 How do I fix “Key/Index with duplicate values” when saving my Table

design?”

• “L.2.7 How do I fix “…primary key cannot contain a Null…” when saving my Table

design?”

• “L.2.10 How do I fix “There is no primary key…” when saving my Table design?”

K.10.6 Where are Relationships explained?

• “A.9 How do I create a Relationship in my first database?”

• “B.10 What is the “Relationships” pane?”

• “C.11 What is a Relationship?”

• “D.9 How do I create and configure my Table Relationships?”

• “I.8 What are the side effects of modifying my Relationships, Forms and/or Reports?”

• “K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes?”

• “L.3 How do I fix errors in my Relationship configuration?”

• “L.4.3.3 How do I fix a slave record without a master record?”

K.10.7 Where is Query results ordering explained?

• “F.7.12 How do I use “ORDER BY” to order the output records of a Select?”

• “F.10.8 What is the “ORDER BY” clause of a Transform?”

• “H.2.3 How do I change the sorting of rows in a Table/Query/Form?”

• “K.6.12 How do I get the exact record ordering I want?”

K.10.8 Where are data types explained?

• “D.4 How do I configure a Table field data type and size?”

• “F.7.18.7 What is a summary and grouping of aggregate functions?”.

• “G.2 How do I manage VBA data types and Table field types-sizes?”

• “G.3 What is the data type returned by an expression?”

• “G.5 How do I use value operators in an expression?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 666 of 726

• “G.9 How are numeric-like values internally represented and processed?”

• “J.16 What data type bugs can I get?”

K.10.9 Where are zero-length and invisible strings explained?

• “D.5.2.2 What is the “Allow Zero Length” Table field property?”

• “G.4.2 How do I write String constants?”

• “G.5.2 What are the Text string operators?”

• “I.4.4.2 What are the side effects of changing the “Required”, “Allow zero length”,

“Validation rule” or “Indexing” properties of a Table field?”

• “L.4.2.3 How do I fix violating “Allow Zero Length=No”?”

• “L.5.13 How do I fix an apparent zero-length string in a Table/Form field configured

as “Allow Zero Length=No”?”

• “L.7 How do I fix errors with Short Text or String fields?”

K.10.10 Where are exception-values explained?

• “F.7.18 What is an SQL aggregate function?”

• “G.5 How do I use value operators in an expression?”

• “L.1 Why can I get an error/crash in a test-and-proven database?”

• “J.7.3 How do I debug the current uncommented SQL operation so it does not

produce defective results?”

• “J.10 How do I fix a crash from a run-time error?”

• “J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!”

or “#Func!” in a field?”

• “J.11.11 How do I fix a Query producing “#Invalid” or “#Deleted” in a field?”

• “J.11.13 How do I fix a Query producing “#Name?” in a field?”

• “J.14.7 What effect does Null cause in Union SQL operators?”

• “J.15 What exception-value bugs can I get?”

K.10.11 Where are aggregate functions explained?

• “F.7.18 What is an SQL aggregate function?”

• “G.1.7 How domain aggregate functions depend on expression scopes?”

• “G.1.8 How SQL aggregate functions depend on expression scopes?”

• “G.6.2 How do I use domain aggregate functions in an expression?”

• “G.6.3 How do I use SQL aggregate functions in an expression?”

• “J.10.8 How do I fix the crash “Cannot have … in aggregate argument.”?”

• “J.10.14 How do I fix a crash from my user-defined VBA functions?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 667 of 726

• “K.6.14 What are useful tricks with SQL aggregate functions?”

• “M.7 Domain Aggregate functions”

• “M.16 SQL aggregate functions”

K.10.12 Where is remote database access explained?

• “D.13 How do I share a database, having multiple concurrent users?”

• “K.3 How do I structure and optimize a distributed database?”

• “L.5.15 How do I fix spontaneously changing Table/Form field values?”

• “L.6 How do I fix a Table/Form that I cannot open?”

K.10.13 Where is VBA code explained?

• “C.2.8 What is a function?”

• “D.10.4 How do I configure VBA action code associated to Form Events?”

• “F.13.4 Can I write a VBA function that deletes, inserts or updates Table records?”

• “G.2 How do I manage VBA data types and Table field types-sizes?”

• “G.4.5 What are the restrictions when writing constants in VBA expressions?”

• “G.6.4 How do I use user-defined VBA functions in an expression?”

• “G.8.5 How do I use an SQL operation in a VBA variable assignment?”

• “I.7 What are the side effects of modifying my user-defined VBA functions?”

• “J.10.14 How do I fix a crash from my user-defined VBA functions?”

• “J.11.22 How do I fix my VBA functions comparing text strings case sensitive?”

• “J.14.9 What effects does Null cause as an argument of a VBA function?”

• “J.16.5 What data type bugs can I get with VBA functions?”

• “K.8.3 Why should I avoid using the Variant-Decimal VBA data type?”

• “K.8.4 How do Decimal data types work?”

• “K.9 How do I write my user-defined VBA functions and database Subroutines?”

• “L.8.11 How do I fix the VBA editor changing the value of the constants I write?”

K.10.14 Where are Nulls explained?

• “C.6 What is a Null?”

• “C.7.1 What are duplicate records?”

• “C.8.3 What different types of indexes are there?”

• “C.10 What are the Table Key(s) and how should I handle them?”

• “D.5.1.7 What is the “Required” Table field property?”

• “G.5 How do I use value operators in an expression?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 668 of 726

• “F.7.18 What is an SQL aggregate function?”

• “F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)?”

• “F.8.8 What is the output record-list of a Full-Outer-Join?”

• “I.4.4.2 What are the side effects of changing the “Required”, “Allow zero length”,

“Validation rule” or “Indexing” properties of a Table field?”

• “J.10.6 How do I fix the crash “Invalid use of Null.”?”

• “J.14 What Null-related bugs can I get?”

• “J.15 What exception-value bugs can I get?”

• “K.1.3 Why should I prevent Nulls in my Table fields?”

• “K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)?”

• “K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes?”

• “K.5 Why and how should I carefully handle Nulls in my Queries?”

• “L.2.1.1 How do I fix “Nulls in Required field” when saving my Table design?”

• “L.2.7 How do I fix “…primary key cannot contain a Null…” when saving my Table

design?”

• “L.4.1.5 How do I fix a Table Short Text field configured as “Required=Yes” that

accepts a Null?”

• “L.4.2.2 How do I fix trying to save Null in a “Required” field?”

• “L.5.11 How do I fix a Null in a Table/Form field configured as “Required=Yes”?”

• “L.5.12 How do I fix an apparent Null in a Table/Form Short Text field configured as

“Required=Yes”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 669 of 726

PART L. FIXING DATABASE ERRORS

You may click:

• “L.1 Why can I get an error/crash in a test-and-proven database?”

• “L.2 How do I fix errors with my Table/Form design?”

• “L.3 How do I fix errors in my Relationship configuration?”

• “L.4 How do I fix errors when entering, modifying or deleting records?”

• “L.5 How do I fix errors in Table/Form data?”

• “L.6 How do I fix a Table/Form that I cannot open?”

• “L.7 How do I fix errors with Short Text or String fields?”

• “L.8 How do I fix errors with the user interface?”

L.1 Why can I get an error/crash in a test-and-proven

database?

When you are starting to build a database, you will frequently get error messages and

crashes, that you will fix until the database seems to work properly and you can use it in

production. You are clearly prepared to face this, and I am providing guidance in Part J

and in this Part L about how to fix different problems you may encounter along your

Query and database design.

However, when you have extensively tested and proven your database, and it has

actually been in production for months, getting a severe error (a Query crash, a user-

defined function crash, a clearly wrong result, ...) may cause you substantial anxiety. The

first time I got a Query crash during normal operation of my database I was in panic, and

I thought all the work I had invested in my database would now be useless.

If you get a Query error/crash during database operation you should not worry: this is

absolutely normal, and it will for sure happen now and then.

Some examples of errors/crashes you may get (in increasing order of severity) are:

1. A Query result that is wrong (e.g., a date or number value that is not what should

be).

2. A Query result that contains exception-values (e.g.,“#Div/0!”, “Num!”,

“#Error”, “#Type!”, “Func!”, “#Name?” or “#Invalid”).

3. A Query crash with an MS-Access error message indicating why the Query

cannot be run.

4. A Query crash because a user-defined VBA function crash. The function crash

can be reported with an MS-Access error message or by MS-Access opening the

VBA editor/debugger.

When this happens and you get an error/crash in a test-and-proven Query, you can fix it

by clicking “J.1 How do I fix an error/crash in a test-and-proven Query?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 670 of 726

L.2 How do I fix errors with my Table/Form design?

This chapter addresses errors and problems you may get with Table/Form design, in

particular errors when trying to save the design of a Table or Form. Find the specific

error you have among the following sections:

• “L.2.1 How do I fix data integrity errors when saving my Table design?”

• “L.2.2 How do I fix orphan Calculated fields when saving my Table design?”

• “L.2.3 How do I fix “Calculated column cannot be saved…” when saving my Table

design?”

• “L.2.4 How do I fix “Could not find field…” when writing the expression of a

Calculated field?”

• “L.2.5 How do I fix “Could not find field…” when saving my Table design?”

• “L.2.6 How do I fix “Key/Index with duplicate values” when saving my Table

design?”

• “L.2.7 How do I fix “…primary key cannot contain a Null…” when saving my Table

design?”

• “L.2.8 How do I fix “You can’t change the primary key” when saving my Table

design?”

• “L.2.9 How do I fix “Cannot delete this index…” when saving my Table design?”

• “L.2.10 How do I fix “There is no primary key…” when saving my Table design?”

L.2.1 How do I fix data integrity errors when saving my Table design?

If saving your Table design, you get the warning message:

“Data integrity rules have been changed: existing data may not be valid for the new
rules.

 This process may take a long time. Do you want the existing data to be tested with
the new rules?”

this is because the changes you did in your Table design may cause data integrity errors.

Data integrity errors arise if the Table data violates your Table design. The causes of these

possible integrity errors are:

• The field(s) just configured as “Required=Yes” contain(s) Null in records already

existing in the Table (click D.5.1.7, D.8.1 and I.4.4.2).

• The field validation rule(s) just configured is(are) violated (i.e., it returns False) in

records already existing in the Table (click D.5.1.5 and I.4.4.2).

• The record validation rule just configured is violated (i.e., it returns False) in

records already existing in the Table (click D.8.1 and I.5.7).

• Field(s) just configured as “Allow Zero Length=No” contain(s) a zero-length string

in records already existing in the Table (click D.5.2.2 and I.4.4.2). You get the

warning message above if you changed this, but even if you click “Yes” to the

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 671 of 726

question above, MS-Access will not check this. This may be an MS-Access bug.

• The new field type and/or field size just configured may cause Table data modification

(click D.4 and I.4.4.1), which in turn, may also cause one (or more) of the problems

above.

The warning message at the beginning of this section is not notifying a data integrity

error: it is a warning notifying the possibility of data integrity errors. Because the

possible errors would be very harmful, you need to handle this very carefully just in

case errors actually exist:

• You should click on “Yes” on the warning confirmation box, because otherwise

MS-Access will not check your Table data for Table design violations. You

definitively want to know if your Table data violates the Table design, and in

case of errors, you want to fix them right away. If Table data that violates the

Table design remains undetected, it will most likely create confusion,

misunderstandings and errors in your database data and Query results.

• If you rather click on “Cancel”161, this will cancel the operation of saving your

Table design changes, and the Table will remain open in “Design View”.

• If you rather click on “No”, your Table design changes will be saved without

checking if the Table data violates them: as I indicated right above, this is

extremely bad, so you have to be very sure that this is what you want before

clicking on “No”.

If you clicked on “Yes”, MS-Access will check the Table data for possible violations of

the design changes you are trying to save. This is, the design changes made since the

last Table design was saved. Notice that MS-Access will not check for configuration

violations of Table configuration that had been previously saved.

If all the checks by MS-Access are correct, it means that all Table data complies with

the Table design changes being saved: the design changes will be saved, and the Table

will be silently closed.

However, if MS-Access finds a case of Table data violating the design changes being

saved, (e.g., a field just being set as “Required=Yes” having Null), MS-Access will show

an integrity error message. There are different types of data integrity violations, and

each of them has its specific integrity error message.

To fix this, my advice is that you sequentially take the following actions:

1. You should first take careful note of the specific integrity error message(s), and

also take note of the specific design element(s) shown in each of the integrity error

message(s).

2. On the violation message confirmation buttons, if you are sure that you want your

new configuration (e.g., “Required=Yes”), you should click on “Yes”: this will keep

the configuration element and MS-Access will continue checking for other possible

Table design violations.

If you rather click on “No”, this will revert the configuration element (e.g., a new or

161 Closing the confirmation window clicking on its “X” icon is the same as clicking on “Cancel”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 672 of 726

modified field validation rule) that triggered the error, and MS-Access will continue

checking for other possible design violations.

You should almost never click on “Cancel”162, because if you do, MS-Access will

stop checking Table data for other possible design violations. Therefore, you may

have other Table data (in addition to the one already reported up to now) that is

violating your Table configuration, and it is extremely bad to ignore it.

3. If you clicked on “Yes” or “No”, MS-Access will continue checking the data. If MS-

Access detects another case of Table data violating the design changes, MS-Access

will show another violation warning message. You fix this by going back to action

number 1 above.

4. You will have to repeat this cycle of actions 1, 2 and 3 several times, as long as MS-

Access keeps finding Table data violating the Table design configuration that you

are trying to save. Once MS-Access does not find any more Table data violating the

Table design (or you did click on “Cancel”, against my advice), the Table design

changes will be saved unless index/Key errors prevent it (click “L.2.6 How do I fix

“Key/Index with duplicate values” when saving my Table design?”).

5. Right after the Table design has been saved (i.e., after point 4), you should fix each

and every error that was reported, and that you carefully noted. Fixing each error

will usually just imply changing the Table data, but on some cases, it may also require

to correct/adjust the Table design. The usual way to correct the Table data is by doing

a bulk-change of your Table data (click E.7).

For each specific cause of data integrity problems, I now detail the specific error

messages that you may get in step 1 above, together with some advice on how to fix the

corresponding problem:

• You configured “Required=Yes”:

Click “L.2.1.1 How do I fix “Nulls in Required field” when saving my Table design?”.

• You configured a field validation rule:

Click “L.2.1.2 How do I fix “field validation rule violated” when saving my Table

design?”.

• You configured a record validation rule:

Click “L.2.1.3 How do I fix “record validation rule violated” when saving my Table

design?”.

• You changed the field type and/or field size:

Click “L.2.1.4 How do I fix field Type-size change errors when saving my Table

design?”.

Notice that in this listing there is no bullet for having configured “Allow Zero Length=No”

because MS-Access does not check this! This is bad, and you will have to verify

manually that there are no pre-existing zero-length strings, replacing them in case they

do exist: if you want do this, you may click “E.7 How do I bulk-change my Table/Form’s

data?”.

If you clicked on “No” to the question by MS-Access of checking existing data (at the

162 Closing the confirmation window clicking on its “X” icon is the same as clicking on “Cancel”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 673 of 726

beginning of this section), or you clicked on “Cancel” to the question from bullet 2 above,

it is very convenient that you correct this. You may click:

• “L.2.1.5 How do I fix that I cancelled the Table data integrity check?”

L.2.1.1 How do I fix “Nulls in Required field” when saving my Table design?

For each Table field configured as “Required=Yes” that contains one or more Null(s) in

the Table, you will get one error message saying:

“Existing data violates the new setting for the 'Required' property for field
'Field_name.'

Do you want to keep testing with the new setting?
* To keep the new setting and continue testing, click Yes.
* To revert to the old setting and continue testing, click No.
* To stop testing, click Cancel.”

You fix this by removing all Nulls from field 'Field_name' indicated in the error message.

Alternatively, you may change the field configuration to “Required=No”, but you have

to be very sure that this is what you want.

If you want to know how to remove all Nulls from a field, you may click “E.7 How do I

bulk-change my Table/Form’s data?”.

L.2.1.2 How do I fix “field validation rule violated” when saving my Table

design?

For each field whose field validation rule is violated (i.e., it returns False) in the Table,

you will get one error message saying:

“Existing data violates the new setting for the 'Validation Rule' property for field
'Field_name'

Do you want to keep testing with the new setting?
* To keep the new setting and continue testing, click Yes.
* To revert to the old setting and continue testing, click No.
* To stop testing, click Cancel.”

You fix this by either correcting the field validation rule you just changed or correcting

all the field values that violate the field validation rule.

If you want to know how to correct all the wrong values, you may click “E.7 How do I

bulk-change my Table/Form’s data?”.

L.2.1.3 How do I fix “record validation rule violated” when saving my Table

design?

If the record validation rule is violated (i.e., it returns False) by one or more Table

records, you will get the error message:

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 674 of 726

“Existing data violates the new record validation rule.

Do you want to keep testing with the new rule?
* To keep the new rule and continue testing, click Yes.
* To revert to the old rule and continue testing, click No.
* To stop testing, click Cancel.”

You fix this by either correcting the record validation rule you just changed or correcting

all the field values that violate the record validation rule.

If you want to know how to correct all the wrong values, you may click “E.7 How do I

bulk-change my Table/Form’s data?”.

L.2.1.4 How do I fix field Type-size change errors when saving my Table

design?

If saving your Table design, you get either of the following warning messages:

• “Some data may be lost.
The size of one or more fields has been changed to a shorter size. If data is lost,
validation rules may be violated as a result. Do you want to continue anyway?”

• “Microsoft Access encountered errors when converting the data.
The contents of fields in N record(s) were deleted. Do you want to proceed
anyway?”

• “Microsoft Access deleted n indexes on the converted fields.
Some data did not convert properly.”

this is most likely because you modified the “Field Type” and/or “Field Size” properties

of one, or more fields of your Table.

This a somehow complex issue: to understand why one of these messages is being shown

and the relevant consequences of accepting or not each of the confirmations above, you

may click “I.4.4.1 What are the side effects of changing the “Field Type” and/or “Field
Size” properties of a Table field?”.

L.2.1.5 How do I fix that I cancelled the Table data integrity check?

In case you cancelled all or part of the error checks when saving a Table design

(click L.2.1), you may have data integrity errors in that Table: if your Table data violates

the Table design, this will most likely create confusion, misunderstandings and errors in

your database data and Query results.

You fix this by re-doing the Table configuration that was unchecked, saving the Table

design, and making sure that you do not cancel any error check (click L.2.1). For

example, if you want to check an index for duplicates, delete the index configuration,

save the Table design, open it again, configure the index again and allow MS-Access to

check for errors.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 675 of 726

L.2.2 How do I fix orphan Calculated fields when saving my Table

design?

If saving your Table design, you get the warning message:

“There are calculated columns in this table that depend on the column 'Col_name'.
Changing or deleting this column may cause errors in one or more of the dependent
calculated columns. Do you want to continue?”

this is because you deleted a field that is used in the expression of a Calculated field.

You fix this by either adding the missing field, correcting the expression of the

Calculated field or removing the Calculated field, as corresponds.

L.2.3 How do I fix “Calculated column cannot be saved…” when saving

my Table design?

If saving your Table design, you get the error message:

“Calculated column cannot be saved without a valid expression in the expression
property.”

this is because the expression of a Calculated field is wrong. MS-Access will not allow

you to save the Table design and will show an additional warning message indicating

that design changes were not saved.

You fix this by correcting the expression of the Calculated field or removing the

Calculated field, as corresponds.

L.2.4 How do I fix “Could not find field…” when writing the expression

of a Calculated field?

If you write an expression for a Calculated field in its property “Expression”, and you get

the error message:

“Could not find field 'Field_name'.”

this is most likely because you misspelled the field name “Field_name”.

You fix this by editing the expression and correcting the typo.

If the field name was correctly written, this is most likely because you added the field

name “Field_name” to the Table after having created the Calculated field.

You fix this by saving the Table and then writing again the desired expression for your

Calculated field. If this does not work, you should try closing and opening the Table, and

trying again.

L.2.5 How do I fix “Could not find field…” when saving my Table design?

If saving your Table design, you get the error message:

“Could not find field 'Field_name'.”

this is most likely because you removed a field “Field_name” that was used in a

Calculated field and/or in the Table’s record validation rule.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 676 of 726

You fix this by doing either of the following:

• Correct the corresponding Calculated field(s) and/or the Table’s record validation

rule so they refer to existing field names.

• Add a field (creating or renaming it) with the same field name as the missing one.

• Remove the corresponding Calculated field(s) and/or Table’s record validation rule.

This is risky, so you have to be very sure that this is what you want.

L.2.6 How do I fix “Key/Index with duplicate values” when saving my

Table design?

If saving your Table design, you get the error message:

“The changes you requested to the table were not successful because they would
create duplicate values in the index, primary key, or relationship. Change the data in
the field or fields that contain duplicate data, remove the index, or redefine the index
to permit duplicate entries and try again.”

this is most likely because you just configured the Primary Key and/or an index(es)

without duplicate values, and the Table contains records with duplicate values in the

Primary Key field(s) and/or in the field(s) configured as indexed without duplicate

values.

You fix this by first clicking on “OK”163 to remove the error message. MS-Access will

then show the warning message:

“Errors were encountered during the save operation. Indexes were not added or
changed.”

You now click again on “OK” to remove the warning message. The Table will remain on

“Design View”. You can now either:

• Discard all the design changes by closing the Table and answering “No” upon the

question on whether you want to save the design changes.

• Remove the configuration of the Primary Key and/or of the index(es) that caused

the error.

After having done either of the above, you can open the Table in “Datasheet View” and

modify (or remove) the records with duplicate values that originated the problem. If you

want to know how to correct the erroneous records, you may click “E.7 How do I bulk-

change my Table/Form’s data?”. Once the records are correct, you may configure again

the Primary Key and/or the index(es) without duplicate values that you wanted to

configure.

Notice that the error message above is exactly the same as when entering a record with

duplicate values in the fields of an index without duplicate values or in the Primary

Key fields (click L.4.3.2).

163 Clicking on the close window “X” icon of the error window will have the same effect as clicking on

“OK”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 677 of 726

L.2.7 How do I fix “…primary key cannot contain a Null…” when saving

my Table design?

If saving your Table design, you get the error message:

“Index or primary key cannot contain a Null value.”

this is most likely because you just configured the Primary Key, and the Table contains

records with Null in one or more Primary Key field(s).

You fix this by first clicking on “OK”164 to remove the error message. MS-Access will

then show the warning message:

“Errors were encountered during the save operation. Indexes were not added or
changed.”

You now click again on “OK” to remove the warning message. The Table will remain on

“Design View”.

MS-Access will not allow you to open the Table in “Datasheet View” (to modify the

records) while the conflicting Primary Key is set. You therefore have first to remove the

configuration of the Primary Key. After having done this, you can then open the Table in

“Datasheet View” and modify (or remove) the records with Null that originated the

problem. If you want to know how to correct the erroneous records, you may click

“E.7 How do I bulk-change my Table/Form’s data?”. Once the records are correct, you

may configure again the Primary Key that you wanted.

L.2.8 How do I fix “You can’t change the primary key” when saving my

Table design?

If saving your Table design, you get the error message:

“You can’t change the primary key.

This table is the primary table in one or more relationships

If you want to change or remove the primary key, first delete the relationship in the
relationship’s window.”

this is most likely because you tried to remove/change the Primary Key field(s) which

constitute(s) the index without duplicates and without Nulls associated with the master

field(s) of a Relationship.

If you really want to remove/change the Primary Key field(s), you fix this by first

removing the corresponding Relationship(s). You will then be able to remove/change the

Primary Key field(s).

164 Clicking on the close window “X” icon of the error window will have the same effect as clicking on

“OK”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 678 of 726

L.2.9 How do I fix “Cannot delete this index…” when saving my Table

design?

If saving your Table design, you get the error message:

“Cannot delete this index or table. It is either the current index or is used in a
relationship.”

this is most likely because you tried to remove/change the index without duplicates and

without Nulls associated with the master field(s) of a Relationship.

If you really want to remove/change this index without duplicates and without Nulls

Primary Key field(s), you fix this by first removing the corresponding Relationship(s).

You will then be able to remove/change the index.

L.2.10 How do I fix “There is no primary key…” when saving my Table

design?

If you have created a new Table, and when saving the Table design you get the warning

message:

“There is no primary key defined
Although a primary key isn’t required, it’s highly recommended. A table must have a
primary key for you to define a relationship between this table and other tables in the
database.
Do you want to create the primary key now?

this is because you did not define the Primary Key in your Table design. It is not an error

to create a Table without defining its Primary Key, but it is very unusual. Unless you

are very sure you do not want a Primary Key in this Table, my advice is that you

configure the field(s) that define it. Depending on what you want to do, you may take one

of the following options:

• If you do not want a Primary Key in this Table, click on “No” and the Table design

will be saved without having a Primary Key. Notice that you will not get a warning

the subsequent times that you save the Table design: you only the warning above

once, which is the first time that you save the Table design.

• If you want to define now the Primary Key field(s) of this Table, click on “No” to

save the Table design changes. You then open the Table in “Design View” and define

the Primary Key field(s) of the Table. If you want to know how to do it, you may

click “D.6 How do I configure the Primary Key field(s) of a Table?”.

• If you click on “Yes”, MS-Access will add to your Table an AutoNumber field, will

configure it as the Key field, and will leave the Table open in “Design View”. My

advice is you do not take this option, because it is much better to define the Primary

Key field(s) based on the intrinsic nature of the Table fields and avoid using the

AutoNumber fields. If you want to know more about this, you may click “D.6 How

do I configure the Primary Key field(s) of a Table?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 679 of 726

L.3 How do I fix errors in my Relationship configuration?

You may click:

• “L.3.1 How do I fix “different number of fields” Relationship error?”

• “L.3.3 How do I fix “different field sizes” Relationship error?”

• “L.3.4 How do I fix “violates referential integrity” Relationship error?”

• “L.3.5 How do I fix “missing index” Relationship error?”

• “L.3.6 How do I fix “…could not lock table…” Relationship error?”

• “L.3.7 How do I fix a removed Relationship when I create a new one?”

• “L.3.8 How do I fix showing a wrong Relationship type?”

• “L.3.9 How do I fix “reversed Relationship Tables and fields” error?”

• “L.3.10 How do I fix that I cannot configure a Relationship between a Table and

itself?”

• “L.3.11 How do I fix a malfunctioning Table slave record?”

• “L.3.12 How do I fix a malfunctioning Relationship?”

L.3.1 How do I fix “different number of fields” Relationship error?

If clicking on “OK” or “Create” in an “Edit Relationships” box, you get the error message:

“The field name is missing in row n.

 You haven't selected a matching field for this relationship in each row of the grid.

 Select fields so that the grid has the same number of fields on the left and right sides,
and then try to create the relationship again.”

this is most likely because the number of master fields and the number of slave fields

is not the same. The error message indicates explicitly the row number (indicated as “n”

in the error message above) within the Relationship box where the missing field name is

located.

You fix this by first clicking on “OK” to remove the error message.

Then, you modify the fields in the “Edit Relationships” box so that each master field is

related to a slave field (and vice versa), and both fields in each master-slave pair have the

same field type and field size.

Remind also that if the Relationship is with referential integrity, the master field(s) should

have one joint index without duplicate values and without Nulls. Once you are done,

click on “OK” or “Create” to save the Relationship.

Alternatively, you may cancel the operation by clicking on “Cancel” in the “Edit
Relationships” box: if you were creating a new Relationship, it will not be created; if you

were editing an existing Relationship, the existing Relationship will remain unaltered.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 680 of 726

L.3.2 How do I fix “different field types” Relationship error?

If clicking on “OK” or “Create” in an “Edit Relationships” box, you get the error message:

“Relationship must be on the same number of fields with the same data types.”

this is most likely because one, or more, of the master-slave field pair(s) involved in the

Relationship have a different field type.

You fix this by first clicking on “OK” to remove the error message.

Then, you modify the fields in the “Edit Relationships” box so that both fields in each

master-slave pair have the same field type and field size.

Remind also that if the Relationship is with referential integrity, the master field(s) should

have one joint index without duplicate values and without Nulls. Once you are done,

click on “OK” or “Create” to save the Relationship.

Alternatively, you may cancel the operation by clicking on “Cancel” in the “Edit
Relationships” box: if you were creating a new Relationship, it will not be created; if you

were editing an existing Relationship, the existing Relationship will remain unaltered.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

L.3.3 How do I fix “different field sizes” Relationship error?

If clicking “OK” or “Create” in an “Edit Relationships” box (with a ticked “Enforce
Referential Integrity” checkbox), you get the following wrong error message:

“Microsoft Access can't create this relationship and enforce referential integrity.

* The fields you chose may have different data types.
* The fields may have the Number data type but not the same FieldSize property
setting.

Try one of the following:

* Select fields with the same data type.
* Open the tables in Design view, and change the data types and field sizes to that
the fields match.
If you want to create the relationship without following the rules of referential
integrity, clear the Enforce Referential Integrity check box.”

this is most likely because of either (or both):

• One (or more) of the master-slave field pair(s) involved in the Relationship have the

same field type, but a different field size.

• You mistakenly typed-in the same master-slave field pair twice in the “Edit
Relationships” box.

You fix this by editing your Relationship to make all master-slave field pairs having the

same field type and field size and/or removing one of the two duplicated master-slave

field pairs.

If you want to know how to edit and delete Relationships, you may click B.10.5

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 681 of 726

and B.10.7.

L.3.4 How do I fix “violates referential integrity” Relationship error?

If clicking on “OK” or “Create” in an “Edit Relationships” box (with a ticked “Enforce
Referential Integrity” checkbox), you get the error message:

“Microsoft Access can't create this relationship and enforce referential integrity.

Data in the table 'Table_name' violates referential integrity rules.
For example, there may be records relating to an employee in the related table, but
no record for the employee in the primary table.

Edit the data so that records in the primary table exist for all related records.
If you want to create the relationship without following the rules of referential
integrity, clear the Enforce Referential Integrity check box.”

this is most likely because there are records in the slave Table 'Table_name' whose slave

field(s) contain values that are not equal to the ones of the corresponding master field(s)

in any record in the master Table.

You fix this by first clicking on “OK” to remove the error message.

If the Relationship definition was wrong, you correct it. If the Relationship was correct,

then you have to fix the records in the master Table and/or in the slave Table. If you want

to know how to correct the erroneous records, you may click “E.7 How do I bulk-change

my Table/Form’s data?”. Once the records are correct, you may configure again the

Relationship that you wanted.

Alternatively, you may cancel the operation by clicking on “Cancel”: if you were creating

a new Relationship, it will not be created; if you were editing an existing Relationship,

the existing Relationship will remain unaltered.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

L.3.5 How do I fix “missing index” Relationship error?

If clicking on “OK” or “Create” in an “Edit Relationships” box (with a ticked “Enforce
Referential Integrity” checkbox), you get the error message:

“No unique index found for the referenced field of the primary table.”

this is most likely because the master field(s) do not have one (composite) index without

duplicate values and without Nulls.

You fix this by first clicking on “OK” to remove the error message.

You then have to configure one index without duplicate values and without Nulls over

the master field(s). This implies that all master fields should be configured as

“Required=Yes”, they should contain no Nulls, and you should also configure one index

without duplicate values over the master fields. Remind that if the master fields are a

Primary Key, this always implies that they have one index without duplicate values

and without Nulls. Remind also that you may configure several indexes in a Table, in

addition to its Primary Key field(s). If you want more information on this, you may click

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 682 of 726

“D.7.2 How do I add composite (and simple) indexes to a Table?”

Alternatively, you may cancel the operation by clicking on “Cancel”: if you were creating

a new Relationship, it will not be created; if you were editing an existing Relationship,

the existing Relationship will remain unaltered.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

L.3.6 How do I fix “…could not lock table…” Relationship error?

If clicking on “OK” or “Create” in an “Edit Relationships” box, you get the error message:

“The database engine could not lock table 'Table_name' because it is already in use
by another person or process.”

this is most likely because the table “Table_name” is opened by some database user.

You fix this by first clicking (s) on the “OK” button or the close “X” icon to remove the

error message. You then close the Table “Table_name” or contact the user that is using

it, so he/she closes it. You can now retry to create the Relationship by clicking on “OK”

or “Create” in the “Edit Relationships” box.

L.3.7 How do I fix a removed Relationship when I create a new one?

If you create a new Relationship and at that moment an existing Relationship disappears,

this is most likely because you were editing the Relationship that has disappeared instead

of creating a new one. This error is particularly frequent when you open a blank “Edit
Relationships” box by double-clicking on the background of the “Relationships” pane

and you think you have created a new Relationship, but this is not true. You have opened

a blank “Edit Relationships” box where you will be able to select one existing

Relationship to edit it. The way to know if you are editing an existing Relationship or

creating a new one is to check the top right button of the “Edit Relationships” box: if the

button is labeled “OK”, you are editing an existing Relationship; if it is labeled “Create”,

you are creating a new Relationship.

To start creating a new Relationship you have to either drag and drop a master field into

its slave field, or click on the “Create New..” button from any “Edit Relationships” box.

If you want to create a new Relationship, you may click “D.9.1 How do I create a new

Relationship?”.

If you want to know how to manage Relationships, you may click “B.10 What is the

“Relationships” pane?”.

L.3.8 How do I fix showing a wrong Relationship type?

If MS-Access is showing a one-to-one Relationship as a one-to-many Relationship (i.e.,

shown with and infinity symbol “” in the line endpoint of each slave field), this is most

likely because you configured the required index without duplicate values and without

Null in a subset of the slave field(s) after having created the Relationship. In this, case,

MS-Access will wrongly continue showing the Relationship as when it was created: a

one-to-many Relationship pane. This may be an MS-Access bug.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 683 of 726

You fix this by deleting the Relationship (click B.10.7) and adding it again (click D.9.1).

I have tried many alternatives to this (refreshing, closing and opening the file, clicking on

“Compact and Repair Database”, etc.) and nothing worked.

L.3.9 How do I fix “reversed Relationship Tables and fields” error?

This also answers the question:

• “Why is MS-Access reversing my master and slave Table-boxes?”

If you create a new Relationship (either using the “Create New..” button or by drag-and-

drop of one master field), it may happen that in the resulting “Edit Relationships” box

MS-Access has reversed the first master field and the first slave fields165 that you entered

to start configuring the Relationship, and MS-Access will not allow you to change them

back.

When I say that MS-Access has reversed them it means that the slave field and the slave

Table are on the left column of the “Edit Relationships” box, while the master field and

the master Table are on the right column. Remind that in the “Edit Relationship” box,

the master Table and fields are the ones on the left side of the box, and the slave Table

and fields are the ones on the right side of the box.

This happens when the slave field is configured with a simple index without duplicate

values (with or without Nulls) and the master field is not configured with a simple

index without duplicate values and without Nulls.

The reason for reversing the Table-boxes (and also the fields) is that MS-Access guesses

that you are trying to create a one-to-many Relationship, and therefore, the field that is a

candidate Key must be the master field. This is not a problem, but it can be very

puzzling if you are not aware of it.

The guess of MS-Access is right, except when you are trying to create a multi-field one-

to-one Relationship. If this is the case, both the master fields and the slave fields are a

composite candidate Key of their respective Tables. Therefore, when you finished

inputting all the master and slave fields, it would have been correct to use the master

Table-box and the first master field that you used.

If MS-Access’ guess was right, and you made a mistake with the first master Table-box

and master field, the decision by MS-Access of reversing the Table-boxes and fields is

great, because it is correcting your mistake.

If MS-Access’ guess was wrong, and you were trying to create a multi-field one-to-one

Relationship, you fix this by selecting as the first slave field that you use to start creating

the Relationship, one of the slave fields of the Relationship that is not indexed without

duplicate values. Doing this, MS-Access will create the “Relationship box” with the

master and slave Tables and fields that you want, and afterwards you will be able to add

the remaining master fields and slave fields that you wanted for the Relationship, even

if one or more of the slave fields has a simple index without duplicate values (with or

without Nulls).

In case that all the slave fields have a simple index without duplicate values (with or

165 Notice that if the master and slave fields have been reversed, this implies the master and slave Tables

have also been reversed.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 684 of 726

without Nulls), in order to apply the fix I have just indicated, you have to first remove

the simple index of one of the slave fields, then apply the fix I just indicated above, and

afterwards configure again the simple index of the corresponding slave field.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

L.3.10 How do I fix that I cannot configure a Relationship between a

Table and itself?

You cannot do it because you are creating the Relationship by doing drag-and-drop of the

master field to the slave field in the same Table-box.

You fix this using either of the two following options:

• You create the Relationship clicking on the “Create New..” button in any “Edit
Relationship” box. When the “Create New” box is shown, you can select the Table

that you want as both the master Table and the slave Table, even if both are the same

Table.

• You show a second Table-box for the Table (e.g., by doing drag-and-drop from the

Table name in the “Navigation Pane” to the “Relationships” pane, and then, doing

drag-and-drop of the master field name from one of the Table-boxes to the slave

field in the other Table-box.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

L.3.11 How do I fix a malfunctioning Table slave record?

If a slave record in a Relationship with referential integrity is taking wrong values, click

“L.3.12 How do I fix a malfunctioning Relationship?”.

L.3.12 How do I fix a malfunctioning Relationship?

If the values of the slave fields in one (or more) slave records do not match the ones of

the corresponding master fields in any of the records from its master Table, in a

Relationship with referential integrity, this is most likely because the slave fields are

involved as slave fields in more than one Relationship with referential integrity.

Therefore, the slave fields may take the values corresponding to master records from

any of its master Tables. If you are looking at one of its master Tables, it can be the

case that the slave record is not taking the values from any of the records of the master

Table you are looking at, and rather it is taking them from another of its master Tables.

It is most unusual that you actually want to have a slave field with more than one master

field. My advice is you suppress the additional Relationships and each slave field has one

and only one master field.

You fix this by removing all the additional Relationships with referential integrity, such

that each slave field is involved in one and only one Relationship with referential

integrity.

If you want to know how to edit and delete Relationships, you may click B.10.5

and B.10.7.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 685 of 726

L.4 How do I fix errors when entering, modifying or deleting

records?

You may click:

• “L.4.1 How do I fix various field value errors?”

• “L.4.2 How do I fix error messages when saving a field value?”

• “L.4.3 How do fix error messages when entering a record?”

• “L.4.4 How do I fix errors when pasting records into a Table/Form?”

• “L.4.5 How do I fix a record I cannot delete?”

L.4.1 How do I fix various field value errors?

You may click:

• “L.4.1.1 How do I fix that I cannot type-in a text string in full?”

• “L.4.1.2 How do I fix that I cannot paste into a field’s value?”

• “L.4.1.3 How do I fix a changed numeric value?”

• “L.4.1.4 How do I fix a changed Short Text value that I typed-in?”

• “L.4.1.5 How do I fix a Table Short Text field configured as “Required=Yes” that

accepts a Null?”

• “L.4.1.6 How do I fix typing-in invisible characters into a Short Text Table field?”

L.4.1.1 How do I fix that I cannot type-in a text string in full?

If you are typing-in a text string in a Short Text field, and MS-Access stops showing the

characters that you type, this is most likely because you have reached the maximum field

size. MS-Access will not allow you to enter a text string longer than the “Field Size”

property of the field.

You fix this by editing the text string that you are entering to make it shorter or equal than

the value of the “Field Size” property of the field.

Alternatively, you may cancel the operation by pressing the “Esc” key: if you were

entering a new record, the new record will be removed; if you were editing an existing

record, the existing record will remain unaltered.

Finally, you may want to increase the value of the “Field Size” property, and you will then

be able to enter in this field text strings up to the length of the newly configured value of

“Field Size”. This is not risky (unless you have very severe space restrictions), and it is

actually considered a good practice to always set the “Field Size” of Short Text fields to

the maximum allowed value of 255.

L.4.1.2 How do I fix that I cannot paste into a field’s value?

If pasting one text string into a field’s value (click E.5.2.1) in a Short Text field, you get

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 686 of 726

the error message:

• “The text is too long to be edited.”

this is most likely because the string you are trying to paste into the field’s value would

result in a total length of the string larger than the “Field Size” property of this Short Text
field. MS-Access does not allow you to edit into a field a text string longer than the “Field
Size” property of the field.

You fix this by pasting a text string that results in a total size which is at most the value

of “Field Size”.

Finally, you may want to increase the value of the “Field Size” property, and you will then

be able to enter in this field text strings up to the length of the newly configured value of

“Field Size”. This is not risky (unless you have very severe space restrictions), and it is

actually considered a good practice to always set the “Field Size” of Short Text fields to

the maximum allowed value of 255.

L.4.1.3 How do I fix a changed numeric value?

This section also answers the questions:

• Why is MS-Access making pasting errors in a numeric value?

• Why is MS-Access changing a numeric value that I type-in?

If saving a numeric field value, MS-Access shows a different value, this is most likely

because of either of the following causes:

• The formatting configured for the field is not showing the actual saved field value.

For example, if you configure the field format to show only “n” decimal digits, and

you saved a number with more than “n” decimal digits, the number shown will be

rounded (using round-half away from zero, click J.11.20) to “n” decimal digits.

This is not an error as such, but if you want to fix this, change the formatting of the

field to the one that you find more suitable. You may click “H.6 How do I configure

the formatting of column values in a Table/Query/Form?”.

• The value you tried to save is fractional (e.g., 45.56) and the field type-size only

admits integer values (e.g., the field type-size is integer or double). Therefore, the

saved value is the one you tried to save rounded with round-half away from zero

(click J.11.20).

• The value you tried to save cannot be represented with all its precision in the field

type and size. Therefore, the saved value is the one you tried to save approximated

to the nearest value that can be represented in the field type and size. If you want to

know more about field storage formats, you may click “G.9.1 How are numeric-like

values internally represented?” and “G.9.3 What are decimal/binary conversion

rounding errors?”. I am adding some examples below, to clarify a few frequent cases.

You fix this by changing the field type-size to another one, but you have to be very

sure because this is very risky (click I.4.4.1).

Some examples of this problem are:

• For a field with an integer field type (“Field Type=Number” and “Field Size” set

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 687 of 726

to Byte, Integer, Long Integer, Decimal or Large Number), if you try to save a

fractional number, then the saved value is the fractional number rounded using

half-round to even (click J.11.20).

• For a field with the Currency field type, if you try to save a number with more

than four decimal positions, then the saved value is the number you tried to save

rounded to four decimal positions (using half-round to even, click J.11.20).

• For a field with a floating-point field type (“Field Type=Number” and “Field
Size” set to Single or Double), if you enter a number with more precision (i.e.,

more significant digits) than the one that can be stored, MS-Access will change

the value and store/calculate what is possible with the available precision. For

example, if you type in .9 into a Number-Single field, it will become

.899999976158142. Likewise, if you type in .1 into a Number-Single field, it will

become .100000001490116.

L.4.1.4 How do I fix a changed Short Text value that I typed-in?

If you type-in a text-string in a Short Text field, and MS-Access changed its value, this

is most likely because MS-Access removes any trailing space characters that you

typed-in. This is a good feature, because invisible characters are a source of errors. In

case you want more detail about problems with text strings, you may click “L.7 How do

I fix errors with Short Text or String fields?”.

It can also be that the field width and height is not enough to show the whole text string,

and only part of it is being shown.

L.4.1.5 How do I fix a Table Short Text field configured as “Required=Yes”

that accepts a Null?

If you have a Short Text field configured as “Required=Yes” and you can edit Null into

it, this is most likely because you are not editing (e.g., pasting) a Null, and rather, you

are editing either the zero-length text string(click L.7.7) or an invisible text string

(click L.7.8).

There is nothing to fix in this case. If you want to check that everything is right, enter an

actual Null and you will see how MS-Access rejects it.

L.4.1.6 How do I fix typing-in invisible characters into a Short Text Table

field?

I clearly advise you avoid typing-in any invisible character (except initial or

intermediate spaces) in your Short Text Table fields.

If you do not type-in anything into a Table Short Text field, it will contain Null (unless

you configured a default value for this field).

If against my advice you want to type-in invisible characters, you may click “L.7.6 What

are invisible characters?”.

If against my advice you want to type-in the zero-length string, you may click “L.7.7 What

is the zero-length text string?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 688 of 726

L.4.2 How do I fix error messages when saving a field value?

This section addresses error messages that you may get when saving a field value (either

typed-in, chosen, or pasted) within a record. This may happen when interactively editing

records (click E.1), when pasting over a rectangle of fields over more than one record

(click E.5.2.2) or when pasting more than one row of values as new records

(click E.5.2.3).

You may click:

• “L.4.2.1 How do I fix an invalid value”?”

• “L.4.2.2 How do I fix trying to save Null in a “Required” field?”

• “L.4.2.3 How do I fix violating “Allow Zero Length=No”?”

• “L.4.2.4 How do I fix that I cannot paste a text string in full?”

• “L.4.2.5 How do I fix a value rejected because it is not in the list?”

• “L.4.2.6 How do I fix a value violating a field validation rule?”

L.4.2.1 How do I fix an invalid value”?

If saving a field value, you get the error message:

“The value you entered isn’t valid for this field.
 For example, you may have entered text in a numeric field or a number that is larger
than the FieldSize setting permits.”

this is most likely because you tried to save a value that cannot be represented in the field

type and size of the field:

• The value does not match the field type and size:

You cannot enter an arbitrary text string (e.g., “Chicago”) into a Number, Currency

or Large Number fields. You cannot enter a Date/Time value (e.g., 23/12/2018) into

a Number, Currency or Large Number fields. You cannot enter a numeric value into

a Date/Time field166. As an exception, you can enter any number into a Yes/No field:

“0” is stored as “0” (i.e., False/No/Off or unticked) and any other number you enter

is stored as “-1” (i.e., True/Yes/On or ticked).

• The value is out of the range of the field type:

A Number-Byte value must be between 0 and 255 (both included). A Number-
Integer value must be between -32,768 and 32,767 (both included). If you want to

know the specific ranges of every field-type, you may click “G.2 How do I manage

VBA data types and Table field types-sizes?”.

• A Date/Time value that does not exist:

For example, “30-february-2018” or “25:67” do not exist.

• A Short Text value longer than “Field Size”

The string length is larger than the value of the “Field Size” property of this field.

166 Since MS-Access accepts “,” as date separator and “.” as time separator, you can enter some values that

look like numbers, but they are not, into a Date/Time field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 689 of 726

You fix this by editing another field value that is within the range of the corresponding

field type-size.

Finally, you may want to modify the type-size of this field in the Table design, in order

to accept the value that you want to enter, but you have to be very sure because this is

very risky (click I.4.4.1).

L.4.2.2 How do I fix trying to save Null in a “Required” field?

If saving a field value, you get the error message:

“You must enter a value in the 'Table_name.Field_name' field. ”

this is most likely because you tried to save Null in a field configured as “Required=Yes”.

The corresponding field name is “Field_name” from the Table “Table_name”, both of

them explicitly include in the error message.

You fix this editing a non-Null value into the field.

Finally, you may want to change the field configuration setting it to “Required=No”, but

you have to be very sure because this is very risky (click I.4.4.2).

L.4.2.3 How do I fix violating “Allow Zero Length=No”?

If saving a field value, you get the error message:

“Field 'Table_name.Field_name' cannot be a zero-length string.”

this is most likely because you tried to save a zero-length string in a field configured as

“Allow Zero Length=No”. The corresponding field name is “Field_name” from the Table

“Table_name”, both of them explicitly include in the error message.

You fix this by editing a non-zero string in the field.

Finally, you may want to modify the field configuration setting it to “Allow Zero
Length=Yes”, but you have to be very sure because this is very risky (click I.4.4.2).

L.4.2.4 How do I fix that I cannot paste a text string in full?

If pasting one text string over one Short Text field (click E.5.2.2), you get following

error message:

• “The field is too small to accept the amount of data you attempted to add. Try
inserting or pasting less data.”

this is most likely because the string you are trying to paste into the field is longer than

the “Field Size” property of this Short Text field. MS-Access does not allow you to edit a

text string longer than the “Field Size” property of the field.

You fix this by pasting a text string shorter or equal than the value of “Field Size”.

Finally, you may want to increase the value of the “Field Size” property, and you will then

be able to enter in this field text strings up to the length of the newly configured value of

“Field Size”. This is not risky (unless you have very severe storage restrictions): it is

actually considered a good practice to set “Field Size” to the maximum allowed value of

255.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 690 of 726

L.4.2.5 How do I fix a value rejected because it is not in the list?

If saving a field value, you get the error message:

“The text you entered isn't an item in the list.

 Select an item from the list, or enter text that matches one of the listed items.”

this is most likely because you tried to save a value that is not one of the options of the

field’s drop-menu, and the drop-down menu is configured as “Limit to List=Yes”.

You fix this by editing one of the options from the drop-down menu.

Finally, you may want to configure the property “Limit to List=No”, but you have to be

very sure because this may be risky. If you want to know more about this, you may click

“D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field?”.

L.4.2.6 How do I fix a value violating a field validation rule?

If saving a field value, you get the error message:

“One or more values are prohibited by the validation rule 'Boolean_expr'. Enter a
value that the expression for this field can accept.”

this is most likely because you tried to save a value that violates (i.e., it returns False) the

field validation rule. The expression of the field validation rule is explicitly listed in the

error message, represented as “Boolean_expr” above.

In case that you configured a specific error message in the field property “Validation
Text” (click D.5.1.6), upon an error you will get this specific error message instead of

the default error message listed above.

You fix this by changing the field value you just entered to other one that respects the

field validation rule.

Finally, you may want to modify the field validation rule, but you have to be very sure

that changing the rule is the correct solution.

L.4.3 How do fix error messages when entering a record?

This section addresses error messages that you may get when entering or modifying a

record (click Part E)

You may click:

• “L.4.3.1 How do I fix a record violating a record validation rule?”

• “L.4.3.2 How do I fix erroneous records because of duplicate values?”

• “L.4.3.3 How do I fix a slave record without a master record?”

• “L.4.3.4 How do I fix an erroneous slave record?”

L.4.3.1 How do I fix a record violating a record validation rule?

If entering or modifying a record, you get the error message:

“One or more values are prohibited by the validation rule 'Boolean_expr' set for

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 691 of 726

'Table_name'. Enter a value that the expression for this field can accept.”

this is most likely because the record you intended to enter, or your intended modified

record, violates the Table’s record validation rule (i.e., it returns False). The expression

of the field validation rule (“Boolean_expr” above) and the Table name (“Table_name”

above) are explicitly listed in the error message.

In case that you configured a specific error message in the record property “Validation
Text” (click D.8.2), upon an error you will get this specific error message instead of the

default error message listed above.

You fix this by changing the field value(s) of the intended record to other value(s) that

satisfy the record validation rule.

Finally, you may want to modify the record validation rule, but you have to be very sure

that changing the rule is the correct solution (click I.5.7).

L.4.3.2 How do I fix erroneous records because of duplicate values?

If entering or modifying a record, you get the error message:

“The changes you requested to the table were not successful because they would
create duplicate values in the index, primary key, or relationship. Change the data in
the field or fields that contain duplicate data, remove the index, or redefine the index
to permit duplicate entries and try again.”

this is most likely because the record you intended to enter, or your intended modified

record, has the same value(s) as the ones of an already existing record in the field(s) of

the Primary key, or of an index without duplicate values.

You fix this by changing the field value(s) of the intended record to other one(s) that

is(are) not duplicate in respect to the one(s) of any other record already existing in the

Table. Alternatively, you may cancel the operation by pressing the “Esc” key: if you were

entering a new record, the new record will be removed; if you were editing an existing

record, the existing record will remain unaltered.

You may also want to edit/remove the already existing record that had duplicate values

in respect to the new one you were trying to enter, and then re-enter the record you were

trying to enter.

Alternatively, you may want to modify the Primary Key or the index that was preventing

the insertion of the new record, but you have to be very sure because this is very risky

(click I.5.6).

Notice that the error message above is exactly the same as when configuring the Key

field(s) or an index without duplicate values in a Table that has duplicate values in those

field(s) (click L.2.6).

L.4.3.3 How do I fix a slave record without a master record?

If entering or modifying a record, you get the error message:

“You cannot add or change a record because a related record is required in table
'Table_name'.”

this is most likely because the record you intended to enter, or your intended modified

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 692 of 726

record, has one (or more) slave field(s) that have a value-array such that there is no

master record in the master Table that has the same value-array. The name of the

master Table is explicitly indicated in the error message, represented as “Table_name”

above.

You fix this by changing the slave field value(s) to other one(s) that exist in a master

record in the master Table.

Finally, you may want to modify the Relationship, but you have to be very sure because

this is very risky.

If you want to know more about this, you may click “C.11 What is a Relationship?” and

“D.9 How do I create and configure my Table Relationships?”.

L.4.3.4 How do I fix an erroneous slave record?

If entering or modifying a record, you get the error message:

“The record cannot be deleted or changed because table 'Table_name' includes
related records.”

this is most likely because the record you intended to enter, or your intended modified

record, is a master record in one (or more) Relationship(s) with referential integrity

(click “C.11 What is a Relationship?”) with the option “Cascade Update Related Fields”

(click D.9.4), and one (or more) of its slave record(s) does not pass all the error checks

(click E.6) if updating the values of its slave field(s) to the one(s) of the intended master

record.

You fix this by changing the master field value(s) to other one(s) that if updated in all its

slave record(s) all of them will pass all the error checks.

Finally, you may want to modify the Relationship, but you have to be very sure because

this is very risky.

If you want to know more about this, you may click “C.11 What is a Relationship?” and

“D.9 How do I create and configure my Table Relationships?”.

L.4.4 How do I fix errors when pasting records into a Table/Form?

If your problem is when pasting one row of values as new records or when pasting over

a rectangle of fields over one record, you may click E.1. Otherwise, continue reading

here.

If you paste over a rectangle of fields over more than one existing record

(click E.5.2.2), or if you paste more than one row of values in the new-record row

(click E.5.2.3), MS-Access will attempt to modify or enter (respectively) the

corresponding records one by one.

For each record that is to be modified or entered MS-Access will first perform, a field

error check, field by field, on each field whose value has been pasted in the record. The

field error checks performed are the same ones as when attempting to save a field value

(click E.6.1).

After having checked all the pasted fields of a given record, that record as a whole is

also checked for errors. The record error checks performed are the same ones as when

attempting to enter or modify a record (click E.6.2).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 693 of 726

If all the above field and record checks are correct, the record is modified or entered.

If all the records are correct, all of them are modified or entered in the Table/Form.

If one of the above field/record checks results in an error, MS-Access will show an

error message informing you of the specific cause of the error (validation rule, type

mismatch, etc.) with an “OK” button.

Once you click on “OK” to close the error message box, if any additional error is

encountered, MS-Access will show you the warning message:

“Do you want to suppress further error messages telling you why records can't be
pasted?

 If you click No, a message will appear for every record that can't be pasted.”

inside a dialog box. The options to click are “Yes”, “No” and “Cancel”:

• If you click “Cancel” (or you close the confirmation box)

The paste operation is canceled, and the Table/Form will remain unchanged.

• If you click “No”

MS-Access will show you one error box for each record whose data are not totally

correct, and in each and every error box you will have to click “OK” to close it.

There is no way to cancel this, and you will have to click “OK” in all the error

notification boxes. If the pasted record-list is long, this can be really annoying. Make

sure that you really want to see all the error messages before clicking “No”.

After you have clicked “OK” on each and every error box, MS-Access will continue

as if you had clicked “Yes”: see the next bullet point.

• If you click “Yes”

If there are no correct records, no record will be entered/modified.

If there are “n” correct records, MS-Access will show the warning message:

“You are about to paste n record(s). Are you sure you want to paste these
records?”

inside a confirmation box. If you click “Yes”, the “n” correct records will be

entered/modified. Notice that MS-Access may silently change the values that you

have pasted because of storage format restrictions of the field type. If you want to

know more about this, you may click L.4.1.3, L.4.4.1, L.4.4.2 or L.4.4.3.

If you click “No” no record will be entered/modified.

Regardless of having entered/modified any correct record or not, in case there was one

(or more) erroneous records, MS-Access will finally show the following error message:

“Records that Microsoft Access was unable to paste have been inserted into a new
table called 'Paste Errors'.

 In the Navigation Pane, open the new table to see the unpasted records.
 After you fix the problems that resulted in the paste errors, copy and paste the
records from the new table.”

indicating that all the erroneous records (i.e., all the records whose data did not pass all

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 694 of 726

the record error checks) have been pasted in a local Table called “Paste Errors”. Click on

“OK” to close the error box, and you are done with your pasting operation.

If there are pasting errors, the “Paste Errors” local Table is automatically created by MS-

Access with the required number of fields. Fields will just be called “F1”, “F2”, “F3”...

This Table is extremely useful because it allows you to look into each erroneous record

to see what failed and fix it as required (click L.4.2 and L.4.3). The “Paste Errors” local

Table is not deleted by MS-Access, so you have to delete it manually if you so wish.

However, the “Paste Errors” local Table is overwritten by MS-Access every time you

do a paste records operation that produces erroneous records. This means that you should

look into the “Paste Errors” local Table (or copy its information elsewhere) before doing

another paste records action, to avoid the information it contains being lost.

Notice that if you have the “Paste Errors” local Table open when doing the paste, MS-

Access will not close it, nor will it create another one. Therefore, all the non-pasted

records will be lost. Consequently, be sure to have the “Paste Errors” local Table closed

before pasting into a MS-Access Table.

The “Paste Errors” local Table will have the first “n” fields of the pasted cells, where “n”

is the minimum between the number of columns of the copied cells and the number of

columns in the cells selected for pasting. In case you are pasting as new records, then the

number of cells selected for pasting is the number of cells of the Table where you are

pasting.

If there are few records in the “Paste Errors” local Table, you may manually inspect them

to detect the source of errors and produce the corresponding correct records. If there are

lots of records, you may then copy the whole “Paste Errors” local Table, paste it in

another application (e.g., Excel) and design formulas that correct all the record’s errors.

Once you have produced the correct records, paste them in the Table where you are doing

the paste operation.

In addition to the previous general pasting errors, you may also get there following paste-

specific errors:

• “L.4.4.1 What pasting errors can I get from invisible characters in Text fields?”

• “L.4.4.2 What pasting errors can I get from data copied from Excel?”

• “L.4.4.3 What pasting errors can I get from Windows’ cut/paste buffer?”

L.4.4.1 What pasting errors can I get from invisible characters in Text fields?

Remind from “E.2.2.2 How do I type-in a value in a Short Text field?” that for Short Text
fields MS-Access will remove any trailing space characters that you had typed-in. This

is a good feature, because invisible characters in text fields are a source of errors.

However, if you paste a text string with invisible characters, the string will be accepted

as such by MS-Access and will be saved as the value of the field. This is a problem,

because invisible characters are a source of errors. If you want to know more about

invisible character errors, you may click “L.7.10 What apparently defective results can

invisible characters produce?”.

Also, if you paste a string with invisible characters MS-Access may do some strange

things (e.g., like moving intermediate new-line characters to the end of the string). If you

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 695 of 726

want to know more about this, you may click “L.4.4.2 What pasting errors can I get from

data copied from Excel?”.

Therefore, avoid as much as possible pasting strings with invisible characters. A good

practice is to configure a field validation rule that prevents invisible characters. If you

want to know more about this, you may click “K.1.2.1 Why should I add field validation

rules to my Table fields?”.

Because of these errors, and other ones, I strongly advise you to follow my indications

from “E.7.4 Why should I backup my data before a bulk-change?”.

L.4.4.2 What pasting errors can I get from data copied from Excel?

You may suffer errors when pasting data copied from Excel. I will list a few ones that I

have encountered:

• If you copy from Excel 10 vertical cells, where the first one is text and the other 9

are numbers, into 10 numeric fields of a Table, the text value in cell number 1 will

be ignored as if it does not exist, the numbers in Excel cells 2 to 10 will be pasted

starting in the first field, the 10th field will not be modified, and no error will be

reported. This is not the expected result: this may be an MS-Access bug.

• If you copy from Excel 10 vertical cells, where the first two are text and the other 8

are numbers, into 10 numeric fields of a Table, the first two fields will become Null,

the numbers in Excel cells 3 to 10 will be pasted starting in the third field, and no

error will be reported. You get a similar problem if the first three Excel cells are

text and the other 7 are numbers. These are not the expected results: this may be an

MS-Access bug.

• If you copy from Excel 10 vertical cells, where the first four are text and the other 6

are numbers, into 10 numeric fields of a Table, MS-Access will report pasting

errors, the first five fields will remain unmodified, the numbers in Excel cells 5 to

10 will be pasted starting in the sixth field, and an erroneous “Paste Errors” local

Table will be created. The “Paste Errors” local Table is erroneous because the first

Excel text field will be duplicated in the first two records, while records 3 to 5 will

correctly contain the text strings in Excel cells 2 to 4. As you may see, the “Paste
Errors” local Table erroneously contains one duplicated record, with a total of five

records. This is not the expected result: this may be an MS-Access bug.

• If you copy an Excel cell with a text string that includes one or more new-line

characters and you paste it over one field value (i.e., having selected one field before

pasting), MS-Access will move the new-line characters at the end of the string.

However, if you paste it as a value (i.e., having selected one field’s value before

pasting), MS-Access will remove the new-line characters from the string, enclose it

between double quotes, and append all the new-line characters at the end. Notice that

in both cases the pasted string has been modified.

The above errors cannot be fixed: this may be an MS-Access and/or an Excel bug. Even

thought this cannot be fixed, you can do a workaround by pasting first into a plain text

editor, modify the data if needed, copy again and finally paste into MS-Access.

Because of these errors, and other ones, I strongly advise you follow my indications from

“E.7.4 Why should I backup my data before a bulk-change?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 696 of 726

L.4.4.3 What pasting errors can I get from Windows’ cut/paste buffer?

The cut/paste buffer of Windows may sometimes get corrupt or do strange things. This is

particularly true if you copied the rectangle of cells from a Navigator program or from

non-Microsoft applications. If the paste operation produced strange results, this can be

the cause. In that case, cancel the paste operation and redo the copy operation from the

other application. If it fails again, you can restart the application and even restart the

computer. If it still fails, I suggest that you try again by pasting first the data in Excel and

checking what has been pasted. If there are errors, you can fix them with Excel. Once you

have checked that the data in Excel is correct, copy from Excel and paste into MS-Access.

If this still fails, you can paste into a plain-text editor, check the information there, and

once you check is correct, copy from the plain-text editor and paste into MS-Access.

Because of these errors, and other ones, I strongly advise you to follow my indications

from “E.7.4 Why should I backup my data before a bulk-change?”.

L.4.5 How do I fix a record I cannot delete?

If deleting a record, you get the error message:

“The record cannot be deleted or changed because table 'Table_name' includes
related records.”

this is most likely because you are trying to delete a master record that has one or more

existing slave records in a Relationship with referential integrity that does not have the

“Cascade Delete Related Records” (click D.9.5) option set. The name of the slave Table

containing the slave records is “Table_name”, from the error message above.

You fix this by removing all the slave records from Table “Table_name”. If the number

of slave records is small, you can remove them manually. If the number of slave records

is very large (which is unusual) you may design a specific Query to delete them.

Notice that a given master Table may be involved in several Relationships, therefore

having several slave Tables. If this is the case, the error message above may be shown

again. You will only be able to delete the record that you wanted after you have

previously deleted all its slave records in all the Relationships that do not have the

“Cascade Delete Related Records” option set.

Remind that setting the “Cascade Delete Related Records” option may seem convenient,

but it is extremely risky: I strongly advise you never set this option.

L.5 How do I fix errors in Table/Form data?

You may click:

• “L.5.1 How do I fix a Table/Form showing “########” in a field?”

• “L.5.2 How do I fix a Table/Form showing “#Num!”, “#Div/0!”, “#Type!” or

“#Func!” in a field?”

• “L.5.3 How do I fix a Table/Form showing “#Invalid” in a field?”

• “L.5.4 How do I fix a Table/Form showing “#Deleted” in a field?”

• “L.5.5 How do I fix a Form showing “#Name?” in a field?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 697 of 726

• “L.5.6 How do I fix a Table/Form showing a black square in a checkbox field?”

• “L.5.7 How do I fix a Table/Form showing a wrong numeric-like value in a field?”

• “L.5.8 How do I fix a Table/Form showing a wrong Short Text value in a field?”

• “L.5.9 How do I fix a Table/Form erroneously ordering records?”

• “L.5.10 How do I fix a value not in the drop-down menu in a Table/Form field?”

• “L.5.11 How do I fix a Null in a Table/Form field configured as “Required=Yes”?”

• “L.5.12 How do I fix an apparent Null in a Table/Form Short Text field configured as

“Required=Yes”?”

• “L.5.13 How do I fix an apparent zero-length string in a Table/Form field configured

as “Allow Zero Length=No”?”

• “L.5.14 How do I fix field value(s) that violate(s) the field/record validation

rule(s)”?”

• “L.5.15 How do I fix spontaneously changing Table/Form field values?”

L.5.1 How do I fix a Table/Form showing “########” in a field?

This is most likely because the formatted representation of its value does not fit in the

size of the cell in “Datasheet View”. What I mean is that the formatted representation of

the value is larger than the cell’s width and height. For example, if you have the numeric-

like value “23-02-2020”, formatted as “23 February 2020” in a field with one row of

height and 10 columns of width, MS-Access will show “##########”.

This is not an error as such, so in principle you do not have to fix anything. If you want

to see the value, you may do one of the following:

• Select the field’s value (e.g., by clicking within the field, click B.5.3). This will

show the unformatted value. If the unformatted value does not fit in the field’s

width and height, you can scroll right and left using the arrow keys, and MS-

Access will progressively show all the digits of the unformatted value.

• Make the field’s width and/or height larger, until you can see the actual formatted

value. Remind that in a Table or Query result this change will not be permanent

unless you actually save its layout, while in a Form this change will be permanent,

unless you manually undo it.

• Copy the field’s value and paste it in another application (e.g., Excel), where you

can see the value.

Notice that this applies to all numeric-like data/field types, but not to the Short Text or

String data/field types. For the case of the Short Text or String data/field types, if the

field’s width and height is not enough to show the complete value of the field, MS-Access

will just show the leftmost part of the text string that fits in the field’s width and height.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 698 of 726

L.5.2 How do I fix a Table/Form showing “#Num!”, “#Div/0!”, “#Type!”

or “#Func!” in a field?

If you see one of the following in a Table/Form field:

#Num!

#Div/0!

#Type!

#Func!

this is most likely because this is a Calculated field and there has been an error in the

expression that calculates its value.

If “#Num!” is shown, the expression resulted in the number-overflow “#Num!”

exception-value (e.g., multiplying two numbers whose result is out of range, or dividing

zero by zero, “0/0”).

If “#Div/0!” is shown, the expression resulted in the divide-by-zero “#Div/0!” exception-

value (e.g., diving non-zero by zero, “5/0”).

If “#Type” is shown, the expression resulted in the type-error “#Error” exception-value

(e.g., a multiplication of a number and a text string “5*'text'”).

If “#Func!” is shown, the expression resulted in the table-function “#Func!” exception-

value (e.g., “Log('hello')” or “Asc(Null)”).

You fix this doing either or both of the following:

• Modify the field’s values of the records that are producing the error in the Calculated

field expression.

• Modify the expression of the Calculated field, but you have to be very sure because

this is risky.

If you want to know more about these exception-values, you may click “J.15 What

exception-value bugs can I get?”.

Non-English MS-Access versions can show a different (translated) text. For example, the

Spanish version shows “#¡Tipo!”, “#¡Núm!” or “#¡Función!”.

L.5.3 How do I fix a Table/Form showing “#Invalid” in a field?

If you see the following in a Table/Form field:

#Invalid

this is most likely because this is a Calculated field and you removed a field that was used

in the expression that calculates its value.

You fix this by either adding the removed field to the Table or by modifying the

expression of the Calculated field suppressing from it the removed field.

This is the table-invalid “#Invalid” exception-value. If you want to know more about

exception-values, you may click “J.15 What exception-value bugs can I get?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 699 of 726

Non-English MS-Access versions can show a different (translated) text. For example, the

Spanish version shows “#Inválido”.

L.5.4 How do I fix a Table/Form showing “#Deleted” in a field?

If you see the following in a Table/Form field:

“#Deleted”

this is most likely because this field has been deleted while the Table/Form was open in

an MS-Access “Object pane”. In most cases, it is not only the field that has been deleted,

but the full record, and therefore all the fields of the record will show “#Deleted”. This

is quite frequent when you have a Query or VBA function that removes records: if you

run that Query or VBA function while the Table/Form is open, then MS-Access will show

“#Deleted” in all the fields of the removed records. This can also happen if another

network-user is editing the Tables.

You fix this by clicking on the Refresh All “ ” icon from the “Home” Ribbon. This will

refresh the Table/Form values shown, taking them from the currently stored Table

records. All the “#Deleted” labels will then disappear. This is also fixed if you close the

Table and open it again.

Non-English MS-Access versions can show a different (translated) text. For example, the

Spanish version shows “#Eliminado”.

L.5.5 How do I fix a Form showing “#Name?” in a field?

If you see the following in a Form field:

“#Name?”

this is most likely because the origin Table field has not been found. This happens for

example when you remove a field from a Table, and this Form had a field linked to the

removed Table field.

You fix this by either removing the field from the Form or by adding (creating or

renaming) the removed field to the Table.

This is the wrong-name “#Name?” exception-value. If you want to know more about

exception-values, you may click “J.15 What exception-value bugs can I get?”.

Non-English MS-Access versions can show a different (translated) text. For example, the

Spanish version shows “#¿Nombre?”.

L.5.6 How do I fix a Table/Form showing a black square in a checkbox

field?

If you see black square in a checkbox field, this is a deleted Yes/No value in a field

configured to be displayed as a checkbox. In this type of fields, MS-Access shows a black

square instead of the label “#Deleted”.

This is exactly the same problem, and has the same fix, as described in section L.5.4 for

deleted field values.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 700 of 726

L.5.7 How do I fix a Table/Form showing a wrong numeric-like value in

a field?

If you see a numeric-like value that is different from the actual value stored in the field,

this is most likely because the formatting configured for this field and/or the field width

and height is/are not the one you want. This is particularly frequent with Date/Time

fields, where you can configure a format that only shows the date-part or the time-part

of the stored value, and therefore, the actual stored value is not correctly shown.

You fix this by changing the field formatting and/or the field width and height to more

suitable ones.

If you want to know more about how to change the field formatting, you may click:

• “H.6 How do I configure the formatting of column values in a Table/Query/Form?”

If you want to know more about how to change the field width and height, you may click:

• “H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form?”

• “H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form?”

L.5.8 How do I fix a Table/Form showing a wrong Short Text value in a

field?

If you see a Short Text value that is different from the actual value stored in the field,

this is most likely because the string contains invisible characters (click L.7.6) or because

the field width and height is not large enough.

You fix this by either suppressing the invisible characters (if they are wrong) or by making

the field width and/or height larger.

If you want to know how to suppress the invisible characters, you may click:

• “E.7 How do I bulk-change my Table/Form’s data?”.

If you want to know how to make the field width and/or height larger, you may click:

• “H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form?”

• “H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form?”

L.5.9 How do I fix a Table/Form erroneously ordering records?

This is most likely because the values you see in the fields are different from what it is

actually stored. You may check the causes for this in the previous two sections:

• “L.5.7 How do I fix a Table/Form showing a wrong numeric-like value in a field?”

• “L.5.8 How do I fix a Table/Form showing a wrong Short Text value in a field?”

This can also be because you the data type of one of the fields is different from what you

think. It is very frequent to see a date or a number that is actually a String. Since ordering

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 701 of 726

as a String is different from ordering as date or as a number, the ordering you see seems

to be wrong, but it is actually correct.

L.5.10 How do I fix a value not in the drop-down menu in a Table/Form

field?

If a Table contains records with values in a field that are different from the options in the

field’s drop-down menu (and you do not want this), you fix this this by:

• If the wrong values were entered before the drop-down menu was configured, you

fix this by replacing the wrong values doing a bulk-change of your Table’s data

(click E.7).

• If the wrong values were entered after the drop-down menu was configured, you fix

this by configuring the drop-down menu so it does not allow to enter values different

from the ones in the meu. This implies configuring the drop-down menu property

“Limit to List=Yes” (click D.11.5).

Notice that even if you configure “Limit to List=Yes”, you will be able to paste records

with any value, even if it is not in the menu list.

L.5.11 How do I fix a Null in a Table/Form field configured as

“Required=Yes”?

You fix this as I describe in “E.7 How do I bulk-change my Table/Form’s data?”.

If you are puzzled about how it is possible that there are Nulls in a field configured as

“Required=Yes”, this is because the Nulls were in the Table before the field was

configured as “Required=Yes”. If you already have records with Null in a field, and you

configure the field as “Required=Yes”, MS-Access will present you a warning, but the

Nulls will stay in the Table records. If you do not want the Nulls to be there, you have

to remove them as I have just indicated.

It is also possible that this is not a Null, and it is rather an apparent Null: see the next

section.

L.5.12 How do I fix an apparent Null in a Table/Form Short Text field

configured as “Required=Yes”?

If there is an apparent Null, this is most likely because of one of the following causes:

• The field contains a zero-length string, which looks like a Null (an empty cell). A

zero-length string is not a Null and will be correctly accepted in a field configured as

“Required=Yes”.

To fix this, you most likely want to configure the field as “Allow Zero Length=No”,

and then remove all zero-length strings (see below).

• The field contains an invisible string (click L.7.8) which looks like a Null (an empty

cell). Notice that an invisible string is not a Null and will be correctly accepted in a

field configured as “Required=Yes”.

If you want to know more about problems caused by invisible strings, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 702 of 726

To fix this, you most likely want to introduce a field validation rule that prevents

invisible strings (click K.1.2.1) and remove your invisible strings (see below).

• The field contains several lines of text and the first line of text only contains invisible

characters (click L.7.6): this looks like a Null (an empty cell). A field contains

several lines of text when its text string contains one (or more) new-line characters.

Notice that this string is not a Null and will be correctly accepted in a field configured

as “Required=Yes”.

If you want to know more about this problem, you may click “L.7.4 How do I fix text

strings and insufficient field height?”.

To fix this, you most likely want to introduce a field validation rule that prevents

invisible strings (click K.1.2.1) and remove your invisible strings (see below).

• If the field actually contains Nulls, you most likely want to remove all the Nulls (see

below).

To remove all your zero-length strings and/or invisible strings and/or Nulls, you may

click “E.7 How do I bulk-change my Table/Form’s data?”.

L.5.13 How do I fix an apparent zero-length string in a Table/Form field

configured as “Allow Zero Length=No”?

If there is an apparent zero-length string, this is most likely because of one of the

following causes:

• The field contains a Null, which looks like a zero-length string (an empty cell). Notice

that a Null is not a zero-length string and will be correctly accepted in a field

configured as “Allow Zero Length=No”.

To fix this, you most likely want to configure the field as “Required=Yes”, and then

remove all Nulls (see below).

• The field contains an invisible string (click L.7.8), which looks like a zero-length

string (an empty cell). Notice that an invisible string is not a zero-length string and

will be correctly accepted in a field configured as “Allow Zero Length=No”.

If you want to know more about problems caused by invisible strings, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

To fix this, you most likely want to introduce a field validation rule that prevents

invisible strings (click K.1.2.1) and remove your invisible strings (see below).

• The field contains several lines of text and the first line of text only contains invisible

characters (click L.7.6): this looks like a Null (an empty cell). A field contains

several lines of text when its text string contains one (or more) new-line characters.

Notice that this string is not a Null and will be correctly accepted in a field configured

as “Required=Yes”.

If you want to know more about this problem, you may click “L.7.4 How do I fix text

strings and insufficient field height?”.

To fix this, you most likely want to introduce a field validation rule that prevents

invisible strings (click K.1.2.1) and remove your invisible strings (see below).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 703 of 726

• If the field actually contains zero-length strings, you most likely want to remove all

of them (see below).

To remove all your zero-length strings and/or invisible strings and/or Nulls, you may

click “E.7 How do I bulk-change my Table/Form’s data?”.

L.5.14 How do I fix field value(s) that violate(s) the field/record

validation rule(s)”?

If this happens, it is because you did not fix the Table/Form data when you defined the

field and/or record validation rule. If you want to know more about this, you may click

“L.2.1 How do I fix data integrity errors when saving my Table design?”.

To correct all the field values that return False in the field validation rule and/or in the

record validation rule, you may click “E.7 How do I bulk-change my Table/Form’s

data?”.

L.5.15 How do I fix spontaneously changing Table/Form field values?

If your Table field values are changing spontaneously by themselves, this is most likely

because one of the following causes:

• There is another simultaneous database user that is currently changing the

records. If you want to know more about simultaneous users you may click

“D.13 How do I share a database, having multiple concurrent users?”.

• The changing record is a slave record in a Relationship with referential integrity

and having set “Cascade Update Related Fields”. Remind that in this case, if you

change the values of master fields in a master record, the new values will be

automatically updated in the corresponding slave fields in all the slave records

of this master record.

• You have Queries (click F.13) and/or VBA functions (click F.13.4) that modify

your Table records.

None of the causes above are errors, so you will have to decide if you want to change

anything or not depending on your desired database functionality.

L.6 How do I fix a Table/Form that I cannot open?

You may click:

• “L.6.1 How do I fix “The record source…does not exist”?”

• “L.6.2 How do I fix “…database engine could not find the object.”?”

• “L.6.3 How do I fix “Could not find file...”?”

• “L.6.4 How do I fix “...is not a valid path”?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 704 of 726

L.6.1 How do I fix “The record source…does not exist”?

If opening a Form/Report, you get the error message:

“The record source 'T_Q_name' specified on this form or report does not exist.

The name of the recordsource may be misspelled, the recordsource was deleted or
renamed, or the recordsource exists in a different database.

In the Form or Report's design view or Layout view, display the property sheet by
clicking the Properties button, and then set the RecordSource property to an existing
table or query.”

this is most likely because the Form/Report has one (or more) fields with a record

source Table and/or Query that could not be found.

You fix this by first clicking on “OK” to remove the error message, and then correcting

the record source (click D.10.3).

Finally, you may alternatively want to remove this Form/Report in case it is obsolete.

L.6.2 How do I fix “…database engine could not find the object.”?

If opening a Table/Form, you get the error message:

“The Microsoft Access database engine could not find the object 'Table_name'. Make
sure the object exists and that you spell its name and the path name correctly. If
'Table_name' is not a local object, check your network connection or contact the
server administrator.”

this is most likely because the Table is a linked Table, and the source Table

'Table_name' was not found in the source file. Remind that a linked Table is a link to

a Table (the source Table) included in another file (the source file).

You fix this by first clicking on “OK” to remove the error message, and then relinking

the linked Table to the correct source Table in the source file. If you want to do this,

you may click “K.3.10 How do I view and manage Table links?”.

Finally, you may alternatively want to remove this linked Table (and its corresponding

Form, if any), but you have to be very sure because this may be risky.

L.6.3 How do I fix “Could not find file...”?

If openning a Table/Form, you get the error message:

“Could not find file 'File_name_with_path'.”

this is most likely because the Table is a linked Table, and the source file

'File_name_with_path' was not found. Remind that a linked Table is a link to a Table

(the source Table) included in another file (the source file).

You fix this by first clicking on “OK” to remove the error message, and then relinking

the linked Table to a correct source Table in the correct source file. If you want to know

how to do this, you may click “K.3.10 How do I view and manage Table links?”.

Finally, you may alternatively want to remove this linked Table (and its corresponding

Form, if any), but you have to be very sure because this may be risky.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 705 of 726

L.6.4 How do I fix “...is not a valid path”?

If opening a Table/Form MS-Access seems frozen, or you get the error message:

“'File_name_with_path' is not a valid path.
 Make sure the path name is spelled correctly and that you are connected to the
server on which the file resides.”

this is most likely because the Table is a linked Table, and the file path to the source

file “File_name_with_path” is wrong. Remind that a linked Table is a link to a Table

(the source Table) included in another file (the source file).

You fix this by first clicking on “OK” to remove the error message, and then:

• If the source file is in a network drive, and MS-Access seemed frozen (or the error

message took a while to be displayed), the problem is most likely that the network

and/or the remote server is/are down. It is therefore not possible to access the source

file. You fix this by fixing the network connection and/or the network server.

• If the source file is in a local drive (or in a network drive currently accessible) the

problem is most likely that the file-path to the source file is wrong. You fix this by

relinking the linked Table to a correct source Table in a correct source file with a

correct file-path. If you want to know how to do this, you may click “K.3.10 How

do I view and manage Table links?”.

Finally, you may alternatively want to remove this linked Table (and its corresponding

Form, if any), but you have to be very sure because this may be risky.

L.7 How do I fix errors with Short Text or String fields?

This chapter also answers the questions:

• How do I fix MS-Access erroneously considering two equal text strings as

different text strings?

• How do I fix text string functions returning defective values?

• How do I fix text fields wrongly ordered?

• How do I fix an empty text field behaving as if it had data?

A frequent source of apparent errors listed in these questions is that the user is not aware

that MS-Access considers upper-case and lower-case letters to be equal, in Comparison

operators (click G.5.3), in record sorting (click F.7.12) and in VBA operators and

functions (click J.11.22). Once the user is aware of these facts, this source of apparent

errors is solved.

Another frequent source of apparent errors arises from a mismatch between the actual

text string contained in a Table/Query/Form field and what the database user believes that

is the text string in the field. This mismatch is caused by the way text string fields are

shown. Since the user believes that the field content is different from what it really is, the

user expects a different result from what he/she is getting, although the result produced

by MS-Access is correct.

You fix this by finding the specific problem in the sections below, and clicking on it:

• “L.7.1 Why text strings can be different from what is shown?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 706 of 726

• “L.7.2 What unexpected results can I get because text strings are different from what

is shown?”

• “L.7.3 How do I fix text strings and insufficient field width?”

• “L.7.4 How do I fix text strings and insufficient field height?”

• “L.7.5 How do I fix text strings and invisible characters?”

• “L.7.6 What are invisible characters?”

• “L.7.7 What is the zero-length text string?”

• “L.7.8 What are invisible text strings?”

• “L.7.9 Why can I have invisible characters in my Short Text and String fields?”

• “L.7.10 What apparently defective results can invisible characters produce?”

L.7.1 Why text strings can be different from what is shown?

Text strings contained in your Table/Query/Form fields can be different from what is

shown because one or more of the following three reasons:

• Insufficient field width

The field (column) width only shows a given prefix of the string, and the remaining

suffix cannot be seen. If you want to know how to deal with this case, you may click

“L.7.3 How do I fix text strings and insufficient field width?”.

• Insufficient field height

The field (rows) height only shows the first “n” lines of the string, and remaining

lines cannot be seen. If you want to know how to deal with this case, you may click

“L.7.4 How do I fix text strings and insufficient field height?”.

• Invisible characters

All invisible characters are shown as a space, so you cannot visually distinguish

them. Even worse, you cannot know how many trailing invisible characters the string

has, because trailing spaces are not shown. If you want to know how to deal with

this case, you may click “L.7.5 How do I fix text strings and invisible characters?”.

L.7.2 What unexpected results can I get because text strings are

different from what is shown?

Apparent Null in Key fields

A Short Text Table Key field may appear to contain Null, because the field contents are

not shown or because the field contains an invisible string or the zero-length string. This

may puzzle the user, that may believe that MS-Access is not working properly or that this

is not a Key field.

Apparent Null in “Required=Yes” fields

A Short Text Table field configured as “Required=Yes” may appear to contain Null,

because the field contents are not shown or because the field contains an invisible string

or the zero-length string. This may puzzle the user, that may believe that MS-Access is

not working properly or that this is not a “Required=Yes” field.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 707 of 726

Apparent zero-length string in fields set as “Allow Zero Length=No”

A Short Text Table field configured as “Allow Zero Length=No” may appear to contain

the zero-length string, because the field contents are not shown or because the field

contains an invisible string. This may puzzle the user, that may believe that MS-Access

is not working properly or that this field is not configured as “Allow Zero Length=No”.

Apparent error in Comparison operators

Comparison operators are “=”, “<”, “>”, “<=” and “>=”. These can be applied to text

strings.

The result of a Comparison operator may appear to be wrong because the contents of

one, or both, operands are not completely shown or because they contain different

invisible characters or because they contain the zero-length string. This may puzzle the

user, that may believe that Comparison operators are not working properly.

If you want to know more about apparent errors with invisible characters, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

Apparent error in Value Sorting

The result of value sorting may appear to be wrong because some of the field value-list

contents are not completely shown or because they contain different invisible characters

or because they contain the zero-length string. This may puzzle the user, that may believe

that value sorting is not working properly.

If you want to know more about apparent errors with invisible characters, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

Apparent error in the Length function “Len()”

The result of the “Len()” function may appear to be wrong because the contents of its

argument are not completely shown or because it contains invisible characters or because

it is the zero-length string. This may puzzle the user, that may believe that the “Len()”

function is not working properly.

If you want to know more about apparent errors with invisible characters, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

Apparent error in String concatenation operators “&” and “+”

The result of the String concatenation operators “&” and “+” may appear to be wrong

because the contents of one, or both, operands are not completely shown or because they

contain different invisible characters or because they contain the zero-length string. This

may puzzle the user, that may believe that these operators are not working properly.

If you want to know more about apparent errors with invisible characters, you may click

“L.7.10 What apparently defective results can invisible characters produce?”.

L.7.3 How do I fix text strings and insufficient field width?

Among the three causes of mismatch between the actual text string and the shown text

string that are listed in “L.7.1 Why text strings can be different from what is shown?”, this

one is quite mild. The reason is that the database user is usually aware that the field

width limits the part of the text string that can be seen.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 708 of 726

You can detect this problem in the two following ways:

• Making the field (column) wider

This will show the suffix of the text string that is different and that was not previously

shown. If you want to know how to make the field wider, you may click “H.1.1 How

do I change the column width in a Table/Query/Form?”. Once you have checked the

problem, you may discard the changes made on your field width by not saving the

Table/Query/Form.

• Selecting the field’s value

If you select the field’s value (e.g., by clicking within it, click B.5.3) and move along

the field content pressing the right-arrow “” key, the text string will scroll

horizontally, and you will be able to progressively see its whole contents.

In case the actual text string was correct, you do not modify your data, but the results you

are getting will now make sense to you. In case the actual text string was wrong, then

you should correct the corresponding Table field(s) and/or Query code to make it correct.

L.7.4 How do I fix text strings and insufficient field height?

Among the three causes of mismatch between the actual text string and the shown text

string that are listed in “L.7.1 Why text strings can be different from what is shown?”, this

one is somehow severe. The reason is that the database user is not usually aware that

text strings may be split in several lines, and therefore, he/she does not expect that a

string has additional lines to what is being shown.

A particularly frequent case is the text string with an invisible first line. This is due to

the user mistakenly typing-in an initial line-feed character or pasting a field with an initial

line-fee character. Since most frequently the field (row) height is one line, the field

appears to be empty, however, it is not.

You can detect this problem in the two following ways:

• Making the field (rows) higher

This will show the lines of the text string that are different and that were not

previously shown. If you want to know how to make the field (rows) higher, you may

click “H.2.1 How do I change the height of all the rows in a Table/Query/Form?”.

Once you have checked the problem, you may discard the changes made on your field

(rows) height by not saving the Table/Query/Form.

• Selecting the field’s value

If you select the field’s value (e.g., by clicking within it, click B.5.3) and move along

the field content pressing the right-arrow “” key, the text string will scroll

horizontally, and you will be able to progressively see its whole contents, also across

different lines.

In case the actual text string was correct, you do not modify your data, but the results you

are getting will now make sense to you. In case the actual text string was wrong, then

you should correct the corresponding Table field(s) and/or Query code to make it correct.

L.7.5 How do I fix text strings and invisible characters?

Among the three causes of mismatch between the actual text string and the shown text

string that are listed in “L.7.1 Why text strings can be different from what is shown?”, this

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 709 of 726

one is really severe. The reason is that you cannot detect this problem by making the

field wider or higher, nor by selecting the field value. No matter what you do, the strings

will be equally shown in spite of being different. Particularly difficult problems are

caused the zero-length string and by invisible strings.

If you want to know more about invisible characters, you may click “L.7.6 What are

invisible characters?”. If you want to know more about invisible strings, you may click

“L.7.8 What are invisible text strings?”.

Detecting this case is considerably more difficult than detecting the two cases presented

in the previous two sections. To detect this case, you have to copy the suspect field and

paste it in some external application (e.g., a binary text editor), that shows invisible

characters. Using this external application, you can know for sure what is the actual

content of the field.

In case the actual text string was correct, you do not modify your data, but the results you

are getting will now make sense to you. In case the actual text string was wrong, then

you should correct the corresponding Table field(s) and/or Query code to make it correct.

Since detecting this problem is quite difficult, the best approach is you prevent this

problem. My advice is that you always configure Short Text Table fields in the following

way:

• Set “Required=Yes”

This prevents Null in your Short Text Table fields. If you want to know how to

configure this, you may click “D.5.1.7 What is the “Required” Table field property?”.

• Set “Allow Zero Length=No”

This prevents zero-length text strings in your Short Text Table fields. If you want to

know how to configure this, you may click “D.5.2.2 What is the “Allow Zero Length”

Table field property?”.

• Add a field validation rule

Add a field validation rule that prevents invisible characters in your text fields. If you

want to know more about this, you may click “D.5.1.5 What is the field “Validation
Rule” Table field property?”.

L.7.6 What are invisible characters?

Invisible characters are the ones shown as a space. The special characters Space

“Chr(32)” and no-break space “Chr(160)” are both invisible. All control characters

“Chr(0)” to “Chr(31)” are invisible.

Object names can contain invisible special characters (i.e., space and no-break space)

but cannot contain invisible control characters. However, text string values in your

database can contain both invisible special characters and some invisible control

characters.

By far, the most frequent invisible character in text strings is Space “Chr(32)”, and far

less frequent we can also find Line-feed167 “Chr(10)”, horizontal Tab “Chr(9)” or no-

167 The “line feed” character is used in text files to split the text in different lines. When a line feed character

is encountered, the next character is considered to be in a different line, below the previous line.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 710 of 726

break space “Chr(160)”.

Invisible characters are really bad, because they all look like a space, but they are not a

space. Invisible characters in your text string values (i.e., a Short Text Table field or a

String Query field) can produce unexpected results in operators and functions. Because

they produce unexpected results in operators and functions, they will also cause

unexpected output record-lists in your Query results.

If you press “Ctrl-Enter” (i.e., press the “Ctrl” key, and without releasing it, press the

“Enter” key) while typing-in into a Table Short Text field, MS-Access will insert the

line-feed168 character. Your text string will therefore be split in two lines.

If you type-in initial, or intermediate, spaces and/or new-line characters (see the

previous paragraph), within a visible text string, into a Table Short Text field, all the

spaces and/or new-line characters will be preserved in the field value. Notice that with

this case you can type-in either a visible string with invisible characters, or, a multiline

visible string with an invisible first line.

If you type-in trailing spaces and/or new-line characters, after a visible string into a

Table Short Text field, MS-Access will remove all of the trailing spaces and/or new-

line characters. This is a very useful MS-Access feature to prevent unintentional errors.

The field will therefore contain the string you typed-in, without all the trailing spaces or

new-line characters.

If you only type-in spaces and/or new-line characters into a Table Short Text field, it

will contain Null (and not the zero-length string, click L.7.8).

If you type-in two consecutive double quotes into a Table Short Text field, MS-Access

will convert this to a zero-length string. The field will therefore contain a zero-length

string.

If you press the “Tab” key or the “Enter” key into any Table field (including Short Text
fields), MS-Access interprets this as if you are done entering data in the current field and

will select the field to the right of the current field (or the next record if this is the

rightmost field of the record).

L.7.7 What is the zero-length text string?

It is a text string with zero characters.

Notice that all invisible strings, the zero-length string and a Null are all equally shown

in Table/Query/Form fields as an empty field, but they are all different.

Invisible strings and/or zero-length strings in your Short Text Table fields or in String

values produce unexpected results in operators and functions. Because they produce

unexpected results in operators and functions, they will also cause unexpected output

record-lists in your Query results.

If against my advice you want to type-in the zero-lengths string, you have to type-in two

consecutive double quote “"” characters in an empty field.

All invisible strings and the zero-length string can be entered in your Table fields when

168 The “line feed” character is used in text files to split the text in different lines. When a line feed character

is encountered, the next character is considered to be in a different line, below the previous line.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 711 of 726

you paste values. Even if your Table fields do not contain any invisible string, nor the

zero-length string, they can appear in your Query fields as a consequence of Query

processing (click L.7.9).

L.7.8 What are invisible text strings?

Invisible text strings are the ones that are composed of one or more invisible characters.

Notice that all invisible strings, the zero-length string and a Null are all equally shown

in Table/Query/Form fields as an empty field, but they are all different. Also, different

invisible strings are all equally shown in Table/Query/Form fields as an empty field, in

spite of being different.

Invisible strings and/or zero-length strings in your Short Text Table fields or in String

values produce unexpected results in operators and functions. Because they produce

unexpected results in operators and functions, they will also cause unexpected output

record-lists in your Query results.

If against my advice you want to type-in invisible characters, you may click L.7.6.

or the zero-length string in your Table fields (click L.4.1.6). All invisible strings and the

zero-length string can be entered in your Table fields when you paste values. Even if

your Table fields do not contain any invisible string, nor the zero-length string, they can

appear in your Query fields as a consequence of Query processing (click L.7.9).

L.7.9 Why can I have invisible characters in my Short Text and String

fields?

Short Text Table fields may contain invisible characters because the database user

mistakenly typed them in. They can also contain invisible characters because the user

mistakenly pasted them. In case you use Queries that insert Table records, this can also

cause invisible characters in Table Short Text fields.

String Query fields can contain invisible characters as a consequence of expressions in

the Queries that produce text strings. Even if all your Table Short Text fields do not

contain any invisible character, String Query fields may contain them as a consequence

of Query processing.

L.7.10 What apparently defective results can invisible characters

produce?

I now list a few apparently defective results that strings with invisible characters can

produce.

Comparison operators

Comparison operators are “=”, “<”, “>”, “<=” and “>=”. These can be applied to text

strings.

Trailing space characters in text strings are ignored by all string Comparison

operators. This means that a given text string, and the same text string followed by any

number of spaces produces exactly the same result in any comparison operator. Other

trailing invisible characters (e.g., tabs or new-line characters) will not be ignored and

will be taken into account by all the Comparison operators.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 712 of 726

Therefore, with the exception of ignoring all trailing spaces, comparison operators will

compare both input strings character to character, as it is done with visible characters.

Recall that MS-Access is case insensitive, and therefore, any uppercase letter is

considered equal to its corresponding lowercase letter. However, non-English

characters are considered different among themselves and from their English

equivalent (e.g., “á”, “à”, “â” and “a” are all different, and “ñ” is different from “n”).

Value Sorting

Invisible characters are not equally sorted. Therefore, invisible characters may cause

unexpected results when sorting on your text fields. If you want to know more about how

invisible characters are sorted, you may click “F.7.12.1 How are the different data/field

types ordered by the “ORDER BY” clause?”.

Length function “Len()”

The built-in “Len()” function returns the number of characters of a text string.

The result of “Len(Null)” will be Null. The result of “Len()” over the zero-length string

is 0. The result of “Len()” over any other string will be the actual number of characters

in the string. Trailing spaces are not ignored by the “Len()” function (as it happens with

Comparison operators) and will be counted.

Text string concatenation operators “&” and “+”

If you put Null as one of the two operands, it is ignored by the “&” and the “+” Text

string operators, and the result will be the other operand.

If you put Null as both operands, the result will be Null.

For all the other cases, the result will be exactly the concatenation of the two String

operands. Trailing spaces are not ignored by these operators, as it happens with

Comparison operators.

L.8 How do I fix errors with the user interface?

You may click:

• “L.8.1 How do I fix a missing or disappearing command/tool?”

• “L.8.2 How do I fix a shaded new-record button?”

• “L.8.3 How do I fix a Query opening in “SQL View” when I selected “Design View”?”

• “L.8.4 How do I fix the “Access SQL Editor” marking a Query as having unsaved

changes?”

• “L.8.5 How do I fix an error when opening a Query in “Design View”?”

• “L.8.6 How do I fix an extra column in my Tables in “Datasheet View”?”

• “L.8.7 How do I fix an extra row in my Query results?”

• “L.8.8 How do I fix the database users modifying Table values by editing Query

results?”

• “L.8.9 How do I fix missing columns/rows in my Query results?”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 713 of 726

• “L.8.10 How do I fix “Could not find field…” when doing “Compact and Repair” or

“Save As”?How do I fix “Could not find field…” when doing “Compact and Repair”

or “Save As”?”

• “L.8.11 How do I fix the VBA editor changing the value of the constants I write?”

• “L.8.12 How do I fix foreign-language issues of MS-Access?”

L.8.1 How do I fix a missing or disappearing command/tool?

The tools and commands shown by MS-Access are automatically changed for different

reasons. This can be very puzzling if you are not aware of it. If you want more to know

more about this, you may click “B.3.2 Why do Ribbons change how they look?”.

L.8.2 How do I fix a shaded new-record button?

If the local database file of a Table, or the source file (click K.3.3) for a linked Table

(K.3.4), is read-only, the “new-record” button “ ” from the “Navigation bar”

(click B.5.1) will be shaded and will not work.

You fix this by enabling write permission in the corresponding file(s).

L.8.3 How do I fix a Query opening in “SQL View” when I selected

“Design View”?

If your Query is a Union operation (i.e., the outermost operation is a Union), MS-Access

will not allow you to open it in “Design View” (click B.4.1.3). If you try to do it, the

Query will always be opened in “SQL View”. Likewise, if you try to change its view-type

(click B.4.1.4), the option “Design View” will not be shown. You fix this by enclosing

the outermost Union operation of the Query in a Select operation. Recall also to qualify

all its output field names to avoid losing all the column formatting of the Query

(click K.4.5) after having changed its SQL code. Enclosing the outermost Union in a

Select is a good practice because it allows you to configure the formatting of your fields,

ordering the records using the “ORDER BY” clause, as well as other advantages.

If your Query is not a Union operation, MS-Access may sometimes open it “SQL View”,

even if you selected “Design View” in the “Navigation Pane” pop-up menu. This may be

an MS-Access bug. You fix this by changing the Query’s view-type to “Design View”

(click B.4.1.4).

L.8.4 How do I fix the “Access SQL Editor” marking a Query as having

unsaved changes?

If you modify a Query’s SQL code in “SQL view” and/or in “Design view”, its SQL code

in the “Access SQL Editor” will not be modified, so there will be two different SQL codes

for the Query: the SQL code in MS-Access and the SQL code in the “Access SQL Editor”.

For this reason, when you open the Query in the “Access SQL Editor”, the editor will

display the SQL code that it stores, but will mark it as containing unsaved changes, to

indicate that the code is different from the one stored in MS-Access.

If you save changes, the SQL code of the Query in MS-Access will become the one from

the “Access SQL Editor”, and the changes you did in “SQL view” and/or “Design view”

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 714 of 726

will be overwritten.

If you do not save changes, the SQL code of the Query in MS-Access will remain the

same (including the changes you did in “SQL view” and/or “Design view”), and the code

in the “Access SQL Editor” will also remain the same (but different to the one in MS-

Access). In this case, the situation of having two different SQL codes for the Query will

continue.

While the situation of having two different SQL codes stored for the Query persists,

every time you open the Query in the “Access SQL Editor” it will be marked as containing

unsaved changes (with an asterisk on the left of its name). In this way, the “Access SQL
Editor” indicates that its stored SQL code is different from the one stored in MS-Access.

If you run the Query from MS-Access, the result will correspond to the SQL code stored

in MS-Access. If you run the Query from the “Access SQL Editor”, you have two cases:

• If you ticked the recommended option “Automatically save queries before running”

(click F.5.1.3), the Query’s SQL code is automatically saved when you run the

Query. Therefore, the Query’s SQL code in MS-Access becomes the one that was

stored in the “Access SQL Editor”. Consequently, there is no difference in SQL codes,

and the result of running the Query will correspond to the SQL code that was stored

in the “Access SQL Editor”.

• If you did not tick that option, the “Access SQL Editor” will not run the Query unless

you first save its unsaved changes.

Finally, notice that you unwillingly modify a Query’s SQL code just by opening it in

“Design View”, in the case that MS-Access cannot represent the Query’s SQL code in its

semi-graphical interface of “Design View”. If you want to know more about this, you may

click “L.8.5 How do I fix an error when opening a Query in “Design View”?”.

L.8.5 How do I fix an error when opening a Query in “Design View”?

If opening a Query in “Design View”, or changing a Query’s view-type to “Design
View”, you get the error message:

“Microsoft Access can't represent the join expression on_exp() in Design view.

 * One or more fields may have been deleted or renamed.
 * The name of one or more fields or tables specified in the join expression may be

misspelled.
 * The join may use an operator that isn't supported in Design view, such as > or <.”

with a single “OK” button. And if you close this error message-box (either clicking on

“OK” or on its close “X” icon), you may get a few more similar ones.

This is most likely because you wrote an SQL that MS-Access cannot represent with its

semi-graphical interface in Query “Design View”. See further below for more detail.

You fix this by:

1. Do whatever formatting changes you wanted to do in “Design View”.

2. Save the Query design (click B.4.1.6) and close the Query (click B.4.1.7).

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 715 of 726

3. Open the Query code in the “Access SQL editor” (click F.5.4.1).

4. Save the Query code (click F.5.4.6) and close it (click F.5.4.7), from the “Access SQL
editor”.

The reason for the error above is that MS-Access has severe limitations in the SQL code

that it can represent with its semi-graphical interface in Query “Design View”.

Consequently, when you open one of your Queries in “Design View”, it is not infrequent

that MS-Access will show the error message above. The problem is that MS-Access will

modify the SQL code of your Query, to make it comply with which it can represent in

“Design View”. Therefore, after you save the design changes you did in the Query

“Design View”, your SQL code will be different! Luckily, the changes that MS-Access

does on the SQL code do not affect your SQL code stored in the “Access SQL editor”.

This is why you have to do steps 3 and 4 above, in order to restore your SQL code,

overwriting the changes done by MS-Access.

L.8.6 How do I fix an extra column in my Tables in “Datasheet View”?

You fix this by clicking the sequence FileOptionsCurrent Database and then, under

the heading “Application Options”, untick the checkbox for “Enable design changes for
tables in Datasheet view”.

This will prevent MS-Access from showing the column “Click to Add” in your Tables. I

consider this column very distracting, and I also think it is very risky, because the

database user may unwillingly add a field to the Table by mistake.

L.8.7 How do I fix an extra row in my Query results?

You may see an extra row at the end your Query results for the following causes:

• Row to add Table record (the new-record row)

Having the new-record row in your Query results is extremely risky. My advice is

you always prevent it from appearing in your Queries. If you want to know more,

you may click “K.4.4 Why should I disable changing Table data from Query

results?”.

• Row labeled Total in its leftmost cell

You remove this row clicking on the Total “ ” icon from the “Home” Ribbon. If you

want to know more, you may click “H.8 How do I show aggregate values (e.g., totals)

in a Table/Query/Form?”.

L.8.8 How do I fix the database users modifying Table values by editing

Query results?

You fix this by preventing the users from modifying Table values from Query results:

click “K.4.4 Why should I disable changing Table data from Query results?”.

L.8.9 How do I fix missing columns/rows in my Query results?

You fix this by showing the hidden columns and/or modifying the filters. To know more

about this, you may click:

• “H.4 How do I hide/unhide columns in a Table/Query/Form?How do I hide/unhide

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 716 of 726

columns in a Table/Query/Form?”

• “H.2.2 How do I hide rows in a Table/Query/Form?How do I hide rows in a

Table/Query/Form?”

L.8.10 How do I fix “Could not find field…” when doing “Compact and
Repair” or “Save As”?

If clicking “Compact and Repair Database” (click E.10) or doing “Save As” of your

database file, you get the error message:

“Could not find field 'Field_name'.”

this is most likely because you removed a field 'Field_name' that was used in a Calculated

field and/or in the Table’s record validation rule.

You fix this by locating and opening the Table and doing either of the following:

• Correct the corresponding Calculated field(s) and/or the Table’s record validation

rule so they refer to existing field names.

• Add a field (creating or renaming it) with the same field name as the missing one.

• Remove the corresponding Calculated field(s) and/or Table’s record validation rule.

This is risky, so you have to be very sure that this is what you want.

To locate which Table produced the error notice that:

• You recently removed the field “Field_name” from it.

• It has Calculated fields and/or a record validation rule.

Notice that MS-Access will not allow you to do the “Save As” of your database file until

you have fixed this. In case you want a copy of your file now, without fixing first the

error, a workaround is saving and closing the database file, copying the file, and then

change the file name of the copy to the one you wanted to use in the “Save As” operation.

L.8.11 How do I fix the VBA editor changing the value of the constants

I write?

You fix this by either changing the data type or the constant writing format.

For changing the data type, you may click “L.4.1.3 How do I fix a changed numeric

value?”.

For the constant writing format, you may click “G.4 How do I write a constant?”.

L.8.12 How do I fix foreign-language issues of MS-Access?

If you are using a foreign-language version of MS-Access (Spanish, French, German, …)

you may encounter some differences from what is described in this Lightning Guide, that

I am summarizing here:

Values shown in “Datasheet View”

• In “Datasheet View”, the values shown have translated thousands/decimal

separators, month names, month order and Boolean values. For example, in the

Spanish version you see “5.435,23” instead of “5,435.23”, “23-Abril-2021” instead

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 717 of 726

of “April-23-2021” and “Activado” instead of “On”.

Entering values and writing constants

• In SQL expressions and VBA expressions, constants are written like the English

version, regardless of the language version. You write Null, True, Yes or On. Date

constants are interpreted month first. Decimal separator is the period “.” character.

• In “Datasheet View” and in Table “Design View” expressions, to write a Boolean

value (either entering a value or writing a constant) you type-in the translated

Boolean value. For example, in the Spanish version you type-in “Verdadero”, “Sí”

or “Activado”, instead of “True”, “Yes” or “On” (respectively).

• In “Datasheet View” and in Table “Design View” expressions, to write a fractional

value (either entering a value or writing a constant) you type the translated decimal

separator. For example, in the Spanish version you would type-in “5,3” instead of

“5.3”.

• In “Datasheet View” and in Table “Design View” expressions, to write the name

of a month (either entering a value or writing a constant) you type-in the translated

month name. For the specific case of “Datasheet View” you can also type-in any

prefix of the English month name, down to its three first letters.

• In Table “Design View” expressions, to write a Null “constant” you write the

translated name. For example, in the Spanish version you write “Nulo”.

Operator names and functions names

• In Table “Design View” expressions, most (but not all) operator names (e.g. “AND”,

“OR”, …) and built-in function names (e.g., “Left()”) are translated to the foreign

language. For example, in the Spanish version the said operators and function name

become, “Y”, “O” and “Izq()”. If you want more information about this, you may

click “G.1 What are the main differences between the three expression scopes?”.

CStr()” type conversion function

The “CStr()” type-conversion function behaves differently depending on the data type of

its argument, as follows:

• CStr()” over Boolean:

Works like the English version, regardless of the language version. It produces the

String “-1” for True and the String “0” for False. Therefore, this works the same

regardless of the language version.

• CStr()” over fractional number:

Produces a String using the foreign-language decimal separator. For example, in

the Spanish version “Cstr(4.5)”produces the String “4,5”.

• CStr()” over Date:

Produces a String using two-digit numeric month (not month name) with the

foreign-language month ordering and separated by “/”. For example, in the

Spanish version “Cstr(#Mar-28-2021#)” produces the String “28/03/2021”,

because in Spanish the month goes after the day.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 718 of 726

“PIVOT” field names

• From Boolean values

Works like the English version, regardless of the language version. The value True

produces the “PIVOT” field name “-1” and the value False produces the “PIVOT”

field name “0”.

• From fractional number constants

Produces the “PIVOT” field name using the foreign-language decimal separator.

For example, in the Spanish version the constant value “4.5” produces the “PIVOT”

field name “4,5”.

• From fractional number expressions

Works like the English version, regardless of the language version. The decimal

separator is always converted to the underscore “_” character. For example, in the

Spanish version the expression result “3,5” (which is “3.5” in English) is converted

to the “PIVOT” field name “3_5”. This may be an MS-Access bug. Notice that you

can fix this by enclosing the expression inside the “CStr()” type-conversion

function, that would produce the “PIVOT” field name “3,5”.

• From Date values

The month order is the one of the foreign language. For example, if the “PIVOT”

expression produces the zero-time Date value “March 28, 2021”, the Spanish

version will produce the “PIVOT” field name “28/03/2021”, because in Spanish

the day goes before the month.

Various issues

• Error and warning messages are translated to the foreign language.

• In SQL code, the SQL keywords are the ones of the English version, regardless of

the language version. Therefore, you always write the keywords (“SELECT”,

“FROM”, “WHERE”, …) stated in this Lightning Guide.

• In custom formatting of fields, a few format-control characters are translated (e.g.,

in the Spanish version “y” for year becomes “a” for “año”). If you want more

information about this, you may click “H.6.2.3 How do I configure custom formatting

for Number, Large Number and Currency fields?”.

• Exception-value names are translated. For example, in the Spanish version

“#Num!” becomes “#¡Núm!”; in the French version “#Error” becomes “#Erreur”. If

you want more information about exception-values, you may click “L.5.2 How do I

fix a Table/Form showing “#Num!”, “#Div/0!”, “#Type!” or “#Func!” in a field?”

and subsequent sections.

• Some variable names in the Query SQL code will be translated to the foreign-

language!! Furthermore, if you are using the “Access SQL Editor”, the SQL code in

the “Access SQL Editor” will remain unchanged, and if you check the Query code

you will still see the English field names there. This may be an extremely puzzling

problem if you are not aware of it. This problem happens in foreign-language

versions of MS-Access when you are using a variable (e.g., a Table field) name that

has an English meaning like “Quarter”. If you have a Query that uses field name

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 719 of 726

“Quarter”, and you modify the Query design in “Design View” (for example

selecting ascending order), MS-Access will replace in the SQL code the field name

“Quarter” by the MS-Access translated name (in Spanish, it is replaced by

“Trimestre”). When you then run the Query, it will request parameter “Trimestre”,

because it is a field name that is used in the Query (because MS-Access changed it)

but it does not exist in the Table. I did a few trials and so far I have seen that this

affects English variable names “Year”, “Quarter”, “Month”, “Day” and “Trim”, that

are all translated to the foreign-language. This may be an MS-Access bug. You can

fix as indicated in L.8.5.

• Field types-sizes in Table “Design View” are translated to the foreign-language. For

example, in the Spanish version the field types Yes/No, Number and Date/Time

become Si/No, Número and Fecha/Hora (respectively).

Along this section, I mentioned several times the Table “Design View” expressions. Just

for completeness, remind that these expressions are the ones in Calculated fields, in

record/field validation rules, in field default value and in the “Lookup” property.

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 720 of 726

PART M. LIST OF BUILT-IN FUNCTIONS

This is the complete listing of built-in functions that you can use in your VBA expressions

and/or in your SQL expressions. Some of these functions can be used both in your VBA

and your SQL expression and some are specific of either VBA or SQL expressions. In

case a function cannot be used in your VBA or in your SQL expressions I will indicate

explicitly.

Remind that the built-in functions that you can use in Table “Design View” expressions

(record/field validation rule, default value, calculated field and “Lookup” property) use a

semicolon “;” character as argument separator and in foreign-language versions of

MS-Access their names will be translated. If you are using a foreign-language version

of MS-Access, you may click “L.8.12 How do I fix foreign-language issues of MS-

Access?”.

This list of functions has been copied from the official Microsoft support site

support.office.com, and each function below has a web link to the function explanation

in the Microsoft support web. Doing click169 on each of the functions below will take you

to the official Microsoft support web page corresponding to the function you clicked on.

You may get direct access to the official Microsoft support web page on MS-Access

functions in the following link:

https://support.office.com/en-us/article/access-functions-by-category-b8b136c3-2716-

4d39-94a2-658ce330ed83

You may click:

• “M.1 ActiveX functions”

• “M.2 Application functions”

• “M.3 Array functions”

• “M.4 Conversion functions”

• “M.5 Database functions”

• “M.6 Date and Time functions”

• “M.7 Domain Aggregate functions”

• “M.8 Error Handling functions”

• “M.9 File Input/Output functions”

• “M.10 Financial functions”

• “M.11 Inspection functions”

• “M.12 Mathematical functions”

• “M.13 Message functions”

• “M.14 Miscellaneous functions”

169 Notice that the web pages in the Microsoft support site may have changed since this book was released,

and these links may not work.

file:///C:/Users/Arturo%20Azcorra/Documents/Admin/Netcom%20BD/_Lightning%20Guide/support.office.com
https://support.office.com/en-us/article/access-functions-by-category-b8b136c3-2716-4d39-94a2-658ce330ed83
https://support.office.com/en-us/article/access-functions-by-category-b8b136c3-2716-4d39-94a2-658ce330ed83

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 721 of 726

• “M.15 Program Flow functions”

• “M.16 SQL aggregate functions”

• “M.17 File Management functions”

• “M.18 Text Processing functions”

M.1 ActiveX functions

ActiveX functions cannot be used in SQL expressions.

CreateObject() function

GetObject() function

M.2 Application functions

Application functions cannot be used in SQL expressions.

Command() function

Shell() function

M.3 Array functions

Array functions cannot be used in SQL expressions.

Array() function

Filter() function

Join() function

LBound() function

Split() function

UBound() function

M.4 Conversion functions

The type conversion functions CDec() and CLngLng() cannot be used in SQL

expressions.

Asc() function

Chr() function

EuroConvert() function

FormatCurrency() function

FormatDateTime() function

FormatNumber() function

FormatPercent() function

GUIDFromString() function

Hex() function

Nz() function

Oct() function

Str() function

StringFromGUID() function

Type Conversion functions CBool(), CByte(), CCur(), CDate(), CDbl(), CDec(), CInt(),

https://support.office.com/en-us/article/createobject-function-31917b05-1530-48f5-86d6-d2bd748aad74
https://support.office.com/en-us/article/getobject-function-b24e00a4-5f83-44c9-8cbf-cdc65faa2cf5
https://support.office.com/en-us/article/command-function-fec67826-7fd7-48ed-a7aa-479c020ffaa4
https://support.office.com/en-us/article/shell-function-ff2e4b1b-712d-4e34-aea6-6832eadd3c63
https://support.office.com/en-us/article/array-function-10d58dff-316d-4c86-a047-8b769031fa39
https://support.office.com/en-us/article/filter-function-41ba40b0-d058-4c76-91e5-a2d30a1ae45b
https://support.office.com/en-us/article/join-function-e65fbc9a-c499-430d-a51a-bdf22140650f
https://support.office.com/en-us/article/lbound-function-ceb18f7b-c1fc-401e-b1fb-6916ef9e8310
https://support.office.com/en-us/article/split-function-876f246a-5144-44fa-889f-10078c7878f5
https://support.office.com/en-us/article/ubound-function-212b1998-327b-4f1e-ba3f-db4f9b5ba251
https://support.office.com/en-us/article/asc-function-ad4b9d2d-446a-4d96-9cc7-e1afeb3d6dc3
https://support.office.com/en-us/article/chr-function-94e7d144-8ba7-4082-8519-e5dd1b451b85
https://support.office.com/en-us/article/euroconvert-function-7d7788a5-1993-4c0f-8c19-a202992319b0
https://support.office.com/en-us/article/formatcurrency-function-5a846882-d970-4a67-8da9-4e87a416b3d1
https://support.office.com/en-us/article/formatdatetime-function-aef62949-f957-4ba4-94ff-ace14be4f1ca
https://support.office.com/en-us/article/formatnumber-function-91030eab-2887-43d4-9c17-311ab6ebf43b
https://support.office.com/en-us/article/formatpercent-function-36cd9b6a-2487-4232-8d88-2d14563de2c7
https://support.office.com/en-us/article/guidfromstring-function-0e736392-1e74-4bb1-95a2-45f4d7d32574
https://support.office.com/en-us/article/hex-function-8142792f-c077-485b-947f-fa3c7698a560
https://support.office.com/en-us/article/nz-function-8ef85549-cc9c-438b-860a-7fd9f4c69b6c
https://support.office.com/en-us/article/oct-function-245071d8-3422-4a5c-9eca-f78697e7ba0b
https://support.office.com/en-us/article/str-function-7bae2c01-47ff-4bdc-a1b6-756fbb515841
https://support.office.com/en-us/article/stringfromguid-function-3c9f2553-2653-459f-a172-c7e3cb95c830
https://support.office.com/en-us/article/type-conversion-functions-8ebb0e94-2d43-4975-bb13-87ac8d1a2202

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 722 of 726

CLng(), CLngLng(), CSng(), CStr(), and CVar()

Val() function

M.5 Database functions

Database functions DDE(), DDEInitiate(), DDERequest() and DDESend() cannot be

used in SQL expressions.

DDE() function

DDEInitiate() function

DDERequest() function

DDESend() function

Eval() function

Partition() function

M.6 Date and Time functions

Date and time functions can be used both in VBA expressions and in SQL expressions.

Date() function

DateAdd() function

DateDiff() function

DatePart() function

DateSerial() function

DateValue() function

Day() function

Hour() function

Minute() function

Month() function

MonthName() function

Now() function

Second() function

Time() function

Timer() function

TimeSerial() function

TimeValue() function

Weekday() function

WeekdayName() function

Year() function

M.7 Domain Aggregate functions

Domain Aggregate functions can be used both in VBA expressions and in SQL

expressions.

DAvg() function

DCount() function

DFirst(), DLast() functions

DLookup() function

DMin(), DMax() functions

https://support.office.com/en-us/article/type-conversion-functions-8ebb0e94-2d43-4975-bb13-87ac8d1a2202
https://support.office.com/en-us/article/val-function-e5e1f21b-22f9-41c9-bd0a-fe55b767f603
https://support.office.com/en-us/article/dde-function-79e8b21c-2054-4b48-9ceb-d2cf38dc17f9
https://support.office.com/en-us/article/ddeinitiate-function-884dd8b0-6da6-4117-8fd3-5339d6580d7e
https://support.office.com/en-us/article/dderequest-function-be787695-67ec-4f26-a31b-1d55ec18d117
https://support.office.com/en-us/article/ddesend-function-5321b2da-d576-4a51-9df9-74f43d56f1fe
https://support.office.com/en-us/article/eval-function-8c4a1b10-85ba-40db-b0c8-5290da4d4166
https://support.office.com/en-us/article/partition-function-1a846a33-60c7-4371-8e77-c94278274dc5
https://support.office.com/en-us/article/date-function-dd7a1f27-d957-4969-ab35-01e0bfbfed76
https://support.office.com/en-us/article/dateadd-function-63befdf6-1ffa-4357-9424-61e8c57afc19
https://support.office.com/en-us/article/datediff-function-e6dd7ee6-3d01-4531-905c-e24fc238f85f
https://support.office.com/en-us/article/datepart-function-26868a79-5505-4e5a-8905-6001372223fa
https://support.office.com/en-us/article/dateserial-function-a0128476-83a0-407c-831a-93f2b046f503
https://support.office.com/en-us/article/datevalue-function-03878f08-b0db-42df-8a0c-279939637c6f
https://support.office.com/en-us/article/day-function-6c7fa9a6-15e6-4e64-b45a-01e9338b9415
https://support.office.com/en-us/article/hour-function-97b6b99c-c21d-41cd-b49a-98df6955778f
https://support.office.com/en-us/article/minute-function-d1749546-d8c0-49d3-b418-1cc6c87d81d4
https://support.office.com/en-us/article/month-function-78182042-7bf0-46e9-829e-c7012f773fc5
https://support.office.com/en-us/article/monthname-function-c64bcf54-2534-45bc-acef-de80f4a959c4
https://support.office.com/en-us/article/now-function-671467d4-aed0-4a78-b533-b7b87a533b5a
https://support.office.com/en-us/article/second-function-5655e192-df07-4c05-9f2f-517a181452b9
https://support.office.com/en-us/article/time-function-4cfe5fde-2174-4ec7-89c7-8631eccd489e
https://support.office.com/en-us/article/timer-function-46da243c-2570-4950-a818-6d6934bf584a
https://support.office.com/en-us/article/timeserial-function-a0962030-e113-402e-9223-ffbaf6f3d452
https://support.office.com/en-us/article/timevalue-function-35d775cc-c6c7-49bb-8202-e338ac930e23
https://support.office.com/en-us/article/weekday-function-05d360d7-2c3f-4691-9448-c96ea0351940
https://support.office.com/en-us/article/weekdayname-function-638adafd-9923-455b-a2fe-46cf50d8d751
https://support.office.com/en-us/article/year-function-bbdfc30e-7234-43ec-ae59-9c6420ca5c54
https://support.office.com/en-us/article/davg-function-c7270c5d-e3b9-4f26-9615-2133a277066d
https://support.office.com/en-us/article/dcount-function-f6b5d78b-ad0b-4e42-be7a-11a64acbf3d3
https://support.office.com/en-us/article/dfirst-dlast-functions-adb06169-bf49-4f80-bf04-1e4b5a48a8a7
https://support.office.com/en-us/article/dlookup-function-8896cb03-e31f-45d1-86db-bed10dca5937
https://support.office.com/en-us/article/dmin-dmax-functions-f5c6de87-8752-4f29-ab4b-c554053d299f

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 723 of 726

DStDev(), DStDevP() functions

DSum() function

DVar(), DVarP() functions

M.8 Error Handling functions

function CVErr() cannot be used in SQL expressions.

CVErr() function

Error() function

M.9 File Input/Output functions

File Input/Output functions cannot be used in SQL expressions.

EOF() function

FreeFile() function

Input() function

Loc() function

LOF() function

Seek() function

M.10 Financial functions

Financial functions IRR() and NPV() cannot be used in SQL expressions.

DDB() function

FV() function

IPmt() function

IRR() function

MIRR() function

NPer() function

NPV() function

Pmt() function

PPmt() function

PV() function

Rate() function

SLN() function

SYD() function

M.11 Inspection functions

Inspection functions Environ(), GetAllSettings(), GetSetting() and IsArray() cannot

be used in SQL expressions.

Environ() function

GetAllSettings() function

GetSetting() function

IsArray() function

IsDate() function

https://support.office.com/en-us/article/dstdev-dstdevp-functions-7151211f-d216-4ae1-b42c-f6d1b212b851
https://support.office.com/en-us/article/dsum-function-08f8450e-3bf6-45e2-936f-386056e61a32
https://support.office.com/en-us/article/dvar-dvarp-functions-55fbcfae-5a51-4676-9e00-e563e704a316
https://support.office.com/en-us/article/cverr-function-d7fd1f1c-3388-4c60-903c-e476865aa467
https://support.office.com/en-us/article/error-function-e0ebb46e-9a2c-461e-9136-15887092011e
https://support.office.com/en-us/article/eof-function-ae0f97ab-d314-4857-8ae0-a243123ba859
https://support.office.com/en-us/article/freefile-function-1b3dea0b-7fa0-4b43-939e-a2816bde71bc
https://support.office.com/en-us/article/input-function-5a666c45-6048-405f-bdfe-c5209c45756d
https://support.office.com/en-us/article/loc-function-edf8378a-1a84-41e9-a93e-5b66a48bd6ae
https://support.office.com/en-us/article/lof-function-213cf92f-4b4d-439a-9c75-c8d88ceac999
https://support.office.com/en-us/article/seek-function-21c450be-b583-4703-b266-5e050daaf6de
https://support.office.com/en-us/article/ddb-function-83184c2a-21b1-4783-b1c3-835f34e721d2
https://support.office.com/en-us/article/fv-function-24d4b7f3-31b2-4d99-b6f5-dbfc05cc3045
https://support.office.com/en-us/article/ipmt-function-63b7f439-138f-4bfd-87ba-de683454b320
https://support.office.com/en-us/article/irr-function-b3bacbb0-3af8-494d-9863-d420062273fd
https://support.office.com/en-us/article/mirr-function-28b62fff-b057-47ee-9ff9-13ea2628a007
https://support.office.com/en-us/article/nper-function-a1d8cb92-666a-4d6a-9d16-afad6aa84404
https://support.office.com/en-us/article/npv-function-96bc0897-9b6e-46e0-937f-13be698d0023
https://support.office.com/en-us/article/pmt-function-8a27a1b8-ee4a-4dc2-820e-be0cf6c74a37
https://support.office.com/en-us/article/ppmt-function-0f6df7ed-66d4-4592-a563-aa7504eb252c
https://support.office.com/en-us/article/pv-function-6764e982-b229-4486-be27-7a2ce2a232a6
https://support.office.com/en-us/article/rate-function-4d1af90d-4eb1-4372-a1e1-b99e4832621e
https://support.office.com/en-us/article/sln-function-4f3cfe84-269a-4717-a1a8-4fde945bb323
https://support.office.com/en-us/article/syd-function-302799f8-5788-4646-b100-9aed7af9c522
https://support.office.com/en-us/article/environ-function-53940256-e91a-4163-b9ac-79b1dd85e4a5
https://support.office.com/en-us/article/getallsettings-function-3f2c2a60-7769-4f6f-aa32-560cc7babba3
https://support.office.com/en-us/article/getsetting-function-bbf65a9e-96e4-4450-82f0-96e8ad6d1add
https://support.office.com/en-us/article/isarray-function-89cb4a0c-1834-4d07-ab75-debe0af92c9f
https://support.office.com/en-us/article/isdate-function-6e73b294-7ea7-4838-bbe8-53f0dd8f70b5

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 724 of 726

IsEmpty() function

IsError() function

IsMissing() function

IsNull() function

IsNumeric() function

IsObject() function

TypeName() function

VarType() function

M.12 Mathematical functions

Mathematical functions can be used both in VBA expressions and in SQL expressions.

Abs() function

Atn() function

Cos() function

Exp() function

Int(), Fix() functions

Log() function

Rnd() function

Round() function

Sgn() function

Sin() function

Sqr() function

Tan() function

M.13 Message functions

Message functions cannot be used in SQL expressions.

InputBox() function

MsgBox() function

M.14 Miscellaneous functions

functions CallByName(), Spc() and Tab() cannot be used in SQL expressions. function

IMEStatus() is specific of East Asia versions. functions MacID() and MacScript() are

specific for Mac computers.

CallByName() function

IMEStatus() function

MacID() function

MacScript() function

QBColor() function

RGB() function

Spc() function

Tab() function

https://support.office.com/en-us/article/isempty-function-a86d5871-f6bd-455c-9256-a69a42e55e50
https://support.office.com/en-us/article/iserror-function-40a89200-138b-4e60-b254-34aea51b2e6b
https://support.office.com/en-us/article/ismissing-function-22286f0f-d1e7-4ce4-96d0-7691a3944bf1
https://support.office.com/en-us/article/isnull-function-f963233b-1c1e-4b0c-8bc3-3e8c0ea67c61
https://support.office.com/en-us/article/isnumeric-function-67795d2f-e53e-47a3-b107-c39df0ae2559
https://support.office.com/en-us/article/isobject-function-d20038a4-06d4-4194-b02b-4ce66d218e9f
https://support.office.com/en-us/article/typename-function-581cb27e-4faa-45ba-a94b-5d96e43195ff
https://support.office.com/en-us/article/vartype-function-1e08636c-1892-40c2-aff3-2b894389e82d
https://support.office.com/en-us/article/abs-function-dc5340bb-b65f-4fc3-99cf-f4636dab9563
https://support.office.com/en-us/article/atn-function-2f2262c7-1296-4166-a30d-62b9c6b4a413
https://support.office.com/en-us/article/cos-function-ce837485-bd8f-4e7a-97a9-c0eb49e09dd8
https://support.office.com/en-us/article/exp-function-3d6c5f1c-890f-48f3-866c-79607389ffac
https://support.office.com/en-us/article/int-fix-functions-5446da0c-fbdc-425f-a818-7e3153984ff8
https://support.office.com/en-us/article/log-function-c6ef3039-c0b1-445e-b2a3-cca03ec28b0b
https://support.office.com/en-us/article/rnd-function-503cd2e4-3949-413f-980a-ed8fb35c1d80
https://support.office.com/en-us/article/round-function-921ce538-c9a6-41e2-be87-28e685b59935
https://support.office.com/en-us/article/sgn-function-71993d75-d998-4343-a683-d11d91a1b186
https://support.office.com/en-us/article/sin-function-811c6014-33a6-478a-b2b3-2e43bb16cfc3
https://support.office.com/en-us/article/sqr-function-b0189a2a-57ba-4718-aef8-13e5d1ecf7e3
https://support.office.com/en-us/article/tan-function-099df71f-47b2-4ef0-91fe-84edbf4ba2f7
https://support.office.com/en-us/article/inputbox-function-17821927-28b7-4350-b7f1-4786575314d9
https://support.office.com/en-us/article/msgbox-function-e23511c8-4157-4e09-93a6-ba9f1749f4c0
https://support.office.com/en-us/article/callbyname-function-49ce9475-c315-4f13-8d35-e98cfe98729a
https://support.office.com/en-us/article/imestatus-function-cefb575b-9472-4650-9888-94594fa783bb
https://support.office.com/en-us/article/macid-function-b2579836-947b-42bd-b800-fafcb798869a
https://support.office.com/en-us/article/macscript-function-a6d33dc6-b989-46c0-bc42-14f01e4ed448
https://support.office.com/en-us/article/qbcolor-function-fc411d43-6fcc-4788-a1a4-0f7eecee8974
https://support.office.com/en-us/article/rgb-function-aa04db19-fb8a-4f58-9ad6-71a1f5a43e94
https://support.office.com/en-us/article/spc-function-286ccd7c-a94e-42ed-ae21-fbf5f54fa5d2
https://support.office.com/en-us/article/tab-function-dd557e85-c24f-49cb-bb5e-51162a0fa39b

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 725 of 726

M.15 Program Flow functions

DoEvents() function cannot be used in SQL expressions.

Choose() function

DoEvents() function

IIf() function

Switch() function

M.16 SQL aggregate functions

SQL aggregate functions cannot be used in VBA expressions. They can only be used

in SQL expressions, and only in some expressions belonging to a Select-

group_by_aggreg, to a Select-total_aggreg or to a Transform operation.

Avg() function

Count() function

Min(), Max() functions

StDev(), StDevP() functions

Sum() function

Var(), VarP() functions

M.17 File Management functions

File Management functions cannot be used in SQL expressions.

CurDir() function

Dir() function

FileAttr() function

FileDateTime() function

FileLen() function

GetAttr() function

M.18 Text Processing functions

Text Processing functions can be used both in VBA expressions and in SQL expressions.

Format() function

InStr() function

InStrRev() function

LCase() function

Left() function

Len() function

LTrim(), RTrim(), and Trim() functions

Mid() function

Replace() function

Right() function

Space() function

StrComp() function

StrConv() function

https://support.office.com/en-us/article/choose-function-76230415-910f-463a-a799-cf7e90aa7fd4
https://support.office.com/en-us/article/doevents-function-7af41eca-88e0-470d-adaf-0b3d4c2575b0
https://support.office.com/en-us/article/iif-function-32436ecf-c629-48a3-9900-647539c764e3
https://support.office.com/en-us/article/switch-function-d750c10d-0c8e-444c-9e63-f47504f9e379
https://support.office.com/en-us/article/avg-function-8a24e7b2-5483-42ac-835e-907f4341f752
https://support.office.com/en-us/article/count-function-6923a7b3-aa59-4027-ada6-d774525a4009
https://support.office.com/en-us/article/min-max-functions-6636b171-56b9-434d-adfd-e1b2a5317b58
https://support.office.com/en-us/article/stdev-stdevp-functions-90a8dbeb-3fd1-485f-9065-bb7b0cdda72e
https://support.office.com/en-us/article/sum-function-ad99511e-b294-44d7-9b8b-7c5f7484fd0b
https://support.office.com/en-us/article/var-varp-functions-e08f5f59-22f3-43d1-863f-a195df09904f
https://support.office.com/en-us/article/curdir-function-00f19462-c722-4324-87f1-24dc88742631
https://support.office.com/en-us/article/dir-function-1a1a4275-f92f-4ae4-8b87-41e4513bba2e
https://support.office.com/en-us/article/fileattr-function-6de0c359-1e1b-4252-b41a-a09fff2c687e
https://support.office.com/en-us/article/filedatetime-function-443b2310-c145-4d30-9146-6b3298cb59f8
https://support.office.com/en-us/article/filelen-function-d135e7df-7688-41b5-8efc-36cbd5c84311
https://support.office.com/en-us/article/getattr-function-937a4b79-d6d5-4d24-b66c-409055d5a6b0
https://support.office.com/en-us/article/format-function-6f29d87b-8761-408d-81d3-63b9cd842530
https://support.office.com/en-us/article/instr-function-85d3392c-3b1c-4232-bb18-77cd0cb8a55b
https://support.office.com/en-us/article/instrrev-function-73193c1f-8db7-4558-ae91-fae75fe5fd56
https://support.office.com/en-us/article/lcase-function-0df6c15f-ac2b-49bf-a733-3ec80c4c43d8
https://support.office.com/en-us/article/left-function-d5897bf6-91f5-4bf8-853a-b63d7de09681
https://support.office.com/en-us/article/len-function-8282adcf-4e26-4ebd-87ed-73af04b0cf36
https://support.office.com/en-us/article/ltrim-rtrim-and-trim-functions-e340ced1-67df-435f-b078-1527a4eddea2
https://support.office.com/en-us/article/mid-function-427e6895-822c-44ee-b34a-564a28f2532c
https://support.office.com/en-us/article/replace-function-6acf209b-01b7-4078-b4b8-e0a4ef67d181
https://support.office.com/en-us/article/right-function-c02a18a8-b224-437e-aaba-1b785c6c61bf
https://support.office.com/en-us/article/space-function-2da0a51c-ae96-43bc-8352-abd97b815ab1
https://support.office.com/en-us/article/strcomp-function-a9a4531e-3b2a-4218-b139-f7442bc10b96
https://support.office.com/en-us/article/strconv-function-19c3816f-dbc9-4adf-891c-fd32734c92e0

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page 726 of 726

String() function

StrReverse() function

UCase() function

https://support.office.com/en-us/article/string-function-4808c43b-7640-4334-87fc-457499c185b1
https://support.office.com/en-us/article/strreverse-function-f40a56d6-fd6d-4e31-974e-2548b2516949
https://support.office.com/en-us/article/ucase-function-0c9b8b77-dd3b-46ec-ac46-b034fef54224

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page i

PART N. CONTENTS AND ACKNOWLEDGEMENTS

Acknowledgements

I would like to thank my wife Marifeli Sedano-Ruiz, my daughter Maite Azcorra-Sedano

and my son Jaime Azcorra-Sedano for their support and comprehension, along countless

weekends and vacation days that I devoted to working on this book. They also designed

the book cover and helped me with proofreading and catching errors and mistakes.

I would also like to thank all the members of my research group at University Carlos III

of Madrid and IMDEA Networks Institute for their feedback and useful suggestions along

the years that took me writing this book: Prof. Marcelo Bagnulo-Braun, Prof. Albert

Banchs-Roca, Prof. Carlos Jesús Bernardos-Cano, Prof. Ruben Cuevas Rumín, Prof.

Antonio de la Oliva Delgado, Prof. Alberto García-Martínez, Prof. Carmen Guerrero-

López, Prof. Marco Gramaglia, Prof. Pablo Serrano-Yáñez-Mingot, Prof. Francisco

Valera-Pintor and Prof. Ivan Vidal-Fernández.

Finally, thanks to our support engineer Jonathan Almodovar-Herreros, who did the web

page and document download design.

Table of Contents

PART A. CREATING MY FIRST DATABASE WITH MS-ACCESS 1

A.1 How do I use this Lightning Guide? .. 1

A.2 What version of MS-Access is this Guide for? ... 2

A.3 How do I create my first database?.. 2

A.3.1 What is the MS-Access user interface? .. 2

A.3.2 How do I create my first database file? .. 2

A.3.3 How do I create my first Table? ... 3

A.3.4 How do I input my first data into my Table?.. 5

A.4 How do I write and run my first SQL Query? ... 5

A.4.1 How do I write my first SQL Query? ... 6

A.4.2 How do I run my first SQL Query? .. 7

A.4.3 What does it mean “case insensitive”? ... 7

A.5 How do I add a Table to my first database? .. 8

A.5.1 How do I add the Table “T_Capital_Rainfall_Q” to my first database? 8

A.5.2 How do I input data into the Table “T_Capital_Rainfall_Q”? 8

A.6 How do I write and run my first Select Query with record aggregation?.............. 9

A.6.1 How do I write my first Select Query with record aggregation? 9

A.6.2 How do I run my first Select Query with record aggregation?..................... 10

A.7 How do I configure my Tables in my first database? .. 11

A.7.1 How do I configure my Table “T_Capital_Cities”? 11

A.7.1.1 How do I configure the Primary Key field in Table “T_Capital_Cities”? 11

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page ii

A.7.1.2 How do I configure no zero-length in all my text fields? 12

A.7.1.3 How do I check that the “Required” property really works? 12

A.7.1.4 How do I check that the Key field really works? ... 13

A.7.2 How do I configure my Table “T_Capital_Rainfall_Q”? 13

A.7.2.1 How do I configure the Primary Key fields in Table “T_Capital_Rainfall_Q”? 14

A.7.2.2 How do I configure “Allow Zero Length=No” in all my text fields? 15

A.7.2.3 How do I configure a field validation rule in my “Quart” field? 15

A.7.2.4 How do I check that the composite Key fields really work? 15

A.7.2.5 How do I check that the field validation rule for the field “Quart” really works?

 ... 16

A.8 How do I write and run my first Union Query?... 16

A.8.1 How do I write my first Union Query? ... 16

A.8.2 How do I run my first Union Query?.. 18

A.9 How do I create a Relationship in my first database? ... 18

A.9.1 How do I create a Relationship from “T_Capital_Cities” to

“T_Capital_Rainfall_Q”? .. 18

A.9.2 How do I check that the Relationship really works? 19

A.10 How do I write and run my first Join Query? .. 20

A.10.1 How do I write my first Join Query? .. 20

A.10.2 How do I run my first Join Query? ... 21

A.11 How do I write and run my first Transform Query? .. 21

A.11.1 How do I write my first Transform Query? .. 21

A.11.2 How do I run my first Transform Query? ... 23

PART B. BRIEFING ON MS-ACCESS USER INTERFACE 24

B.1 What options should I set in MS-Access? ... 24

B.1.1 What “Current Database” options should I set? ... 25

B.1.2 What “Object Designers” options should I set? .. 26

B.1.3 What “Client Settings” options should I set? .. 26

B.1.4 What “Quick Access Toolbar” options should I set? 26

B.2 How is the MS-Access window structured? .. 27

B.2.1 What is the top window frame? .. 28

B.2.2 What is the “Quick Access Toolbar”? .. 28

B.2.3 What is the “Ribbon-bar”? .. 28

B.2.4 What are Ribbon names? .. 28

B.2.5 What is the Ribbon Area? ... 29

B.2.6 What is the visible Ribbon? .. 29

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page iii

B.2.7 What is the “Navigation Pane”? ... 29

B.2.8 What is the Object Area? .. 30

B.2.9 What are the object tabs? .. 30

B.2.10 What is the Visible Object and the object panes? 30

B.2.11 What is the “Status-bar”? .. 31

B.3 What are the Ribbons? ... 31

B.3.1 What is a Ribbon group? .. 31

B.3.2 Why do Ribbons change how they look? ... 32

B.3.3 What permanent Ribbon can I display? .. 33

B.3.4 What contextual Ribbon can I display? .. 34

B.3.4.1 What are contextual Ribbons? .. 34

B.3.4.2 What are contextual Ribbon labels? ... 34

B.3.4.3 What are contextual Ribbon names? .. 34

B.3.4.4 What contextual Ribbon can I display, depending on context? 34

B.4 What is the “Navigation Pane” and how it works? .. 36

B.4.1 How do I open, close and do other actions on objects in the “Navigation Pane”?

 ... 38

B.4.1.1 How do I search for an object name in the “Navigation Pane”? 38

B.4.1.2 What is the object menu in the “Navigation Pane”? ... 38

B.4.1.3 How do I open an object with the “Navigation Pane”? 41

B.4.1.4 How do I change the view-type of an opened object? .. 41

B.4.1.5 How do I view another of the opened objects? ... 43

B.4.1.6 How do I save the layout/design of an opened object?....................................... 43

B.4.1.7 How do I close an opened object? .. 43

B.4.1.8 How do I rename an object? ... 44

B.4.1.9 How do I run a Query? ... 44

B.4.1.10 How do I select one or more objects? ... 45

B.4.1.11 How do I edit a Query? ... 45

B.4.1.12 How do I create an object? ... 45

B.4.1.13 How do I delete objects? .. 46

B.4.1.14 How do I copy/cut and paste objects? .. 46

B.4.2 How do I configure the way object names are grouped, ordered, displayed or

hidden in the “Navigation Pane”? .. 46

B.4.2.1 How do I configure the way object names are grouped in the “Navigation Pane”?

 ... 47

B.4.2.2 How do I configure the way object names are ordered in the “Navigation Pane”?

 ... 48

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page iv

B.4.2.3 How do I configure the way object names are displayed in the “Navigation

Pane”? ... 49

B.4.2.4 How do I hide/unhide whole object name groups in the “Navigation Pane”? 49

B.4.2.5 How do I hide/unhide an individual object name in its object group? 50

B.4.2.6 How do I hide/unhide all system object names?... 51

B.5 What is a Table/Query/Form in “Datasheet View”? ... 51

B.5.1 What is the “Navigation bar” in “Datasheet View”? 53

B.5.2 How do I select a range of fields/records in “Datasheet View”?.................. 53

B.5.3 How do I select one field’s value in “Datasheet View”? 57

B.5.4 What are the differences between selecting one field and one field’s value in

“Datasheet View”? .. 59

B.5.5 How do I find a record in a Table/Query/Form “Datasheet View” 60

B.5.6 How do I manage a Table/Query/Form “Property Sheet” in “Datasheet
View”? .. 60

B.6 What is a Table in “Design View”? .. 60

B.6.1 How do I view, add, delete and configure my Table fields? 62

B.6.1.1 How do I view the Table fields in “Design View”? .. 62

B.6.1.2 What are a Field’s “General” tab properties in “Design View”? 63

B.6.1.3 What are a Field’s “Lookup” tab properties in “Design View”? 63

B.6.1.4 How do I select one or more Table fields in “Design View”? 63

B.6.1.5 How do I add Table fields in “Design View”? .. 64

B.6.1.6 How do I copy/cut and paste Table fields in “Design View”? 65

B.6.1.7 How do I reconfigure my Table fields in “Design View”? 66

B.6.1.8 How do I delete Table fields in “Design View”? .. 66

B.6.1.9 How do I reorder Table fields in “Design View”? .. 67

B.6.2 How do I manage Table indexes in “Design View”? 67

B.6.2.1 How do I view Table indexes in “Design View”? ... 67

B.6.2.2 How do I select fields in Table indexes in “Design View”? 69

B.6.2.3 How do I delete, insert or move fields in Table indexes in “Design View”? 70

B.6.3 How do I unhide/hide a Table “Property Sheet” in “Design View”? 70

B.6.4 How do I configure a Table “Property Sheet” in “Design View”? 71

B.7 What is a Query in “Design View”? ... 72

B.7.1 How do I unhide/hide a Query’s “Property Sheet” in “Design View”? 73

B.7.2 How do I configure a Query’s “Property Sheet” in “Design View”? 74

B.8 What is a Form in “Design View”? .. 76

B.8.1 How do I unhide/hide a Form’s “Property Sheet” in “Datasheet View” or

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page v

“Design View”? .. 76

B.8.2 How do I configure a Form’s “Property Sheet” in “Datasheet View” or

“Design View”? .. 77

B.9 What is a Query in “SQL View”? .. 79

B.10 What is the “Relationships” pane? ... 80

B.10.1 How do I open the “Relationships” pane? .. 80

B.10.2 How do I view my Relationships? .. 80

B.10.3 How do I view a Relationship’s properties? ... 82

B.10.4 How do I change the layout of the “Relationships” pane? 85

B.10.4.1 How do I select/unselect Table-boxes? .. 85

B.10.4.2 How do I unhide/hide Relationships? ... 86

B.10.4.3 How do I unhide/hide the “Add Tables” sub-pane? .. 86

B.10.4.4 How do I unhide or add Table-boxes? .. 87

B.10.4.5 How do I hide or delete a Table-box? .. 87

B.10.4.6 What is the difference between unhide/hide and add/delete a Table-box? 88

B.10.4.7 How do I move a Table-box? ... 88

B.10.4.8 How do I resize a Table-box? ... 89

B.10.4.9 How do I front-display a Table-box? .. 89

B.10.4.10 How do I save the “Relationships” pane layout? .. 89

B.10.5 How do I edit an existing Relationship? ... 89

B.10.6 How do I create a new Relationship? ... 90

B.10.7 How do I delete a Relationship? ... 90

B.10.8 How do I close the “Relationships” pane? .. 90

B.11 Can I use a drop-down/expression menu even if its icon is not shown? 91

PART C. CONCEPTS AND INTERNALS OF DATABASES 92

C.1 What are the main concepts of databases? ... 92

C.1.1 What is a database, a record and a field? .. 92

C.1.2 What is the difference between a database and a spreadsheet? 93

C.1.3 What is a database design? ... 94

C.1.4 What is an SQL Query? .. 94

C.1.5 What is the Structured Query Language (SQL) .. 94

C.1.6 How is a database used? ... 94

C.2 What are objects, names, keywords, data types, constants, variables, operators,

functions and expressions? ... 95

C.2.1 What is an object and a name? .. 95

C.2.2 What is a qualified field name? .. 95

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page vi

C.2.3 What is a keyword? ... 96

C.2.4 What is a data type? .. 96

C.2.5 What is a constant? ... 96

C.2.6 What is a variable? .. 97

C.2.7 What is an operator? ... 97

C.2.8 What is a function? ... 98

C.2.9 What is an expression?.. 99

C.2.10 What is an SQL operation? ... 99

C.2.11 What is expression syntax? ... 100

C.3 What are fields, field value-lists, records and record-lists? 100

C.3.1 What are fields, field names and field types? ... 101

C.3.2 What is a record and a record type? .. 101

C.3.3 What is a record-list? .. 101

C.3.4 What is a field value-list? ... 102

C.4 What are database Tables? ... 103

C.5 What is a pointer? .. 103

C.6 What is a Null? .. 104

C.7 What are duplicate records and duplicate field values? 105

C.7.1 What are duplicate records? .. 105

C.7.2 What are duplicate field values? ... 106

C.8 What is indexing? .. 107

C.8.1 Why is indexing useful? ... 107

C.8.2 Can I create one index over a list of field names (called a composite index)?

 ... 110

C.8.3 What different types of indexes are there? ... 112

C.8.3.1 What are simple indexes and composite indexes? .. 112

C.8.3.2 What are indexes with duplicate values and without duplicate values? 112

C.8.3.3 What are indexes that ignore Nulls and not ignore Nulls? 113

C.8.3.4 What are indexes with Nulls and without Nulls? ... 113

C.8.3.5 What is an index without duplicate values and without Nulls? 113

C.8.4 What indexes can I configure in a given Table? ... 114

C.8.5 Why should I use indexing in my database? ... 116

C.8.5.1 Why indexing improves performance? ... 116

C.8.5.2 Why indexing prevents duplicate records in a Table? 116

C.8.5.3 Why indexing allows establishing Relationships between Tables? 117

C.9 How do I prevent duplicate field values and duplicate records? 117

C.9.1 How I do I prevent duplicate field values over a group of field name(s) in my

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page vii

Tables? ... 117

C.9.2 How I do I prevent duplicate records in my Tables? 118

C.9.3 How do I prevent duplicate records in my Query’s record-lists? 119

C.10 What are the Table Key(s) and how should I handle them? 120

C.10.1 What is the Primary Key of a Table? .. 120

C.10.2 What is a simple Key and a composite Key? .. 121

C.10.3 What are the candidate Keys of a Table?.. 122

C.11 What is a Relationship? ... 122

C.11.1 What is a Relationship with referential integrity? 125

C.11.2 What are “one-to-many” and “one-to-one” Relationships? 127

C.11.3 What is an indeterminate Relationship? ... 130

C.11.4 What is a many-to-many Relationship? .. 130

C.11.5 Why should I configure Relationships? .. 132

PART D. DESIGNING MY DATABASES WITH MS-ACCESS 133

How do I design my database? ... 133

How do I use my database? .. 134

How do I evolve my database design? ... 135

D.1 How do I create, close and open a database file? .. 135

D.1.1 How do I create a database file? ... 135

D.1.2 How do I close a database file? .. 136

D.1.3 How do I open an existing database file? ... 136

D.2 How do I carefully assign good names from the very beginning? 137

D.2.1 Why should I make field names short but clear? .. 138

D.2.2 Why should I use homogeneous field names across Tables and Queries? . 139

D.2.3 Why should I use structured names for Tables and Queries? 139

D.2.4 Why should I avoid certain elements in names? .. 140

D.2.4.1 Why should I avoid special characters in names? .. 140

D.2.4.2 Why should I avoid “<>” as a field name?... 141

D.2.4.3 Why should I avoid non-English letters in names? .. 141

D.2.4.4 Why must I avoid control characters in names? ... 141

D.2.4.5 Why must I avoid using keywords as names? .. 142

D.2.4.6 Why should I avoid the suffix “_n” in Table names? 142

D.2.5 What are the MS-Access formal rules for identifiers? 143

D.2.6 When can I assign the same name to different objects and/or properties? . 144

D.3 How do I create and design a Table and its fields? ... 145

D.3.1 How do I create a Table? .. 145

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page viii

D.3.2 How do I create my Table fields? ... 146

D.4 How do I configure a Table field data type and size? 146

D.4.1 What is the “Short Text” field type? ... 147

D.4.2 What is the “Long Text” field type? .. 148

D.4.3 What are the “Number” field types? .. 148

D.4.3.1 What is the “Number-Byte” field type-size? .. 148

D.4.3.2 What is the “Number-Integer” field type-size? .. 149

D.4.3.3 What is the “Number-Long Integer” field type-size? 149

D.4.3.4 What is the “Number-Single” field type-size? .. 149

D.4.3.5 What is the “Number-Double” field type-size? ... 150

D.4.3.6 What is the “Number-Replication ID” field type-size? 150

D.4.3.7 What is the “Number-Decimal” field type-size? .. 150

D.4.4 What is the “Currency” field type? ... 150

D.4.5 What is the “Date/Time” field type? .. 151

D.4.6 What is the “Date/Time extended” field type? .. 152

D.4.7 What is the “Yes/No” field type? .. 153

D.4.8 What is the “Calculated” field type? .. 153

D.4.9 What is the “Large Number” field type? .. 154

D.4.10 What is the “AutoNumber” field type? .. 155

D.4.11 What is the “OLE Object” field type? .. 155

D.4.12 What is the “Hyperlink” field type? .. 156

D.4.13 What is the “Attachment” field type? .. 156

D.4.14 What is the “Lookup Wizard...”? .. 157

D.5 How do I configure a Table field validation rule, indexing, and other properties?

 .. 157

D.5.1 What common Table field properties should I set? 158

D.5.1.1 What is the “Description” Table field property? .. 158

D.5.1.2 What is the “Format” Table field property? ... 158

D.5.1.3 What is the “Caption” Table field property? .. 159

D.5.1.4 What is the “Default Value” Table field property? ... 159

D.5.1.5 What is the field “Validation Rule” Table field property? 159

D.5.1.6 What is the field “Validation Text” Table field property? 161

D.5.1.7 What is the “Required” Table field property? .. 161

D.5.1.8 What is the “Indexed” Table field property? .. 162

D.5.1.9 What is the “Text Align” Table field property? ... 162

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page ix

D.5.2 What data-type specific Table field properties should I set? 162

D.5.2.1 What is the “Field Size” Table field property? .. 163

D.5.2.2 What is the “Allow Zero Length” Table field property? 163

D.5.2.3 What is the “Decimal Places” Table field property? .. 163

D.5.2.4 What is the “Input Mask” Table field property? .. 163

D.5.2.5 What is the “Result Type” Table field property? .. 164

D.6 How do I configure the Primary Key field(s) of a Table? 164

D.6.1 How do I configure a Primary Key with only one field? 164

D.6.2 How do I configure a Primary Key with several fields? 165

D.6.3 How do I change the Primary Key of a Table? .. 165

D.6.4 What checks are done on Key fields when saving my Table design? 166

D.6.5 How do I identify the Primary Key field(s) of a Table? 166

D.6.6 Why should I define the Primary Key field(s) in Tables? 168

D.7 How do I add simple and/or composite index(es) to a Table? 168

D.7.1 How do I add simple indexes to a Table? ... 169

D.7.2 How do I add composite (and simple) indexes to a Table? 169

D.7.3 How do I reconfigure the indexes of a Table? .. 170

D.8 How do I configure the properties of a Table? .. 171

D.8.1 How do I configure a record validation rule? ... 172

D.8.2 How do I configure the record validation text? .. 173

D.8.3 How do I configure the “Subdatasheet Name” property? 173

D.9 How do I create and configure my Table Relationships? 174

D.9.1 How do I create a new Relationship? ... 175

D.9.1.1 How do I create a new Relationship in the most frequent case? 175

D.9.1.2 How do I create a new Relationship in less frequent cases? 176

D.9.2 How do I configure a Relationship? ... 177

D.9.3 What is the effect of “Enforce Referential Integrity”? 180

D.9.4 What is the effect of “Cascade Update Related Fields”?............................ 180

D.9.5 What is the effect of “Cascade Delete Related Records”? 181

D.9.6 What Relationships should I configure? ... 181

D.10 How do I design MS-Access Forms? .. 182

D.10.1 What are MS-Access Forms? ... 182

D.10.2 How do I create an MS-Access Form? ... 182

D.10.3 How do I add/delete/update a field of a Form? .. 183

D.10.3.1 How do I add a field to a Form? ... 183

D.10.3.2 How do I delete a field from a Form? .. 183

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page x

D.10.3.3 How do I update a field of a Form? .. 184

D.10.4 How do I configure VBA action code associated to Form Events? 184

D.10.4.1 How do I configure a Form to have an associated VBA Module? 184

D.10.4.2 How do I enter/edit the VBA subroutine associated to a Form Event? 185

D.10.4.3 How does my VBA code modify field values in the Form record being edited?

 ... 186

D.10.4.4 Why should I write options in the VBA Modules of my Forms? 187

D.10.4.5 How do I close the VBA editor? .. 187

D.11 How do I configure the way to enter data (e.g., a drop-down menu) in a

Table/Form field? ... 188

D.11.1 How do I configure a drop-down menu to enter data in a Table field? 189

D.11.1.1 How do I configure a Table drop-down menu that takes its values from a

Table/Query? ... 190

D.11.1.2 How do I configure a Table drop-down menu that takes its values from a Value

List? ... 191

D.11.1.3 How do I configure a Table drop-down menu that takes its values from a Field

List? ... 192

D.11.2 How do I configure a date-picker to enter a date in a Table field? 193

D.11.3 How do I configure type-in or checkbox to enter data in a Table/Form field?

 ... 193

D.11.4 How do I configure a drop-down menu or a date-picker to enter data in a

Form field?... 194

D.11.4.1 How do I configure a new drop-down menu directly in a Form field? 194

D.11.4.2 How do I configure an existing drop-down menu in a Form field? 196

D.11.4.3 How do I configure a new date-picker directly in a Form field?.................... 197

D.11.5 What options can I set in a “Combo Box” Table/Form drop-down menu?

 ... 198

D.11.5.1 What are useful options in a “Combo Box” Table/Form drop-down menu? .. 198

D.11.5.2 What are the interactions between slave fields, “Limit to List” property and the

field validation rule?.. 200

D.12 How do I use MS-Access Reports? ... 200

D.13 How do I share a database, having multiple concurrent users? 201

PART E. ENTERING, MODIFYING AND DELETING MY DATABASE DATA . 202

E.1 How do I edit one new or existing record? .. 203

E.1.1 How do I go to the new-record row? .. 204

E.1.2 How do I enter the record under edition?.. 205

E.2 How do I edit the field’s values of the record under edition? 206

E.2.1 How do I choose a field value? ... 207

E.2.2 How do I type-in a value in a field? .. 208

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xi

E.2.2.1 How do I type-in a value in a Yes/No field? ... 209

E.2.2.2 How do I type-in a value in a Short Text field? .. 209

E.2.2.3 How do I type-in a value in a Number, Currency or Large Number field? 209

E.2.2.4 How do I type-in a value in a Date/Time field? ... 209

E.2.2.5 How do I type-in a zero-time value in a Date/Time field? 210

E.2.2.6 How do I type-in a zero-date value in a Date/Time field? 212

E.2.2.7 What happens if the field “Format” property does not match the field type? ... 212

E.2.3 Why is a value shown in a different way when the Table/Query/Form field’s

value has been selected? .. 213

E.2.3.1 How is the formatting of a Number or Currency field changed when I select its

field’s value? ... 213

E.2.3.2 How is the formatting of a Yes/No field changed when I select its field’s value?

 ... 214

E.2.3.3 How is the formatting of a Date/Time field changed when I select its field’s

value? .. 214

E.3 How do I interactively delete existing records? ... 215

E.4 What is different about entering, modifying or deleting records from a Table or a

Form? .. 215

E.5 How do I copy/cut and paste data between MS-Access and other applications?

 .. 216

E.5.1 How do I copy/cut data from an MS-Access Table, Form or Query result?

 ... 216

E.5.2 How do I paste data into MS-Access? .. 217

E.5.2.1 How do I paste into a field’s value? .. 217

E.5.2.2 How do I paste over a rectangle of fields? .. 217

E.5.2.3 How do I paste as new records? .. 218

E.5.2.4 What are the fields and field order when pasting? .. 219

E.5.3 How do I paste data copied from MS-Access into other applications? 219

E.5.3.1 How do I paste as plain text into Excel? ... 219

E.5.3.2 How do I paste as formatted data into Excel? ... 221

E.5.3.3 How do I paste as plain text into Word? ... 222

E.5.3.4 How do I paste as formatted text into Word? ... 222

E.5.3.5 What are the additional rows when pasting into Excel or Word? 223

E.5.3.6 How do I paste into a plain-text processor? .. 223

E.5.3.7 How do I paste back into MS-Access? ... 223

E.6 What checks are done when saving a field value, or entering or modifying a record?

 .. 223

E.6.1 What checks are done when saving a field value? 223

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xii

E.6.2 What checks are done when entering or modifying a record? 224

E.7 How do I bulk-change my Table/Form’s data? ... 225

E.7.1 How do I bulk-modify my data using the “Find/Replace” tool? 225

E.7.2 How do I bulk-change my data with an external application? 227

E.7.3 How do I bulk-change my data using data-changing Queries? 227

E.7.4 Why should I backup my data before a bulk-change? 228

E.8 How do I upload my pre-existing data into my database? 228

E.9 Can I get inconsistent results out of my initial data in my database? 229

E.10 Why should I use “Compact and Repair Database”? 229

PART F. WRITING SQL QUERIES TO USE MY DATABASE 231

F.1 What is the Structured Query Language (SQL)? ... 231

F.2 What version of SQL is this guide for? .. 232

F.3 Why should I write and run Queries? ... 232

F.4 What is an SQL operation and an SQL Query? ... 232

F.4.1 What is an SQL operation? ... 233

F.4.2 What is an SQL Query?... 233

F.4.3 Why should I write my Queries in SQL? .. 233

F.4.4 What SQL Query editor should I use? .. 234

F.4.5 How do I create a Query? .. 234

F.4.6 How do I edit my SQL Queries without a plug-in Query editor? 235

F.5 How do I edit my SQL Queries with the plug-in “Access SQL Editor”? 235

F.5.1 How do I start with the plug-in “Access SQL Editor”? 236

F.5.1.1 How do I get and install the plug-in “Access SQL Editor”? 236

F.5.1.2 How do I open the plug-in “Access SQL Editor”? .. 236

F.5.1.3 What options should I set in the “Access SQL Editor”? 237

F.5.2 What is the user interface of the plug-in “Access SQL Editor”? 238

F.5.3 What are the toolbar commands in the “Access SQL Editor”? 239

F.5.4 How do I manage the Queries/Tables with the “Access SQL Editor”? 240

F.5.4.1 How do I open a Query/Table from the “Access SQL Editor”? 240

F.5.4.2 How do I select a Query/Table name in the “Access SQL Editor”? 241

F.5.4.3 How do I show a query pane in the “Access SQL Editor”? 242

F.5.4.4 How do I select a query pane in the “Access SQL Editor”? 242

F.5.4.5 How do I run a Query from the “Access SQL Editor”? 243

F.5.4.6 How do I save a Query from the “Access SQL Editor”? 244

F.5.4.7 How do I close a query pane in the “Access SQL Editor”? 244

F.5.4.8 How do I create a new Query from the “Access SQL Editor”? 245

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xiii

F.5.4.9 How do I rename a Query from the “Access SQL Editor”? 245

F.5.4.10 How do I copy a Query from the “Access SQL Editor”? 246

F.5.4.11 How do I delete a Query from the “Access SQL Editor”? 246

F.5.5 How do I edit a Query in its query pane in the “Access SQL Editor”?......... 246

F.5.5.1 What are the specific editing functionalities of a query pane from the “Access

SQL Editor”? .. 247

F.5.5.2 What are the conventional editing functionalities of a query pane from the

“Access SQL Editor”? ... 248

F.5.6 How do I configure the layout of the “Access SQL Editor”? 249

F.5.6.1 What are the query panes in the “Access SQL Editor”? 250

F.5.6.2 What is the “Queries” pane in the “Access SQL Editor”? 250

F.5.6.3 What is the “Tables” pane in the “Access SQL Editor”? 251

F.5.6.4 What is the “Status” pane in the “Access SQL Editor”? 252

F.5.6.5 What is the “Results” pane in the “Access SQL Editor”? 252

F.5.6.6 What is a pane-space in the “Access SQL Editor”? .. 252

F.5.6.7 What is a sub-window in the “Access SQL Editor”? .. 253

F.5.6.8 What is a self-standing window of the “Access SQL Editor”? 255

F.5.6.9 How do I move an object pane, a sub-window or a self-standing window of the

“Access SQL Editor”? ... 256

F.5.6.10 How do I convert between an object pane, a pane-space, a sub-window, or a

self-standing window in the “Access SQL Editor”? ... 257

F.5.6.11 What can be a good layout for the “Access SQL Editor”? 258

F.6 What are the SQL operators I use to write my Queries? 259

F.6.1 What are the SQL consulting operations? ... 259

F.6.2 What are the SQL data-changing operators? ... 261

F.7 What is a Select operation and how do I write it? .. 261

F.7.1 What is the Select operator? .. 262

F.7.2 What are the three types of Select? ... 265

F.7.3 What is the dataflow of a Select? .. 267

F.7.4 What is the input record-list (“FROM” clause) of a Select? 270

F.7.5 What are the output fields (“SELECT” clause) of a Select? 271

F.7.6 What is the output record-list of a Select? .. 273

F.7.6.1 What are the output field values of a Select-no_aggreg? 273

F.7.6.2 What are the output field values of a Select-group_by_aggreg? 274

F.7.6.3 What are the output field values of a Select-total_aggreg? 276

F.7.6.4 What are the output records of a Select? ... 277

F.7.6.5 How many output records does a Select produce? .. 279

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xiv

F.7.7 What is the “WHERE” clause of a Select? ... 280

F.7.8 What is the “DISTINCTROW” clause of a Select? 281

F.7.9 What is the “GROUP BY” clause of a Select-group_by_aggreg? 281

F.7.10 What is the “HAVING” clause of Select-group_by_aggreg or Select-

total_aggreg?.. 282

F.7.11 What is the “DISTINCT” clause of a Select? .. 283

F.7.12 How do I use “ORDER BY” to order the output records of a Select? 284

F.7.12.1 How are the different data/field types ordered by the “ORDER BY” clause?. 287

F.7.13 What is the “TOP” clause of a Select? .. 288

F.7.14 How do I write a correct (syntax) Select? ... 289

F.7.15 How do I write a correct (syntax) Select-no_aggreg? 290

F.7.15.1 What is a syntax-example of a Select-no_aggreg?.. 291

F.7.15.2 What are the formal rules (syntax) to write a Select-no_aggreg? 292

F.7.16 How do I write a correct (syntax) Select-group_by_aggreg?.................... 295

F.7.16.1 What is a syntax-example of a Select-group_by_aggreg? 296

F.7.16.2 What are the formal rules (syntax) to write a Select-group_by_aggreg? 298

F.7.17 How do I write a correct (syntax) Select-total_aggreg? 303

F.7.17.1 What is a syntax-example of a Select-total_aggreg? 304

F.7.17.2 What are the formal rules (syntax) to write a Select-total_aggreg? 305

F.7.18 What is an SQL aggregate function? ... 308

F.7.18.1 What is the “Count(*)” SQL aggregate function? 310

F.7.18.2 What is the “Count()” SQL aggregate function? .. 310

F.7.18.3 What are the “First()” and “Last()” SQL aggregate functions? 310

F.7.18.4 What are the “Min()” and “Max()” SQL aggregate functions? 310

F.7.18.5 What are the “Sum()” and “Avg()” SQL aggregate functions? 311

F.7.18.6 What are the “StDev()”, “StDevP()”, “Var()” and “VarP()” SQL

aggregate functions? .. 312

F.7.18.7 What is a summary and grouping of aggregate functions? 313

F.8 What is a Join operation and how do I write it? ... 314

F.8.1 What is “joining” two ordered records? .. 314

F.8.2 What are the Join operators? ... 316

F.8.2.1 How do the four Join operations compare? ... 319

F.8.2.2 Are Join operations commutative? .. 320

F.8.3 What are the input record-lists of a Join? .. 322

F.8.4 What are the output fields of a Join? ... 323

F.8.5 What is the output record-list of a “,” Cross-Join? 324

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xv

F.8.5.1 What are the output field values of a “,” Cross-Join? 324

F.8.5.2 What are the output records of a “,” Cross-Join? .. 324

F.8.5.3 How many output records does a “,” Cross-Join produce? 326

F.8.6 What is the output record-list of an “INNER JOIN”? 326

F.8.6.1 What are the output field values of an “INNER JOIN”? 327

F.8.6.2 What are the output records of an “INNER JOIN”? 327

F.8.6.3 How many output records does an “INNER JOIN” produce? 332

F.8.7 What is the output record-list of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)? ... 332

F.8.7.1 What are the output field values of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)? .. 333

F.8.7.2 What are the output records of an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”)? .. 333

F.8.7.3 How many output records does an Outer-Join (“LEFT JOIN” or

“RIGHT JOIN”) produce? .. 336

F.8.8 What is the output record-list of a Full-Outer-Join? 337

F.8.8.1 What are the output field values of a Full-Outer-Join? 337

F.8.8.2 What are the output records of a Full-Outer-Join? .. 337

F.8.8.3 How many output records does a Full-Outer-Join produce? 341

F.8.9 What is the “ON” clause of “INNER JOIN” and Outer-Join (“LEFT JOIN”

and “RIGHT JOIN”)? .. 341

F.8.10 How do I write a correct (syntax) Join? .. 343

F.8.10.1 What is a syntax-example of a Join? ... 343

F.8.10.2 What are the formal rules (syntax) to write a Join? .. 344

F.8.10.3 How do I nest Joins? ... 346

F.9 What is a Union operation and how do I write it?.. 347

F.9.1 What are the Union operators? .. 348

F.9.2 What are the input record-lists of a Union? .. 349

F.9.3 What are the output fields of a Union?.. 349

F.9.4 What is the output record-list of a Union? .. 351

F.9.4.1 What are the output field values of a Union? .. 351

F.9.4.2 What are the output records of a Union? .. 351

F.9.4.3 How many output records does a Union produce? ... 351

F.9.5 How do I write a correct (syntax) Union? ... 352

F.9.5.1 What is a syntax-example of a Union? ... 352

F.9.5.2 What are the formal rules (syntax) to write a Union? 353

F.9.5.3 How do I nest Unions? .. 353

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xvi

F.9.6 Why do I find misleading the names of the Union operators? 354

F.10 What is a Transform operation and how do I write it? 354

F.10.1 What is the Transform operator? ... 356

F.10.2 What is the input record-list (“FROM” clause) of a Transform? 359

F.10.3 What are the output fields of a Transform? ... 359

F.10.3.1 What is the number of output fields of a Transform? 359

F.10.3.2 What are the output field names of a Transform? ... 360

F.10.3.3 What is the output field order of a Transform? ... 362

F.10.3.4 What are the output data/field types of a Transform? 363

F.10.4 What is the output record-list of a Transform? ... 364

F.10.4.1 What are the output field values of a Transform? ... 364

F.10.4.2 What are the output records of a Transform? .. 367

F.10.4.3 How many output records does a Transform produce? 368

F.10.5 Can I see an example of a Transform operation? 368

F.10.6 What is the “TRANSFORM” clause of a Transform? 371

F.10.7 What is the “SELECT” clause of a Transform? .. 371

F.10.8 What is the “ORDER BY” clause of a Transform? 371

F.10.9 What is the “WHERE” clause of a Transform? .. 371

F.10.10 What is the “GROUP BY” clause of a Transform? 372

F.10.11 What is the “PIVOT” clause of a Transform? .. 372

F.10.12 What is the “IN” clause of a Transform? .. 373

F.10.13 How do the clauses from Transform and Select compare? 374

F.10.14 How do I write a correct (syntax) Transform? .. 374

F.10.14.1 What is a syntax-example of a Transform? ... 375

F.10.14.2 What are the formal rules (syntax) to write a Transform? 377

F.10.14.3 Can I nest Transform operations? ... 382

F.11 What are the SQL clauses, their expression’s elements and color codes? 382

F.11.1 Given an SQL clause, what are its expression’s elements? 382

F.11.2 What are the SQL color codes used in this Guide? 385

F.12 How do I add parameters (type-in variables) to my Queries? 386

F.13 How do I write a Query that changes my Table data? 388

F.13.1 What is a Delete operation and how do I write it? 389

F.13.2 What is an Insert operation and how do I write it? 389

F.13.2.1 How do I write a Query that inserts many Table records? 390

F.13.2.2 How do I write a Query that inserts only one Table record? 391

F.13.2.3 What are the common characteristics to all Insert operations? 392

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xvii

F.13.2.4 What is the summary of Insert operations? ... 395

F.13.3 What is an Update operation and how do I write it? 396

F.13.4 Can I write a VBA function that deletes, inserts or updates Table records?

 ... 396

F.13.5 When should I use SQL operations that change records from my Tables?

 ... 396

F.14 How do I write and debug my SQL Queries? .. 396

PART G. WRITING EXPRESSIONS ... 398

G.1 What are the main differences between the three expression scopes? 398

G.1.1 How available field names depend on expression scopes? 399

G.1.2 How writing field names depends on expression scopes? 400

G.1.3 How data types depend on expression scopes? .. 400

G.1.4 How constants depend on expression scopes?.. 400

G.1.5 How value operators depend on expression scopes? 400

G.1.6 How non-aggregate built-in functions depend on expression scopes? 401

G.1.7 How domain aggregate functions depend on expression scopes? 402

G.1.8 How SQL aggregate functions depend on expression scopes? 402

G.1.9 How user-defined functions depend on the expression scopes? 402

G.1.10 How using SQL operations (“Subqueries”) depends on the expression

scopes? ... 402

G.2 How do I manage VBA data types and Table field types-sizes? 403

G.2.1 What VBA data types vs. Table field types-sizes are equivalent? 403

G.2.2 What VBA data types vs. Table field types-sizes are not equivalent? 404

G.2.3 What is the result of combining different data/field types in expressions? 405

G.2.4 How are data/field types grouped for easier reference? 406

G.2.5 How do I force a value to belong to a specific data type? 408

G.2.6 Why should I force a value into a specific data type? 409

G.3 What is the data type returned by an expression? .. 410

G.3.1 What is the data type of a constant? ... 410

G.3.2 What is the data type returned by a non-arithmetic operator? 410

G.3.3 What is the data type returned by an arithmetic operator? 411

G.3.4 What is the data type returned by a function? .. 411

G.4 How do I write a constant? .. 411

G.4.1 How do I write Boolean constants? .. 412

G.4.2 How do I write String constants?.. 412

G.4.3 How do I write Byte, Integer, Long Integer, LongLong, Currency, Single and

Double constants? .. 413

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xviii

G.4.4 How do I write Date constants? ... 413

G.4.5 What are the restrictions when writing constants in VBA expressions? 413

G.5 How do I use value operators in an expression?.. 414

G.5.1 What are the Arithmetic operators? .. 415

G.5.2 What are the Text string operators? .. 416

G.5.3 What are the Comparison operators? .. 417

G.5.4 What are the Pattern operators? .. 418

G.5.5 What are the Logical (Boolean) operators? .. 419

G.5.6 What are the “IS NULL” and “IS NOT NULL” Miscellaneous operators?

 ... 420

G.5.7 What are the “IN” and “NOT IN” Miscellaneous operators? 421

G.5.8 What are the “BETWEEN AND” and “NOT BETWEEN AND” Miscellaneous

operators? ... 422

G.6 How do I use functions in an expression? ... 423

G.6.1 How do I use non-aggregate built-in functions in an expression?.............. 424

G.6.2 How do I use domain aggregate functions in an expression? 426

G.6.3 How do I use SQL aggregate functions in an expression? 428

G.6.4 How do I use user-defined VBA functions in an expression? 429

G.7 What is the evaluation order of an expression? ... 429

G.8 How do I use an SQL operation in an expression? .. 430

G.8.1 How do I use a Subquery in an SQL expression? 431

G.8.2 What are the “EXISTS”, “ANY” and “ALL” Subquery operators? 432

G.8.2.1 What is the “EXISTS” Subquery operator?... 432

G.8.2.2 What is the “ANY” Subquery operator? .. 433

G.8.2.3 What is the “ALL” Subquery operator? .. 433

G.8.3 What is a correlated Subquery? .. 434

G.8.4 What is an uncorrelated Subquery? .. 434

G.8.5 How do I use an SQL operation in a VBA variable assignment? 434

G.9 How are numeric-like values internally represented and processed? 435

G.9.1 How are numeric-like values internally represented? 435

G.9.2 What is decimal/binary conversion? ... 435

G.9.3 What are decimal/binary conversion rounding errors? 436

G.9.4 What is the cause of decimal/binary conversion rounding errors? 437

PART H. CUSTOMIZING THE APPEARANCE OF A QUERY/TABLE/FORM IN

“DATASHEET VIEW” .. 439

H.1 How do I change the column width, or freeze/unfreeze the columns in a

Table/Query/Form? ... 439

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xix

H.1.1 How do I change the column width in a Table/Query/Form? 439

H.1.2 How do I freeze/unfreeze the columns in a Table/Query/Form? 440

H.1.2.1 How do I freeze the columns in a Table/Query/Form? 441

H.1.2.2 How do I unfreeze all the columns in a Table/Query/Form? 441

H.2 How do I change row height, hide rows or change row order in a

Table/Query/Form? ... 442

H.2.1 How do I change the height of all the rows in a Table/Query/Form? 442

H.2.2 How do I hide rows in a Table/Query/Form? ... 443

H.2.3 How do I change the sorting of rows in a Table/Query/Form? 443

H.3 How do I change the order of columns that I see in a Table/Query/Form? 445

H.3.1 How do I change the order of columns in a Table/Query/Form? 445

H.3.2 How is it related a Table’s column order and its field order in “Design View”?

 ... 446

H.3.3 How is it related a Query’s column order and its field order in “Design View”

and “SQL View”? .. 446

H.3.4 How is it related a Forms’ column order and shown/hidden columns and the

ones of its associated Table? ... 447

H.4 How do I hide/unhide columns in a Table/Query/Form? 447

H.4.1 How do I hide the columns that I see in a Table/Query/Form? 448

H.4.2 How do I unhide columns in a Table/Query/Form? 448

H.4.3 How are related a Table/Query’s shown/hidden columns and its fields in other

views? .. 449

H.4.4 How is it related a Forms’ column order and shown/hidden columns and the

ones of its associated Table? ... 449

H.5 How do I change the column headings in a Table/Query/Form? 450

H.5.1 How do I change a Table’s column headings? ... 450

H.5.2 How do I change a Query’s column headings? .. 451

H.5.3 How do I change a Form’s column headings?.. 451

H.5.4 How are related a Form’s column headings and the ones of its associated

Table? .. 452

H.6 How do I configure the formatting of column values in a Table/Query/Form? 452

H.6.1 How do I configure predefined column formatting in a Table/Query/Form?

 ... 453

H.6.1.1 What “Format” options are available in Short Text and Long Text fields? 453

H.6.1.2 What “Format” options are available in Yes/No fields? 453

H.6.1.3 What “Format” options are available in Number, Large Number, Currency and

Date/Time fields? .. 454

H.6.1.4 What “Format” options are available in Calculated fields? 456

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xx

H.6.2 How do I configure custom column formatting in a Table/Query/Form? .. 457

H.6.2.1 How do I configure custom formatting for all field types? 457

H.6.2.2 How do I configure custom formatting for Short Text fields? 458

H.6.2.3 How do I configure custom formatting for Number, Large Number and Currency

fields? .. 459

H.6.2.4 How do I configure custom formatting for Date/Time field type? 460

H.6.3 How do I find the column formatting properties in a Table/Query/Form? 461

H.6.3.1 How do I find a Table’s column formatting properties? 462

H.6.3.2 How do I find a Query’s column formatting properties? 462

H.6.3.3 How do I find a Form’s column formatting properties? 463

H.7 How do I configure the column text alignment in a Table/Query/Form? 464

H.7.1 How do I configure a Table/Form’s column text alignment?..................... 464

H.7.2 How do I configure a Query’s column text alignment? 465

H.8 How do I show aggregate values (e.g., totals) in a Table/Query/Form? 465

H.8.1.1 How do I show aggregate values in Short Text and Yes/No fields? 466

H.8.1.2 How do I show aggregate values in Date/Time field? 466

H.8.1.3 How do I show aggregate values in Number, Large Number and Currency

fields? .. 467

H.9 How do I configure colors, fonts and other features of a Table/Query/Form?.. 467

PART I. EVOLVING MY DATABASE DESIGN.. 469

I.1 Why would I want to improve/modify my database design? 469

I.2 Why should I be so careful with any change to the database design? 469

I.2.1 What are database element dependencies?... 470

I.2.2 What are side effects? .. 471

I.3 How do I find all the dependent objects on a given database object? 472

I.4 What are the side effects of modifying my Table fields? 472

I.4.1 What are the side effects of adding a field to a Table? 472

I.4.2 What are the side effects of deleting a Table field? 474

I.4.3 What are the side effects of changing the name of a Table field? 476

I.4.4 What are the side effects of modifying the properties of a Table field? 477

I.4.4.1 What are the side effects of changing the “Field Type” and/or “Field Size”

properties of a Table field? .. 477

I.4.4.2 What are the side effects of changing the “Required”, “Allow zero length”,

“Validation rule” or “Indexing” properties of a Table field? ... 481

I.4.4.3 What are the side effects of changing a drop-down menu of a Table field? 481

I.4.5 What are the side effects of changing the order of Table fields? 481

I.5 What are the side effects of modifying my Tables? .. 482

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxi

I.5.1 What are the side effects of adding a new Table? .. 483

I.5.2 What are the side effects of deleting a Table? ... 483

I.5.3 What are the side effects of changing the name of a Table? 484

I.5.4 What are the side effects of modifying a Table field? 484

I.5.5 What are the side effects of modifying the order of fields in the Table? 484

I.5.6 What are the side effects of modifying the indexes or the Key fields of a Table?

 ... 484

I.5.6.1 What are the side effects of changing an index with duplicate values? 485

I.5.6.2 What are the side effects of adding an index without duplicate values? 485

I.5.6.3 What are the side effects of changing an index without duplicate values? 485

I.5.6.4 What are the side effects of adding or changing the Key fields of a Table? 486

I.5.7 What are the side effects of modifying the record validation rule of a Table?

 ... 486

I.6 What are the side effects of modifying my Queries? .. 486

I.6.1 What are the side effects of adding a new Query? 487

I.6.2 What are the side effects of deleting a Query?... 487

I.6.3 What are the side effects of modifying the functionality of a Query? 487

I.6.4 What are the side effects of changing the name of a Query? 488

I.6.5 What are the side effects of adding a new field to a Query? 489

I.6.6 What are the side effects of deleting a Query field? 490

I.6.7 What are the side effects of changing the name of a Query field? 491

I.6.8 What are the side effects of changing the data type of a Query field? 491

I.6.9 What are the side effects of modifying the order of fields in a Query? 492

I.7 What are the side effects of modifying my user-defined VBA functions? 493

I.8 What are the side effects of modifying my Relationships, Forms and/or Reports?

 .. 494

PART J. DEBUGGING MY SQL QUERIES .. 495

J.1 How do I fix an error/crash in a test-and-proven Query? 495

J.2 How do I fix an error/crash in a non-test-and-proven Query? 497

J.3 How do I debug by commenting/uncommenting? .. 497

J.4 How do I debug in progressive steps? .. 498

J.5 How do debug inside out? ... 499

J.6 How do I debug my same-level code linearly? ... 499

J.7 How do I debug the current uncommented SQL operation at each step? 500

J.7.1 How do I debug the current uncommented SQL operation so it can be saved?

 ... 501

J.7.2 How do I debug the current uncommented SQL operation so it runs? 504

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxii

J.7.3 How do I debug the current uncommented SQL operation so it does not produce

defective results? ... 506

J.7.4 How do I debug the current uncommented SQL operation’s functionality? 507

J.7.5 How do I check the results of the current uncommented SQL operation? .. 509

J.8 How do I fix a syntax error that prevents saving a Query?................................. 510

J.9 How do I fix a crash from a syntax error? .. 511

J.10 How do I fix a crash from a run-time error? ... 517

J.10.1 How do I fix the crash “Divide by zero.”? .. 517

J.10.2 How do I fix the crash “Overflow.”? .. 518

J.10.3 How do I fix the crash “Data type mismatch in criteria expression.”? 519

J.10.4 How do I fix the crash “Data type mismatch.”? .. 520

J.10.5 How do I fix the crash “Invalid Procedure Call or Argument.”? 521

J.10.6 How do I fix the crash “Invalid use of Null.”? .. 521

J.10.7 How do I fix the crash “The expression cannot be used in a calculated
column.”? ... 521

J.10.8 How do I fix the crash “Cannot have … in aggregate argument.”? 522

J.10.9 How do I fix the crash “Could not find field…”? .. 522

J.10.10 How do I fix the crash “The expression cannot be used in a Calculated
column”? .. 522

J.10.11 How do I fix the crash “Expression is too complex.”? 523

J.10.12 How do I fix the crash “Query is too complex.”? 523

J.10.13 How do I fix the crash “Cannot open any more databases.”? 523

J.10.14 How do I fix a crash from my user-defined VBA functions? 523

J.11 How do I fix defective Query results? .. 524

J.11.1 How do I fix a Query showing a wrong numeric-like value? 525

J.11.2 How do I fix a Query showing a wrong Short Text value? 525

J.11.3 How do I fix a Query erroneously considering two different values as equal?

 ... 525

J.11.4 How do I fix a Query erroneously considering two equal values as different?

 ... 526

J.11.5 How do I fix a Query erroneously ordering records? 527

J.11.6 How do I fix a Query requesting a non-declared parameter? 527

J.11.7 How do I fix a Query requesting a non-existing parameter? 528

J.11.8 How do I fix a Query requesting the same parameter twice (or more times)?

 ... 528

J.11.9 How do I fix a Query showing “########” in a field? 529

J.11.10 How do I fix a Query producing “#Num!”, “#Div/0!”, “#Error”, “#Type!” or

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxiii

“#Func!” in a field? .. 529

J.11.11 How do I fix a Query producing “#Invalid” or “#Deleted” in a field? 530

J.11.12 How do I fix a Query showing a black square in a field? 531

J.11.13 How do I fix a Query producing “#Name?” in a field? 531

J.11.14 How do I fix a Query showing a blank field that should not be blank? ... 531

J.11.15 How do I fix a Query producing defective values? 532

J.11.16 How do I fix a Query’s defective “ON” expression? 533

J.11.17 How do I fix a Transform Query producing wrong field names? 533

J.11.18 How do I fix a Query that stalls/freezes? ... 534

J.11.19 How do I fix a Query making arithmetic errors? 534

J.11.20 How do I fix a Query making rounding errors? 535

J.11.21 How do I fix a Query that I cannot open in “Design View”? 539

J.11.22 How do I fix my VBA functions comparing text strings case sensitive? 539

J.12 What do I do when I just cannot fix a Query? .. 539

J.13 Why should I always compare the results of an existing Query? 540

J.13.1 What is a record-list comparator tool? ... 541

J.14 What Null-related bugs can I get? .. 542

J.14.1 What effect does Null cause in Query results? .. 542

J.14.2 What effects does Null cause in Arithmetic, Comparison and Pattern value

operators? ... 542

J.14.3 What effects does Null cause in Logical value operators? 542

J.14.4 What effects does Null cause in Text string value operators? 543

J.14.5 What effects does Null cause in the “IN” and “NOT IN” Miscellaneous value

operators? ... 543

J.14.6 What effects does Null cause in SQL operators that remove duplicate records?

 ... 543

J.14.7 What effect does Null cause in Union SQL operators? 543

J.14.8 What effects does Null cause in aggregate functions? 544

J.14.9 What effects does Null cause as an argument of a VBA function? 544

J.15 What exception-value bugs can I get? .. 545

J.15.1 What is an exception-value? .. 545

J.15.2 What operations produce number-overflow “#Num!”? 546

J.15.3 How do I prevent exception-values? .. 547

J.15.4 What is the effect of an exception-value in value operators? 548

J.15.5 What is the effect of an exception-value in function arguments? 548

J.15.6 What is the effect of an exception-value in expressions? 548

J.15.7 When is an exception-value crashing the Query? 548

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxiv

J.16 What data type bugs can I get? ... 549

J.16.1 What data type bugs can I get with constants? .. 549

J.16.2 What data type bugs can I get with value operators? 550

J.16.2.1 What data type problems can I get with Arithmetic operators? 550

J.16.2.2 What data type problems can I get with Text string operators?....................... 551

J.16.2.3 What data type problems can I get with Comparison operators? 551

J.16.2.4 What data type problems can I get with Pattern operators? 552

J.16.2.5 What data type problems can I get with Logical operators? 552

J.16.2.6 What data type problems can I get with Miscellaneous operators? 552

J.16.3 What data type bugs can I get with the Union operator? 552

J.16.4 What data type bugs can I get with aggregate functions? 553

J.16.5 What data type bugs can I get with VBA functions? 553

PART K. USEFUL DESIGN ADVICE ... 555

K.1 What are good practices in my Table design? ... 555

K.1.1 Why should I write field descriptions in my Table fields? 555

K.1.2 Why should I add validation rules to my Tables? 556

K.1.2.1 Why should I add field validation rules to my Table fields? 556

K.1.2.2 Why should I add record validation rules to my Tables? 557

K.1.3 Why should I prevent Nulls in my Table fields? .. 557

K.1.4 Why should I add a “Comments” field to my Tables? 558

K.1.5 Why should I add at least one Date/Time field to my Tables? 558

K.1.6 How to prevent errors in Short Text fields? .. 560

K.1.7 Why should I configure drop-down menus to enter data? 561

K.1.8 What are good practices in configuring my drop-down menus? 561

K.1.8.1 What “Row Source Type” and “Row Source” should I use in my drop-down

menus? ... 562

K.1.8.2 Should I create a Relationship from an auxiliary Table used in drop-down

menus? ... 563

K.1.8.3 Should I configure “Limit to List=Yes” in my drop-down menus? 564

K.1.9 How do I configure a drop-down menu in a Date/Time field? 565

K.2 What are other good practices in my database design? 566

K.2.1 Why should I hide unfrequently used objects? ... 566

K.2.2 Why should I add a “T_Numbers” Table with integer numbers? 567

K.2.3 What are the interactions between Nulls, duplicates, indexing, and Key

field(s)? .. 567

K.2.4 What are the interactions between Relationships and “PrimaryKey”,

“Required” and Table indexes? ... 569

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxv

K.2.5 What are the actual fields and the actual field order in a Table/Query/Form?

 ... 569

K.2.6 What is the difference between a Calculated field and automatically

introducing a value using a Form?... 570

K.2.7 How should I back-up MS-Access database files? 571

K.2.8 How do I store a list of values, instead of a single value, in a Table field? 571

K.2.9 Why and how should I maximize Table data correctness and coherence?. 572

K.2.10 How do I restrict the values introduced in my Table fields? 572

K.3 How do I structure and optimize a distributed database? 577

K.3.1 How do I organize my database files? .. 577

K.3.2 How do I create user-specific views of my shared database? 579

K.3.3 What are frontend files, backend files and source files? 580

K.3.4 What are local Tables, linked Tables and source Tables? 580

K.3.5 How do I get a split database? .. 582

K.3.6 How do I create a linked Table? ... 583

K.3.7 How do I refresh a Table link? ... 584

K.3.8 How do I convert a linked Table to a local Table? 584

K.3.9 How do I view a Table link? .. 585

K.3.10 How do I view and manage Table links? ... 585

K.3.11 How do I delete a linked Table? ... 588

K.3.12 How do I manage Relationships with linked Tables? 588

K.3.13 Can I change the file path or name of a source file? 589

K.3.14 What are the options to lock records in a shared database? 589

K.3.15 What is the delay of network access to a database? 590

K.3.16 Why should I make temporal Tables local? ... 591

K.4 What Query design principles should I follow? .. 591

K.4.1 How do I write my SQL Queries? .. 592

K.4.2 Why should I incrementally run my SQL code while I write a Query? 592

K.4.3 How do I write readable (maintainable) SQL Queries? 593

K.4.4 Why should I disable changing Table data from Query results? 599

K.4.5 Why should I qualify all the outermost output field names of my Queries?

 ... 600

K.4.6 When should I remove duplicate records? ... 600

K.4.7 Why should I enclose the outermost Union operation in a Select operation?

 ... 601

K.4.8 Why should I restrict the usage of “INNER JOIN”? 602

K.4.9 Why should I avoid using “SELECT *”? ... 602

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxvi

K.4.10 Why should I avoid using the same name of an input field name for an output

expression? .. 603

K.4.11 When are “SELECT” expressions evaluated along Query processing? ... 603

K.5 Why and how should I carefully handle Nulls in my Queries? 604

K.5.1 What is a Null? ... 604

K.5.2 What problems can Null produce? ... 604

K.5.3 How is a Null produced? .. 604

K.5.4 How do I handle Nulls in my Queries? .. 605

K.5.5 Where do I handle Nulls in my Queries? ... 607

K.5.6 Why is MS-Access not handling Null fields as I indicated? 607

K.5.6.1 How are Null fields created in “LEFT JOIN” and “RIGHT JOIN”? 608

K.5.6.2 Why should I handle Null fields in all the innermost SQL operations? 609

K.6 What are some useful models of SQL code? ... 613

K.6.1 How do I generate/create record-lists? ... 614

K.6.2 How do I replicate record-lists? .. 615

K.6.3 How do I produce totals in addition to individual results? 616

K.6.4 How do I convert rows into columns? .. 618

K.6.5 How do I convert columns into rows? .. 621

K.6.6 How do I use a Transform operation to show a cross table? 622

K.6.7 How do I produce the non-matching records of a Join operation? 624

K.6.8 How do I write a Full-Outer-Join?.. 627

K.6.9 How do I “merge” two record-lists? ... 629

K.6.10 How do I produce a weighted average? .. 632

K.6.11 How do I design a data check Query? .. 634

K.6.12 How do I get the exact record ordering I want? 636

K.6.12.1 How do I order over several expressions? .. 636

K.6.12.2 How do I order over only one expression? ... 636

K.6.12.3 How do I order over user-defined functions? ... 637

K.6.12.4 How do I order over “GROUP BY” expressions? .. 637

K.6.12.5 How do the four ordering approaches compare among themselves? 637

K.6.13 How do I use String fields to display different data types in the same Query

column?.. 638

K.6.14 What are useful tricks with SQL aggregate functions? 639

K.6.14.1 How do I use the “AllNull()” SQL aggregate function? 640

K.6.14.2 How do I use the “AllEqual()” SQL aggregate function? 640

K.6.14.3 How do I use the “Or()” or “And()” SQL aggregate functions? 641

K.7 Why and how do I design a fast database and fast Queries? 642

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxvii

K.7.1 How do I design a fast database? .. 643

K.7.2 How do I design faster Select operations over Queries? 644

K.7.2.1 Why should I use “DISTINCT”, “UNION” and “ORDER BY” only if needed?

 ... 644

K.7.2.2 Why should I use the most restrictive “WHERE” and “HAVING” expressions in

my Select operations?.. 645

K.7.2.3 Why should I mainly use comparison and logical operators in my “WHERE” and

“HAVING” expressions? ... 646

K.7.3 How do I design faster Select operations over Tables? 647

K.7.3.1 Why should I avoid bringing unnecessary data from Tables? 647

K.7.3.2 Why should I consider using uncorrelated Subqueries and/or domain aggregate

functions in “WHERE” expressions over Tables? .. 649

K.7.4 How do I design faster Union operations? ... 650

K.7.5 How do I design faster Join operations? ... 650

K.7.5.1 Why should I always restrict in inner Selects? ... 650

K.7.5.2 Why should I mainly use comparison and logical operators in my “ON”

expressions? .. 651

K.7.6 How do I design a faster Select-group_by when I have bound values in all my

records? .. 652

K.8 Why should I avoid using Decimal data types?... 653

K.8.1 What are the Decimal data types? .. 653

K.8.2 Why should I avoid using the Number-Decimal Table field type? 653

K.8.3 Why should I avoid using the Variant-Decimal VBA data type? 654

K.8.4 How do Decimal data types work? ... 655

K.9 How do I write my user-defined VBA functions and database Subroutines? ... 655

K.9.1 How do I create VBA modules and open the VBA editor? 656

K.9.2 How do I write a VBA function that inserts/updates/deletes Table’s records?

 ... 658

K.9.3 How do I write a VBA function that reads database records? 659

K.9.4 How do I write a VBA function that requests a parameter to the user? 660

K.9.5 How do I test my user-defined VBA functions? .. 660

K.9.6 How do I write VBA Subroutines associated to Form Events?.................. 662

K.9.7 How do I close the VBA editor? .. 662

K.10 What elements/concepts are explained in various places? 663

K.10.1 Where are names and identifiers explained? .. 663

K.10.2 Where are drop-down menus explained? ... 663

K.10.3 Where are duplicates explained? .. 664

K.10.4 Where are indexes explained? .. 664

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxviii

K.10.5 Where are Key fields explained? .. 664

K.10.6 Where are Relationships explained? ... 665

K.10.7 Where is Query results ordering explained? ... 665

K.10.8 Where are data types explained? .. 665

K.10.9 Where are zero-length and invisible strings explained? 666

K.10.10 Where are exception-values explained? ... 666

K.10.11 Where are aggregate functions explained? ... 666

K.10.12 Where is remote database access explained? .. 667

K.10.13 Where is VBA code explained? .. 667

K.10.14 Where are Nulls explained? .. 667

PART L. FIXING DATABASE ERRORS .. 669

L.1 Why can I get an error/crash in a test-and-proven database? 669

L.2 How do I fix errors with my Table/Form design?.. 670

L.2.1 How do I fix data integrity errors when saving my Table design? 670

L.2.1.1 How do I fix “Nulls in Required field” when saving my Table design? 673

L.2.1.2 How do I fix “field validation rule violated” when saving my Table design? .. 673

L.2.1.3 How do I fix “record validation rule violated” when saving my Table design?673

L.2.1.4 How do I fix field Type-size change errors when saving my Table design? 674

L.2.1.5 How do I fix that I cancelled the Table data integrity check? 674

L.2.2 How do I fix orphan Calculated fields when saving my Table design? 675

L.2.3 How do I fix “Calculated column cannot be saved…” when saving my Table

design? ... 675

L.2.4 How do I fix “Could not find field…” when writing the expression of a

Calculated field? .. 675

L.2.5 How do I fix “Could not find field…” when saving my Table design? 675

L.2.6 How do I fix “Key/Index with duplicate values” when saving my Table design?

 ... 676

L.2.7 How do I fix “…primary key cannot contain a Null…” when saving my Table

design? ... 677

L.2.8 How do I fix “You can’t change the primary key” when saving my Table

design? ... 677

L.2.9 How do I fix “Cannot delete this index…” when saving my Table design? 678

L.2.10 How do I fix “There is no primary key…” when saving my Table design? 678

L.3 How do I fix errors in my Relationship configuration? 679

L.3.1 How do I fix “different number of fields” Relationship error? 679

L.3.2 How do I fix “different field types” Relationship error? 680

L.3.3 How do I fix “different field sizes” Relationship error? 680

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxix

L.3.4 How do I fix “violates referential integrity” Relationship error? 681

L.3.5 How do I fix “missing index” Relationship error?...................................... 681

L.3.6 How do I fix “…could not lock table…” Relationship error? 682

L.3.7 How do I fix a removed Relationship when I create a new one? 682

L.3.8 How do I fix showing a wrong Relationship type? 682

L.3.9 How do I fix “reversed Relationship Tables and fields” error? 683

L.3.10 How do I fix that I cannot configure a Relationship between a Table and

itself?.. 684

L.3.11 How do I fix a malfunctioning Table slave record? 684

L.3.12 How do I fix a malfunctioning Relationship? ... 684

L.4 How do I fix errors when entering, modifying or deleting records? 685

L.4.1 How do I fix various field value errors? ... 685

L.4.1.1 How do I fix that I cannot type-in a text string in full? 685

L.4.1.2 How do I fix that I cannot paste into a field’s value? 685

L.4.1.3 How do I fix a changed numeric value? ... 686

L.4.1.4 How do I fix a changed Short Text value that I typed-in? 687

L.4.1.5 How do I fix a Table Short Text field configured as “Required=Yes” that accepts

a Null? ... 687

L.4.1.6 How do I fix typing-in invisible characters into a Short Text Table field? 687

L.4.2 How do I fix error messages when saving a field value? 688

L.4.2.1 How do I fix an invalid value”? .. 688

L.4.2.2 How do I fix trying to save Null in a “Required” field? 689

L.4.2.3 How do I fix violating “Allow Zero Length=No”? .. 689

L.4.2.4 How do I fix that I cannot paste a text string in full?.. 689

L.4.2.5 How do I fix a value rejected because it is not in the list? 690

L.4.2.6 How do I fix a value violating a field validation rule? 690

L.4.3 How do fix error messages when entering a record? 690

L.4.3.1 How do I fix a record violating a record validation rule? 690

L.4.3.2 How do I fix erroneous records because of duplicate values? 691

L.4.3.3 How do I fix a slave record without a master record? 691

L.4.3.4 How do I fix an erroneous slave record? .. 692

L.4.4 How do I fix errors when pasting records into a Table/Form? 692

L.4.4.1 What pasting errors can I get from invisible characters in Text fields? 694

L.4.4.2 What pasting errors can I get from data copied from Excel? 695

L.4.4.3 What pasting errors can I get from Windows’ cut/paste buffer? 696

L.4.5 How do I fix a record I cannot delete? .. 696

L.5 How do I fix errors in Table/Form data? ... 696

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxx

L.5.1 How do I fix a Table/Form showing “########” in a field? 697

L.5.2 How do I fix a Table/Form showing “#Num!”, “#Div/0!”, “#Type!” or

“#Func!” in a field? .. 698

L.5.3 How do I fix a Table/Form showing “#Invalid” in a field? 698

L.5.4 How do I fix a Table/Form showing “#Deleted” in a field? 699

L.5.5 How do I fix a Form showing “#Name?” in a field? 699

L.5.6 How do I fix a Table/Form showing a black square in a checkbox field? .. 699

L.5.7 How do I fix a Table/Form showing a wrong numeric-like value in a field?

 ... 700

L.5.8 How do I fix a Table/Form showing a wrong Short Text value in a field? . 700

L.5.9 How do I fix a Table/Form erroneously ordering records?......................... 700

L.5.10 How do I fix a value not in the drop-down menu in a Table/Form field? 701

L.5.11 How do I fix a Null in a Table/Form field configured as “Required=Yes”?

 ... 701

L.5.12 How do I fix an apparent Null in a Table/Form Short Text field configured as

“Required=Yes”? .. 701

L.5.13 How do I fix an apparent zero-length string in a Table/Form field configured

as “Allow Zero Length=No”?.. 702

L.5.14 How do I fix field value(s) that violate(s) the field/record validation rule(s)”?

 ... 703

L.5.15 How do I fix spontaneously changing Table/Form field values? 703

L.6 How do I fix a Table/Form that I cannot open? ... 703

L.6.1 How do I fix “The record source…does not exist”? 704

L.6.2 How do I fix “…database engine could not find the object.”? 704

L.6.3 How do I fix “Could not find file...”? .. 704

L.6.4 How do I fix “...is not a valid path”? .. 705

L.7 How do I fix errors with Short Text or String fields? .. 705

L.7.1 Why text strings can be different from what is shown? 706

L.7.2 What unexpected results can I get because text strings are different from what

is shown? ... 706

L.7.3 How do I fix text strings and insufficient field width? 707

L.7.4 How do I fix text strings and insufficient field height? 708

L.7.5 How do I fix text strings and invisible characters? 708

L.7.6 What are invisible characters? .. 709

L.7.7 What is the zero-length text string? .. 710

L.7.8 What are invisible text strings? ... 711

L.7.9 Why can I have invisible characters in my Short Text and String fields? .. 711

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxxi

L.7.10 What apparently defective results can invisible characters produce? 711

L.8 How do I fix errors with the user interface? .. 712

L.8.1 How do I fix a missing or disappearing command/tool? 713

L.8.2 How do I fix a shaded new-record button? ... 713

L.8.3 How do I fix a Query opening in “SQL View” when I selected “Design View”?

 ... 713

L.8.4 How do I fix the “Access SQL Editor” marking a Query as having unsaved

changes? ... 713

L.8.5 How do I fix an error when opening a Query in “Design View”? 714

L.8.6 How do I fix an extra column in my Tables in “Datasheet View”? 715

L.8.7 How do I fix an extra row in my Query results? ... 715

L.8.8 How do I fix the database users modifying Table values by editing Query

results? ... 715

L.8.9 How do I fix missing columns/rows in my Query results? 715

L.8.10 How do I fix “Could not find field…” when doing “Compact and Repair” or

“Save As”? .. 716

L.8.11 How do I fix the VBA editor changing the value of the constants I write?

 ... 716

L.8.12 How do I fix foreign-language issues of MS-Access? 716

PART M. LIST OF BUILT-IN FUNCTIONS ... 720

M.1 ActiveX functions ... 721

M.2 Application functions .. 721

M.3 Array functions ... 721

M.4 Conversion functions .. 721

M.5 Database functions .. 722

M.6 Date and Time functions ... 722

M.7 Domain Aggregate functions .. 722

M.8 Error Handling functions .. 723

M.9 File Input/Output functions ... 723

M.10 Financial functions .. 723

M.11 Inspection functions .. 723

M.12 Mathematical functions ... 724

M.13 Message functions ... 724

M.14 Miscellaneous functions .. 724

M.15 Program Flow functions .. 725

M.16 SQL aggregate functions ... 725

M.17 File Management functions ... 725

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxxii

M.18 Text Processing functions ... 725

PART N. CONTENTS AND ACKNOWLEDGEMENTS ... I

Lightning Guide to Databases with Microsoft Access and SQL A. Azcorra

Page xxxiii

